Submit Paper

Article Processing Fee

Pay Online

           

Crossref logo

  DOI Prefix   10.20431


 

ARC Journal of Dermatology
Volume-3 Issue-1, 2018, Page No: 13-17
DOI: http://dx.doi.org/10.20431/2456-0022.0301005

Maternal Thyroid Disorders and Developing Skin Dysfunctions

Ahmed R.G*

Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

Citation : Ahmed R.G. Maternal Thyroid Disorders and Developing Skin Dysfunctions. ARC Journal of Dermatology. 2018; 3(1):13-17.

Copyright : © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Opinions:

Thyroid hormones (THs) have important roles on the most developing system (El-bakry et al., 2010; Ahmed, 2011, 2012a,b, 2013, 2014, 2015a-c, 2016a-d, 2017a-v & 2018a-j; Ahmed et al., 2008, 2010, 2012, 2013a,b, 2014, 2015a,b, 2018a,b; Ahmed and Ahmed, 2012; Ahmed and Incerpi, 2013;Van Hercket al., 2013; Ahmed and El-Gareib, 2014,Incerpi et al., 2014; Candelotti et al., 2015; De Vito et al., 2015; El-Ghareeb et al., 2016; Ahmed and El-Gareib, 2017; Bloise et al., 2018), particularly the developing skin and differentiation the epithelial cells like keratinocytes (Billoni et al., 2000; Peltonen et al., 2000; Safer et al., 2000; Bauza et al., 2003; Slominski, 2005; Wedad et al., 2007; Amerion et al., 2013; Nakai et al., 2017). In addition, thyroid receptors isoforms (TRs; α, β) can regulate the growth and differentiation of the skin and the survival of hair follicles (Billoni et al., 2000; Safer et al., 2000; Amerion et al., 2013). Also, THs can induce the epidermal growth and the keratin gene expression by increasing the epidermal growth factor receptor number (EGF) (Hanley et al., 1997; Bassett et al., 2005; Heymann, 2008; Nakai et al., 2017). Moreover, THs can stimulate the expression of laminin in various areas of skin that is an extracellular protein matrix (Burrow, 1994; Kung, 1997; Farwell and Dubord-Tomasetti, 1999; Ahmed et al., 2008; Amerion et al., 2013).

On the other hand, the maternal hypothyroidism causes several defects in the developing skin (Holt et al., 1976; Holt and Marks, 1977; Engfeldt et al., 1982; Robert and Herrera, 1988; Peltonen et al., 2000; Daumerie et al., 2002; Safer et al., 2003; Heymann, 2008; Amerion et al., 2013): (1) decrease the thickness of epidermis; (2) diminish the number of fetal hair follicles; (3)increase the levels of laminin expression in developing skin; (4)elevate the deposition of water and mucopolysacharides in dermis (yellowish skin); (5) decrease the epidermal proliferation rate; and (6) reduce the anabolic activities in developing skin.On the other hand, the maternal hyperthyroidism can cause the opposite behavior where hyperthyroidism decreases the levels of laminin in several parts of the skin (Billoni et al., 2000; Li et al., 2003; Amerion et al., 2013).Thus, the maternal THs cause a negative effect on the levels of fetal/neonatal laminin expression.In addition, the elevation in the aggregation of hyaluronic acid was observed in dermis and hypodermis of Graves's syndrome a common type of thyroid autoimmune diseases (Gong et al., 1997; Daumerie et al., 2002; Heymann, 2008). On the other hand, the anabolic activities were increased in epidermis during the thyrotoxicosis (Amerion et al., 2013). More importantly, the hyperthyroidism is more effective in the epidermis changes and cell proliferation than the hypothyroidism (Holt et al., 1976; Amerion et al., 2013).

From the above mentioned observations, it can be recognized that the balance in the activities of maternal THs may control the biological functions of the fetal/neonatal skin. The disorders in the thyroid functions (hypothyroidism or hyperthyroidism) during the pregnancy and lactation may disrupt the growth and differentiation of the developing skin. Additional thoughts are required to explore the effect of maternal thyroid disorders on the fetal/neonatal physiological processes.


References


  1. Ahmed, O.M., Abd El-Tawab, S.M., Ahmed, R.G., 2010. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I- The development of the thyroid hormones-neurotransmitters and adenosinergic system interactions. Int. J. Dev. Neurosci. 28, 437-454.
  2. Ahmed, O.M., Ahmed, R.G., 2012. Hypothyroidism. In A New Look At Hypothyroidism. Dr. D. Springer (Ed.), ISBN: 978-953-51-0020-1), In Tech Open Access Publisher, Chapter 1, pp. 1-20.
  3. Ahmed, O.M., Ahmed, R.G., El-Gareib, A.W., El-Bakry, A.M., Abd El-Tawaba, S.M., 2012. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int. J. Dev. Neurosci. 30, 517–537.
  4. Ahmed, O.M., El-Gareib, A.W., El-bakry, A.M., Abd El-Tawab, S.M., Ahmed, R.G., 2008. Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci. 26(2), 147-209. Review.
  5. Ahmed, R.G., 2011. Perinatal 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin exposure alters developmental neuroendocrine system. Food Chem. Toxicology, 49, 1276–1284.
  6. Ahmed, R.G., 2012a. Maternal-newborn thyroid dysfunction.In the Developmental Neuroendocrinology, pp. 1-369. Ed R.G. Ahmed. Germany: LAP LAMBERT Academic Publishing GmbH & Co KG.
  7. Ahmed, R.G., 2012b. Maternal-fetal thyroid interactions, Thyroid Hormone, Dr. N.K. Agrawal (Ed.), ISBN: 978-953-51-0678-4, In Tech Open Access Publisher, Chapter 5, pp. 125-156.
  8. Ahmed, R.G., 2013. Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. J. Endocrinol. 219 (3), 205-215.
  9. Ahmed, R.G., 2014. Editorial: Do PCBs modify the thyroid-adipokine axis during development? Annals Thyroid Res. 1(1), 11-12.
  10. Ahmed, R.G., 2015a. Chapter 1: Hypothyroidism and brain development. In advances in hypothyroidism treatment. Avid Science Borsigstr.9, 10115 Berlin, Berlin, Germany. Avid Science Publications level 6, Melange Towers, Wing a, Hitec City, Hyderabad, Telangana, India. pp. 1-40.
  11. Ahmed, R.G., 2015b. Hypothyroidism and brain developmental players. Thyroid Research J. 8(2), 1-12.
  12. Ahmed, R.G., 2015c. Editorials and Commentary: Maternofetal thyroid action and brain development. J. of Advances in Biology; 7(1), 1207-1213.
  13. Ahmed, R.G., 2015d. Developmental adipokines and maternal obesity interactions. J. of Advances in Biology; 7(1), 1189-1206.
  14. Ahmed, R.G., 2016a. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem. Toxicology, 95, 168-174.
  15. Ahmed, R.G., 2016b. Gestational dexamethasone alters fetal neuroendocrine axis. Toxicology Letters, 258, 46–54.
  16. Ahmed, R.G., 2016c. Maternal iodine deficiency and brain disorders. Endocrinol. Metab.Syndr.5, 223. http://dx.doi. org/10.4172 / 2161-1017.1000223.
  17. Ahmed, R.G., 2016d. Neonatal polychlorinated biphenyls-induced endocrine dysfunction. Ann. Thyroid. Res. 2 (1), 34-35.
  18. Ahmed, R.G., 2017a. Developmental thyroid diseases and GABAergic dysfunction. EC Neurology 8.1, 02-04.
  19. Ahmed, R.G., 2017b. Hyperthyroidism and developmental dysfunction.Arch Med. 9, 4.
  20. Ahmed, R.G., 2017c. Anti-thyroid drugs may be at higher risk for perinatal thyroid disease. EC Pharmacology and Toxicology 4.4, 140-142.
  21. Ahmed, R.G., 2017d. Perinatal hypothyroidism and cytoskeleton dysfunction. Endocrinol MetabSyndr 6, 271.doi:10.4172/2161-1017. 1000271
  22. Ahmed, R.G., 2017e.Developmental thyroid diseases and monoaminergic dysfunction. Advances in Applied Science Research 8(3), 01-10.
  23. Ahmed, R.G., 2017f.Hypothyroidism and brain development.J. Anim Res Nutr.2 (2), 13.
  24. Ahmed, R.G., 2017g. Antiepileptic drugs and developmental neuroendocrine dysfunction: Every why has A Wherefore. Arch Med 9(6), 2.
  25. Ahmed, R.G., 2017h. Gestational prooxidant-antioxidant imbalance may be at higher risk for postpartum thyroid disease. Endocrinol MetabSyndr 6, 279. doi:10.4172/2161-1017. 1000279.
  26. Ahmed, R.G., 2017i. Synergistic actions of thyroid-adipokines axis during development. Endocrinol MetabSyndr 6, 280.doi:10.4172/ 2161-1017.1000280.
  27. Ahmed, R.G., 2017j. Thyroid-insulin dysfunction during development. International Journal of Research Studies in Zoology 3(4), 73-75. DOI: http://dx.doi.org/10.20431/2454-941X.0304010.
  28. Ahmed, R.G., 2017k. Developmental thyroid diseases and cholinergic imbalance. International Journal of Research Studies in Zoology 3(4), 70-72. DOI: http://dx. doi. org/10.20431/2454-941X.0304009.
  29. Ahmed, R.G., 2017l. Thyroid diseases and developmental adenosinergic imbalance.Int J ClinEndocrinol 1(2), 053-055.
  30. Ahmed, R.G., 2017m.Maternal anticancer drugs and fetal neuroendocrine dysfunction in experimental animals. Endocrinol MetabSyndr 6, 281.doi:10.4172/2161-1017.1000281.
  31. Ahmed, R.G., 2017n. Letter: Gestational dexamethasone may be at higher risk for thyroid disease developing peripartum. Open Journal of Biomedical & Life Sciences (Ojbili) 3(2), 01-06.
  32. Ahmed, R.G., 2017o.Deiodinases and developmental hypothyroidism. EC Nutrition 11.5, 183-185.
  33. Ahmed, R.G., 2017p.Maternofetal thyroid hormones and risk of diabetes. Int. J. of Res. Studies in Medical and Health Sciences 2(10), 18-21.
  34. Ahmed, R.G., 2017r.Association between hypothyroidism and renal dysfunctions. International Journal of Research Studies in Medical and Health Sciences 2(11), 1-4.
  35. Ahmed, R.G., 2017s.Maternal hypothyroidism and lung dysfunction. International Journal of Research Studies in Medical and Health Sciences 2(11), 8-11.
  36. Ahmed, R.G., 2017t.Endocrine disruptors;possible mechanisms for inducing developmental disorders. International journal of basic science in medicine (IJBSM)2(4), 157-160.
  37. Ahmed, R.G., 2017u.Maternal thyroid hormones trajectories and neonatal behavioral disorders. ARC Journal of Diabetes and Endocrinology 3(2), 18-21.
  38. Ahmed,R.G.,2017v.Maternalthyroid dysfunction and neonatal cardiac disorders. Insights Biol Med. 1, 092-096.
  39. Ahmed, R.G., 2018a. Maternal hypothyroidism and neonatal testicular dysfunction. International Journal of Research Studies in Medical and Health Sciences 3(1), 8-12.
  40. Ahmed, R.G., 2018b. Maternal hypothyroidism and neonatal depression: Current perspective. International Journal of Research Studies in Zoology 4(1), 6-10. DOI: http://dx.doi. org/10.20431/2454-941X. 0401002.
  41. Ahmed, R.G., 2018c. Non-genomic actions of thyroid hormones during development. App Clin Pharmacol Toxicol: ACPT-108. DOI: 10.29011/ACPT-109. 100008.
  42. Ahmed, R.G., 2018d. Maternal thyroid function and placental hemodynamics. ARC Journal of Animal and Veterinary Sciences 4(1), 9-13.DOI: http://dx.doi.org/10.20431/2455-2518.0401002.
  43. Ahmed, R.G., 2018e.Interactions between thyroid and growth factors during development. ARC Journal of Diabetes and Endocrinology 4(1), 1-4. DOI: http://dx.doi.org/ 10.20431/ 2455-5983.0401001.
  44. Ahmed, R.G., 2018f. Maternal thyroid hormones and neonatal appetite. ARC Journal of Nutrition and Growth 4(1), 18-22. DOI: http://dx.doi.org/10.20431/2455-2550.0401005.
  45. Ahmed, R.G., 2018g. Genomic actions of thyroid hormones during development. ARC Journal of Diabetes and Endocrinology 4(1), 5-8. DOI: http://dx.doi.org/10.20431/2455-5983. 0401002.
  46. Ahmed, R.G., 2018h. Dysfunction of maternal thyroid hormones and psychiatric symptoms. American Research Journal of Endocrinology. 2(1), 1-6.
  47. Ahmed, R.G., 2018i. Is there a connection between maternal hypothyroidism and developing autism spectrum disorders? ARC Journal of Neuroscience 3(1), 5-8. DOI: http://dx.doi.org/10.20431/2456-057X.0301002.
  48. Ahmed,R.G.,2018j.Maternalthyroid dysfunctions and neonatal bone maldevelopment. American Research Journal of Endocrinology (in press) xx-xxx.
  49. Ahmed, R.G., Abdel-Latif, M., Ahmed F., 2015b.Protective effects of GM-CSF in experimental neonatal hypothyroidism. International Immunopharmacology 29, 538–543.
  50. Ahmed, R.G., Abdel-Latif, M., Mahdi, E., El-Nesr, K., 2015a. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int. Immunopharmacol. 29, 714-721.
  51. Ahmed, R.G., Davis, P.J., Davis, F.B., De Vito, P., Farias, R.N., Luly, P., Pedersen, J.Z., Incerpi, S., 2013b. Nongenomic actions of thyroid hormones: from basic research to clinical applications. An update. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, 13(1), 46-59.
  52. Ahmed, R.G., El-Gareib, A.W. 2014.Lactating PTU exposure: I- Alters thyroid-neural axis in neonatal cerebellum. Eur. J. of Biol. and Medical Sci. Res. 2(1), 1-16.
  53. Ahmed, R.G., El-Gareib, A.W., 2017.Maternal carbamazepine alters fetal neuroendocrine-cytokines axis. Toxicology 382, 59–66.
  54. Ahmed, R.G., El-Gareib, A.W., Incerpi, S., 2014. Lactating PTU exposure: II- Alters thyroid-axis and prooxidant-antioxidant balance in neonatal cerebellum. Int. Res. J. of Natural Sciences 2(1), 1-20.
  55. Ahmed, R.G.,El-Gareib, A.W., Shaker, H.M.,2018a.Gestational 3,3′,4,4′,5- pentachloro biphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences 192, 213–220.Ahmed, R.G.,Walaa G.H.,
  56. Asmaa F.S., 018b.Suppressive effects of neonatal bisphenol A on the neuroendocrine system.Toxicology and Industrial Health Journal (in press).
  57. Ahmed, R.G., Incerpi, S., 2013. Gestational doxorubicin alters fetal thyroid–brain axis. Int. J. Devl. Neuroscience 31, 96–104.
  58. Ahmed, R.G., Incerpi, S., Ahmed, F., Gaber, A., 2013a. The developmental and physiological interactions between free radicals and antioxidant: Effect of environmental pollutants. J. of Natural Sci. Res. 3(13), 74-110.
  59. Amerion, M., Tahajjodi, S., MahdaviShahri, N., Nikravesh, M.R., Jalali, M., 2013. The Effect of Maternal Thyroid Disorders (hypothyroidism and hyperthyroidism) during pregnancy and lactation on skin development in wistar rat newborns. Iran J Basic Med Sci. 16, 665-674.
  60. Bassett, J., Swinhoe, R., Chassande, O., Samarut, J., 2005. Thyroid hormone regulates heparan sulfate proteoglycan expression in thegrowth plate. J Endocrinol 147, 295-305.
  61. Bauza, E., Dal Farra, C., Portolan, F., Domloge, N., 2003. New laminin peptide for innovative skin care cosmetics. Cosmet Toiletries 3, 111- 120.
  62. Billoni, N., Buan, B., Gautier, B., Gaillard, O., Mahe, Y.F., Bernhard, B.A., 2000. Thyroid hormone receptor b1 is expressed in the human hair follicle. Br J Dermatol. 142, 645–652.
  63. Bloise, F.F., Cordeiro, A., Ortiga-Carvalho, T.M., 2018.Role of thyroid hormone in skeletal muscle physiology. Journal of Endocrinology 236, R57–R68.
  64. Burrow, G., 1994. Maternal and fetal thyroid function. N Engl J Med 331, 1072-1090.
  65. Candelotti, E., De Vito, P., Ahmed, R.G., Luly, P., Davis, P.J., Pedersen, J.Z., Lin, H-Y., Incerpi, I., 2015. Thyroid hormones crosstalk wit growth factors: Old facts and new hypotheses. Immun., Endoc. &Metab. Agents in Med. Chem., 15, 71-85.
  66. Daumerie, C., Ludgate, M., Costagliola, S., Many, M.C., 2002.Evidence for thyrotropin receptor immunoreactivity in pretibial connective tissue from patients with thyroidassociated dermopathy. Eur J Endocrinol 146,35-38.
  67. De Vito, P., Candelotti, E., Ahmed, R.G., Luly, P., Davis, P.J., Incerpi, S., Pedersen, J.Z., 2015.Role of thyroid hormones in insulin resistance and diabetes. Immun., Endoc. & Metab. Agents in Med. Chem., 15, 86-93.
  68. El-bakry, A.M., El-Ghareeb, A.W.,Ahmed, R.G., 2010.Comparative study of the effects of experimentally-induced hypothyroidism and hyperthyroidism in some brain regions in albino rats.Int. J. Dev. Neurosci. 28, 371-389.
  69. El-Ghareeb, A.A., El-Bakry, A.M., Ahmed, R.G., Gaber, A., 2016.Effects of zinc supplementation in neonatal hypothyroidism and cerebellar distortion induced by maternal carbimazole. Asian Journal of Applied Sciences 4(04), 1030-1040.
  70. Engfeldt, P., Arner, P., Bolinder, A., Wennlund, A., Ostman, J., 1982. Phosphodiesterase activity in human subcutaneous adipose tissue in hyper- and hypothyroidism. J ClinEndocrinolMetabol 54, 625-629.
  71. Farwell, A., Dubord-Tomasetti, S., 1999. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. J Endocrinol 140, 4221-4227.
  72. Gong, H., Ye, W., Freddo, T.F., Hernandez, M.R., 1997.Hyaluronic acid in the normal and glaucomatous optic nerve. Exp Eye Res. 64, 587- 595.
  73. Hanley, K., Devaskar, U.P., Hicks, S., Jiang, Y., Crumrine, D., Elias, P.M., 1997. Hypothyroidism delays fetal stratum corneum development in mice. Pediatr Res J 42, 610-614.
  74. Heymann, W., 2008.Thyroid disorders with cutaneous manifestations. 1st ed. p. 134-156.
  75. Holt, P.J., Lazarus, J., Marks, R., 1976. The epidermis in thyroid disease. Br J Dermatol 95, 513-518.
  76. Holt, P.J., Marks, R., 1977. The epidermal response to change in thyroid status. J Invest Dermatol 68, 299-301.
  77. Incerpi, S., Hsieh, M-T., Lin, H-Y., Cheng, G-Y., De Vito, P., Fiore, A.M., Ahmed, R.G., Salvia, R., Candelotti, E., Leone, S., Luly, P., Pedersen, J.Z., Davis, F.B., Davis, P.J., 2014. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin αvβ3. Am. J. Physiol. Cell Physiol. 307,C150–C161.
  78. Kung, A., 1997. Thyroid disease in pregnancy. Hong Kong Med J 3, 388-390.
  79. Li, J., Tzu, J., Chen, Y., Zhang, Y., Nguyen, N., Gao, J., 2003. Laminin-10 is crucial for hair morphogenesis. EMBO J 22, 2400-2410.
  80. Nakai, Y., Nakajima, K., Yaoita, Y., 2017. An inhibitor of thyroid hormone synthesis protects tail skin grafts transplanted to syngenic adult frogs. Zoolog Sci. 34(5), 414-418.
  81. Peltonen, J., Larjava, H., Jaakkola, S., Gralnick, H., Akiyama, S., Yamada, S., 2000. Localization of integrin receptors for fibronectin, collagen, and laminin in human skin variable expression in basal and squamous cell carcinomas. J Clin Invest 84, 1916-1923.
  82. Robert, M., Herrera, E., 1988.Effect of post weaning thyroid status on endocrine and adipose development in rats. Am J Phisiol 255, 280-286.
  83. Safer, J., Fraser, L., Ray, S., Holick, M., 2000. Topical triiodothyronine stimulates epidermal proliferation, dermal thickening, and hair growth in mice and rats. Thyroid 11, 356-364.
  84. Safer, J.D., Crawford, T.M., Fraser, L.M., Hoa, M., Ray, S., Chen, T.C., 2003. Thyroid hormone action on skin: diverging effects of topical versus intraperitoneal administration. Thyroid 13, 159-165.
  85. Slominski, A., 2005. Neuroendocrine sytem of the skin. J Dermatol 211, 199–208.
  86. Van Herck, S.L.J., Geysens, S., Bald, E., Chwatko, G., Delezie, E., Dianati, E., Ahmed, R.G., Darras, V.M., 2013.Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.Endocrinol.218, 105-115.
  87. Wedad, Z., Solzei, M., Manal, B., Sobhi, R., Zaki, N., 2007.An immunohistochemical study of laminin in cutaneous and mucosal squamous cell carcinomas.J Egypt women dermatology society 4, 1-10.