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1. INTRODUCTION 

Objective of the paper is to solve the discrete–time linear state space optimum control problem. All the 
applied methods are based on two–stage optimizations with or without iteration. Design of control often 
involves some kind of limitation and optimization. The proposed methods limit the control signal 
through appropriate selection of the weighting factor of squared control signal in the performance index 
(PI). By this way the transient response and stability of the system can be influenced. The linear 
quadratic (LQ) PI based design in itself assures good robust capabilities that are proved in the 
professional literature. However, on an infinite horizon the control may become not satisfactory, but 
quality of it can be improved through suitable selection of weights. Constraints in different forms, too, 
may be given on the control signal. All the solutions in the paper use the same principles. For 
deterministic control, the optimization method “optimized trajectory tracking” (OTT, [1]) has been 
developed. OTT applies a sequence of optimizations on a section of two control stages. The 
corresponding method for stochastic  systems  is  “optimized  stochastic  trajectory / output 
sequence tracking” (OSTT). The logic of two–stage optimizations is that  the  minimum  of  a  PI 
on  a finite horizon is not equal in general with the sum of one–stage minima, but  can  be computed 
through a sequence of two–stage optimizations. The consecutive two–stage optimizations overlap each 
other on one stage, the second stage of the preceding section and the first stage of the new section are 
common. The optimum linear state space solution of the optimum infinite horizon control problem 
(computation of the steady state optimum feedback gain) can be derived from optimum finite horizon 
control through limit value calculation of a part of the result of two–stage optimization. The methods 
shown in the paper can be extended for linear and nonlinear model predictive control and nonlinear 
stochastic tracking.
2. STATE SPACE LINEAR OPTIMUM CONTROL 

2.1. State space linear optimum tracking
Consider a completely state controllable discrete - time system with constant parameters, given with 
the equations
x(i+1)=Ax(i)+Bu(i)+w(i),                               (1)                 

y(i)=Cx(i)+n(i).                                 (2)
In (1), (2) x ∈Rn denotes the state vector, u∈ Rm is the control vector, y∈ Rm is the output vector, w(i) 
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and n(i) are white noise processes with zero mean and with the variances E{w(i)wT(i)}=R1; 
E{n(i)nT(i)}=R2 and E{w(i)n T(i)}=R12, where E stands for expectation, and A,B,C are appropriate 
matrices. Assume that E{x(0)} is known, u(0) is estimated and the objective is tracking. Solution of the 
tracking problem may be based on fitting the estimated outputs to the references. If there are no 
constraints to take into consideration, optimum fitting may be achieved through making equal the next 
estimated output with  the corresponding reference. It has been shown, however, that optimum  
fitting  with  respect to a PI, if there are  constraints  on the control signals is achieved through 
two–stage  optimizations   in general [2]. A series of two–stage optimizations and iteration give 
possibilities for computation of the time varying optimum feedback gain, associated with the concrete 
problem. An N – stage PI for tracking may be given as

𝐹ଵ,ே = E൜∑ே
ୀଵ ቀ𝒚൫𝒙(i)൯− 𝒓(𝑖)ቁ

்
𝑸 ቀ𝒚൫𝒙(i)൯− 𝒓(i)ቁ+ ∑ே

ୀଵ 𝒖𝑻(𝑖− 1)R𝒖(𝑖− 1)ൠ.       (3)                          

In (3)  Q and R are appropriate weighting matrices, r(i) is the reference, assumed to be known for the 
whole horizon, N is the length of finite horizon in steps. E{y(x(N))} ≈r(N) may be a requirement for the 
desired end point of tracking. The optimization problem may be solved with OSTT. The two–stage PI 
can be given in the form

𝐹ାଵ,ାଶ = E൜∑ାଶ
ୀାଵ ቀ𝒚൫𝒙(j)൯− 𝒓(𝑗)ቁ

்
𝑸 ቀ𝒚൫𝒙(j)൯− 𝒓(𝑗)ቁ+ ∑ାଶ

ୀ୧ାଵ 𝑢𝑻(𝑗− 1)R𝒖(𝑗− 1)ൠ.(4)

Solution of the tracking problem may be obtained through proof of the following theorem:
THEOREM：

The control vector that minimizes (4) can be given in the form
u(i)=-K(i) x̂ (i/i)+v(i),                                                              (5)                                                                                                 
where
K(i)=K(x(i),x(i+2)) – time varying optimum feedback gain, computed from solution of the 
corresponding deterministic problem,
v(i)=v(r(i+1), r(i+2)) – command input, r(0)=0.
PROOF:
The unknown control vector can be computed from 

డிశభ,శమ
డ𝒖()

= 0.                                                                    (6)                           

Since in case of linear processes with constant parameters and quadratic PI [3]

min E{PI}=E{min (PI)},                                                       (7)

first minimum of (4) is computed without taking the expectation. From (6), taking into consideration 
that derivative of a quadratic function is linear,
u(i)=f{u(i+1),x(i),r(i+1),r(i+2),w(i),w(i+1),n(i+1),n(i+2)}.                               (8)                                  
To obtain u(i) in the form of (8), x(i+1) and x(i+2) are expressed with the state equations. Owing the 
property of (6), all terms in (8) are of first degree. (8) can be separated to parts which depend on 
r(i+1),r(i+2),w(i),w(i+1),n(i+1),n(i+2) and which don’t, 
u(i)=v{r(i+1),r(i+2),w(i),w(i+1),n(i+1),n(i+2)}+f1{u(i+1),x(i)}.                            (9)               
Taking into consideration that u(i), as the control signal on the first stage of a two-stage section is 
known, u(i+1) can be computed with (20). Since all terms of f1 are of first degree and u(i+1) is linear 
function of x(i), x(i+2) and u(i), (9) may be written as 
u(i)=v{r(i+1),r(i+2),w(i),w(i+1),n(i+1),n(i+2)}+f2{x(i),x(i+2)}.                           (10)                 
u(i+1) cannot be expressed with x(i) and x(i+2) in general with matrix operations, since the dimensions 
of the vectors are different in general. However, elements of u(i+1) may be expressed from the state 
equations with elements of x(i) and x(i+2) through some considerations. f2 is also a polynomial of first 
degree and can be expressed as
f2=-K1x(i)-K2x(i+2),                                                              (11)                           



Discrete – time State Space Linear Optimum Control

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                      Page |  22

where K1 and K2 are appropriate constant matrices. If (11) is written in the form of the linear state space 
feedback control law [4],
f2=-K(i)x(i).                                                                     (12)                             
From (11) and (12),
K(i)x(i)=K1x(i)+K2x(i+2).                                                         (13)                      
For computation of the time varying optimum feedback gain, K2x(i+2) may be transformed to K3x(i):
K2x(i+2)=K3{x(i),x(i+2)}x(i),                                                      (14)                  

𝐾ଷ
, = మ

,௫(ାଶ)

௫()
, 1 ≤ 𝑝≤ 𝑚 , 1 ≤ 𝑞≤ 𝑛,                          (15)                           

where p,q are serial numbers of elements of matrices K2, K3. From (13) and (15) 

K(i)=K1+K3{x(i),x(i+2)}.                                                        (16)                                          

Solution of the control problem from (10), (11), (13) and (16) is

E{𝒖(𝑖)} = E {v(r(i+1),r(i+2),w(i),w(i+1),n(i+1),n(i+2))-K(i)x(i)}               (17)                                                                                             
=𝒗൫𝒓(𝑖+ 1), 𝒓(𝑖+ 2)൯− 𝑲(𝑖) x̂ (i).

The above result can be obtained taking into consideration that at time point ti  x(i+2) can be estimated 
only through prediction, and computation of the time varying optimum feedback gain gives the same 
result as in the deterministic case, if x̂ (i)=x(i). Moreover, since the gains have to be computed in 
advance on the whole finite horizon, all the future disturbances have to be taken into account with their 
expectations, resulting in a deterministic model. Consequently, gains of the corresponding deterministic 
model can be used in the stochastic case, too. With alternative sequence of thoughts, the problem can 
be solved for the deterministic case, replacing the states with their concrete values in the gains, and the 
certainty equivalence principle can be used for the solution in the stochastic case. Applicability of the 
certainty equivalence principle can be proved for linear constant parameter systems with quadratic PI 
and white noise disturbances [3]. In (17) [5]

x̂ (i) = 𝐸{𝒙(𝑖)/𝒀(𝑖)}.                             (18)                                       

In (18) x̂ (i) is the Kalman – filter estimate and Y(i) is the measurement vector. 
In the deterministic case the states can be computed exactly, and the control law from (17) with x̂ = x
substitution is
u(i)=v(r(i+1),r(i+2))-K(i)x(i).                                                       (19)                     
(17) and (19) are the stochastic and deterministic feedback solutions of the problem. The feedforward 
solution for stochastic systems can be obtained from (8) through expressing u(i+1) from it and taking 
the expectation
𝐸{𝒖(𝑖+ 1)} = 𝐸൛𝒇ଷ൫𝒖(𝑖), 𝒙(𝑖),𝒓(𝑖+ 1), 𝒓(𝑖+ 2), 𝒘 (𝑖), 𝒘(𝑖+ 1), 𝒏(𝑖+ 1). 𝒏(𝑖+ 2)൯ൟ     (20)

= 𝑓ଷቀ𝒖(𝑖), x̂ (𝑖), 𝒓(𝑖+ 1), 𝒓(𝑖+ 2)ቁ, and for deterministic systems               

𝒖(𝑖+ 1) = 𝒇ଷ൫𝒖(𝑖). 𝒙(𝑖),𝒓(𝑖+ 1). 𝒓(𝑖+ 2)൯.                                        (21)                  
Even if there is no unique feedback solution, a unique feedforward solution may be obtained, if the 
system (1), (2) is reachable.  With the above algorithms both fixed end point (y(N)≈r(N) for an
N-stage control problem) and free end point (y(N)≠r(N)) problems can be solved. At the beginning of 
computations, an estimation is made for the u(0) control vector on the first stage, e.g. from the 
y(1)≈r(1)                                                                       (22)                                
approximation. If feedforward computation is used, u(1) and y(2) can be obtained in knowledge of x(0), 
y(1) and u(0). In the next step, optimization is made on the section [y(1), y(3)], from which u(2) and 
y(3) can be computed. Through this procedure y(N)≠r(N) is obtained from N-1 section optimization. If 
the references are known in advance and y(N)≈r(N) is a requirement, the optimum u(0) control vector 
can be obtained through iterations (regula falsi, Newton iteration method etc.).The obtained output 
sequence, if the optimization problem has only one unique solution, is optimum, since in the [y(i-1),
y(i+1)] section y(i+1) is optimum for a given y(i-1), u(i-1). However, in consequence of the iterative 
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character of the solution, the final result is practically suboptimal (although deviation at the end point 
may be very small). (5) shows that the tracker is noncausal, because future values of the states are 
needed to compute the time varying optimum feedback gain. This fact necessitates to solve the control 
problem (to estimate the states on the whole horizon) in advance. The K gain in (5) is plant and PI 
dependent and may be called “tracker gain”. For infinite horizon control, the steady state optimum 
feedback gain has to be computed. In this case, it is enough to optimize on a section of two control 
stages, without computing a whole trajectory in advance and without iteration. The steady state gain is 
obtained as limit value and the limit doesn’t depend on values of concrete final states [6]:  
𝑲(∞) = 𝑙𝑖𝑚

→ஶ
𝑲൫𝒙(𝑖), 𝒙(𝑖+ 2)൯.                                                  (23)                           

Control with steady state feedback has the advantage of simplicity and good stability properties. 
2.2. Linear Quadratic Gaussian control
Consider the (1), (2) system. For Linear Quadratic Gaussian (LQG) control the PI may be given in the 
form [4] of
𝐹ଵ,ே = 𝐸{∑ேିଵ

 [𝒙்(𝑖)𝑸ଵ𝑥(𝑖) + 2𝑥்(𝑖)𝑸ଵଶ𝒖(𝑖) + 𝒖்(𝑖)𝑸ଶ𝑢(𝑖)] + 𝒙்(𝑁)𝑸𝒙(𝑁)}.        24)                                              
In (24) 𝑸ଵ, 𝑸ଵଶ, 𝑸ଶ, 𝑸 are approximate weighting matrices. The (24) PI is different from that of 
(3), but in both PIs all the terms are quadratic and in the (6) derivative all the terms are linear. 
Consequently, the sequence of thoughts of the above PROOF can be applied. Since r(i)=0, i=0,1,2,…N 
for LQG control, the control law from (17) becomes 
𝒖(𝑖) = −𝑲(𝑖) x̂ (𝑖).                                                              (25)                  
However, K(i) in (25) is different from K(i) in (17), which is the tracker gain. Conventionally, the K(i)
gain comes from solution of the Riccati equation. This paper gives an alternative and simpler way to 
compute the gain matrix for LQG control. If there is only one unique solution of the control problem, 
the gain in (25) should be approximately equal to the gain of LQG control computed through solution 
of the Riccati equation for the same system, PI, and for approximately same conditions. The difference 
comes from the iterative character of the solution in the paper. OTT and OSTT can be used beyond the 
sphere of LQ control, even for control of nonlinear plants [2], too.
3. EXAMPLE 

This example shows a SISO deterministic state space optimum control design. The state and output 
equations of the plant are
x(i+1)=ax(i)+bu(i),                                                              (26)                          

y(i)=x(i).                                                                    (27)                                                               
In (26), a and b are parameters. The two-stage PI is given as

𝐹ାଵ.ାଶ = ∑ାଶ
ୀାଵ ቄ൫𝑟(𝑗) − 𝑥(𝑗)൯

ଶ
+ 𝜆𝑢ଶ(𝑗− 1)ቅ.                                    (28)                        

In (28) 𝜆 is the control weight. With (6), the unknown control signal is 
u(i+1)=r(i+1)/(ab)+r(i+2)/b-x(i)(1+a2)/b-u(i){b2(1+a2)+λ}/(ab2).                         (29)                                             

With elimination of u(i+1) through the state equations 

𝑢(𝑖) = 
మାఒ

ቄ(ାଵ)


+ 𝑟(𝑖+ 2)ቅ− 
మାఒ

ቄ1 + ௫(ାଶ)

௫()
ቅ𝑥(𝑖) = 𝑣(𝑖) − 𝐾(𝑖)𝑥(𝑖).                (30)                                        

(29), (30) can be used for computation on a finite horizon. The K(i) time varying optimum feedback 
gain in (30) needs to be computed in advance for all stages of the horizon. For infinite horizon control 
and unit step reference, the steady state tracker gain, taking into consideration that  

lim
→ஶ

௫(ାଶ)

௫()
= 1,                                                    (31)                                      

is

𝐾௧(∞) = lim
→ஶ

𝐾(𝑖) = ଶ
మାఒ

.                                                       (32)                                                                                 

The steady state optimum feedback gain for LQG control may be computed by (23) through application 
of the l’Hospital rule. x(i+2) can be expressed in function of x(i), u(i) and u(i+1):
x(i+2)=a2x(i)+abu(i)+bu(i+1).                                                     (33)              
With (33) and (30) 
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lim
→

డ௫(ାଶ)

డ௫()
= మఒ

మାఒ
,                                                               (34)                                                              

𝐾(∞) =


మାఒ
ቀ1 + మఒ

మାఒ
ቁ.                                                       (35)                                                                                       

For the closed loop with (26), (30) and (23)

𝑥(𝑖+ 1) = మ

మାఒ
ቄ(ାଵ)


+ 𝑟(𝑖+ 2)ቅ+ ൫𝑎− 𝑏𝐾(∞)൯𝑥(𝑖).                               (36)                                  

If λ=0. 

𝐾௧(∞) =
ଶ

, 𝐾(∞) =



.                                                       (37)                 

For the tracker if λ=0 with (36), (37)
x(i+1)=r(i+1)+ar(i+2)-ax(i).                                                   (38)                   
In steady state (r(i)=r(i+1)=r(i+2)…,x(i)=x(i+1)=x(i+2)…,)
x(i)+ax(i)=r(i)+ar(i).                                                        (39)                 
From (39)
x(i)=r(i).                                                                      (40)                    
For LQG if λ= 0 with (36), (37)

𝑥(𝑖+ 1) = ቀ𝑎− 𝑏𝐾(∞)ቁ𝑥(𝑖) = 0.                                               (41)                                                                                          

If the reversed gains were applied, for LQG with the tracker gain 
x(i+1)=-ax(i),                                                                   (42)                 
the final state is approached through oscillations. For tracker with the LQG gain
x(i+1)=r(i+1)+ar(i+2),                                                            (43)                                                                                                 
the steady state error is increased.

4. CONCLUSION

The paper demonstrates a new approach to optimum solution of the LQG control and LQ tracking 
problems in the state space. The principle of solution is finite horizon control design through a sequence 
of two–stage optimizations and iteration, applying formerly worked out optimization methods. Infinite 
horizon control may be achieved from finite horizon one through limit value calculation. The proposed 
methods make possible simple design of robust control systems satisfying given specifications. The 
solution of the problem gives a new method to computation of the time varying optimum feedback gain, 
both for LQG control and LQ tracking. An example shows the applicability of ideas presented in the 
paper.
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