Realizations of the Solution of the Total Schrödinger Equation from the Link Between Relativity and Quantum Mechanics

Mohamed Daris*

Department of Physics, University of Sciences, Morocco

*Corresponding Author: Mohamed Daris, Department of Physics, University of Sciences, Morocco

Abstract: This work is due for the solution of the big problem which is the solution of the Schrödinger equation to have a new model or system that can have other consequences on the whole matter which leads to a resolution of all the quantum problems to link to physics, which makes theories in quantum physics easier to answer on major and complex questions. The solution of the Schrödinger equation is based on the connection between quantum mechanics and relativity. It is a drift of this connection so we have this system is completely solved and gives a great interpretation of all the particles and waves and all macroscopic or microscopic systems eg galaxies; the planets; the moons etc. for example, particles, waves, electrons, protons, etc. will be noted.

Keywords: Schrödinger equation; variable; wave function; energy.

ABBREVIATIONS:

1. INTRODUCTION

The solution of the Schrödinger equation that I exploit is based on the connection between quantum mechanics and relativity that I already exploit in another subject that gives us a new equation that is a function of the function of It is at this level that we have tried to derive this solution because this link is the basis of all practical solutions and systems. I have tried to calculate the function of the solution which is continuous normal and according to the wave function it allows a global study and localization of the solution to allow to pass to other more important and more complex level.

2. DISCUSSION

I) Relationship building for the model (Em,Ep,Ev) :

We have:

\[E = \Psi \frac{C^2}{\sqrt{T_F}} \]

\[m = \frac{E}{C^2 \sqrt{T_F}} = \frac{\Psi C^2 \sqrt{T_F}}{\sqrt{\rho}} \times \frac{1}{C^2 \sqrt{T_F}} = \frac{\Psi}{\sqrt{\rho}} \]

And we know that: \(m = \frac{\Psi}{\sqrt{\rho}} \)

So: \(\rho = \frac{\Psi^2}{m^2} \); \(V = \frac{m}{\rho} = \frac{\Psi}{\sqrt{\rho}} = m^2 = \frac{m^2}{\sqrt{\rho}} \Psi \)

\(m = \frac{\Psi}{\sqrt{\rho}} \); \(\rho = \frac{\Psi^2}{m^2} \); \(V = \frac{m^2}{\sqrt{\rho}} \Psi \);

• Model design (Em,Ep,Ev) :

We have:
Realizations of the Solution of the Total Schrödinger Equation from the Link Between Relativity and Quantum Mechanics

\[m = \frac{E}{c^2 \sqrt{T_F}} = \frac{\psi}{\sqrt{\rho}} \quad ; \quad \rho = \left(\frac{\psi c^2}{E} \right)^2 \times T_F = \frac{\psi^2}{m^2} \quad ; \quad V = \frac{E}{c^2 \psi^2 \sqrt{T_F}} = \frac{m^2}{\sqrt{\rho} \psi} \]

For \(E_m \) we have:

\[E = \frac{\psi c^2 \sqrt{T_F}}{\sqrt{\rho}} \]

\(E_m = \Psi c^2 \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \)

For \(E_\rho \) we have:

\[\left(\frac{\psi c^2}{E} \right)^2 \times T_F = \frac{\psi^2}{m^2} \]

So:

\[\frac{\psi c^4}{E^2} \times T_F = \frac{\psi^2}{m^2} \]

\(E_\rho = mc^2 \sqrt{T_F} \)

So:

\[E_\rho = \frac{\psi}{\sqrt{\rho}} c^2 \sqrt{T_F} = \Psi c^2 \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \]

For \(E_v \) we have:

\[V = \frac{E}{c^2 \psi^2 \sqrt{T_F}} = \frac{m^2}{\sqrt{\rho} \psi} \]

So:

\[E = m^2 c^2 \psi \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \]

So:

\[E_\rho = \frac{\psi}{\sqrt{\rho}} c^2 \sqrt{T_F} = \Psi c^2 \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \]

So the 3 final results are:

\[E_m = \Psi c^2 \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \quad ; \]

\[E_\rho = \Psi c^2 \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \quad ; \]

\[E_v = m^2 c^2 \psi \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \quad ; \]

We can deduce that: \(E_m = E_\rho = \Psi c^2 \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} \)

So we have: \(E_v = E_\rho m^2 = E_m m^2 \)

• these results show that volume-related energy \(E_v \) is very large compared to the energy related to the mass energy \(E_m \) or density \(E_\rho \) which are identical.

We have: \(\rho = \frac{\psi^2}{m^2} \)
so: \(m^2 = \frac{\psi^2}{\rho} \)

So we will have the new relationship:

\[
E_V = m^2 c^2 \psi \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}} = \frac{\Psi^3 c^2}{\rho} \left(\frac{T_F}{\rho} \right)^{\frac{1}{2}}
\]

So:

\[
E_V = \frac{\psi^3 c^2 \sqrt{T_F}}{(\rho)^{\frac{3}{2}}}
\]

• We have: \(E_V = E_\rho m^2 = E_m m^2 \)

so: \(E_V = E_\rho \frac{\psi^2}{\rho} = E_m \frac{\psi^2}{\rho} \)

So we have the stability of the total matter:

\(\rho E_V = E_\rho \psi^2 \)

And we have:

\(\rho E_V = E_m \psi^2 \)

So we have the density of matter is exist in two forms of energy: mass energy and energy density. In a global form of energy, which is the energy density, we have:

\[
\rho = \frac{E_\rho \psi^2}{E_V} = \frac{E_m \psi^2}{E_V}
\]

• This relation is the total stable energy equilibrium relation of matter or of a body; system; universe ... that has an energy \(E_m ; E_\rho ; E_V \). This relationship represents a link between quantum mechanics and relativity.

The final equation of the connection between relativity and quantum mechanics is:

We pose:

\(E_\rho = E_m = E \)

So we will have:

\[
\rho = \frac{E \psi^2}{E_V}
\]

So the final equation is this:

\[
E = \frac{\rho E_V}{\psi^2}
\]

From the equation linking relativity and quantum mechanics we have:

\[
E = \frac{\rho E_V}{\psi^2}
\]

We have the Schrödinger equation: \(H \psi = E \psi \)

So we have:

\[
E = \frac{\rho E_V}{\psi^2}
\]

So:

\[
E \psi = \frac{\rho E_v}{\psi}
\]

We know that:

\[
E \psi = H \psi
\]

so:

\[
E \psi = H \psi = \frac{\rho E_v}{\psi}
\]
We know that: \(\rho = \frac{\Psi^2}{m^2} \)
so:

\[
E\Psi = H\Psi = \frac{\Psi E_v}{m^2}
\]

So we will have a consequence of:

\[
E\Psi = H\Psi = \frac{E_v}{m^2} \Psi
\]

Other result:

We know that:

\[
E_v = m^2 c^2 \Psi \left(\frac{T_F}{\rho} \right)^{1/2}
\]

so:

\[
E\Psi = H\Psi = \frac{m^2 c^2 \Psi^2}{m^2} \left(\frac{T_F}{\rho} \right)^{1/2}
\]

So we have:

\[
E\Psi = H\Psi = \left[c^2 \left(\frac{T_F}{\rho} \right)^{1/2} \right] \Psi^2
\]

We put the function:

\(D(\Psi) \) : Function of the wave function variable: \((\Psi) \):

We have:

\[
E\Psi = H\Psi = \frac{\rho E_v}{\Psi} = \frac{\Psi E_v}{m^2}
\]

so:

\[
E\Psi = H\Psi = D(\Psi)
\]

With:

\(D(\Psi) \) Function of the wave function variable: \((\Psi) \) . \(D(\Psi) = \frac{\rho E_v}{\Psi} = \frac{\Psi E_v}{m^2} \)

\(D(\Psi) \) : This is the exact solution of the Schrödinger equation. It is a function of the wave function variable (\(\Psi \)) that allows us to simply exploit another horizon in wave and particle physics and physics quantum. This solution is a special solution of the Schrödinger equation in the state and quantum conditions of particles and quanta.

REFERENCES

Realizations of the Solution of the Total Schrödinger Equation from the Link Between Relativity and Quantum Mechanics

Citation: Mohamed Daris, Realizations of the Solution of the Total Schrödinger Equation from the Link Between Relativity and Quantum Mechanics, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), vol. 8, no. 6, pp. 6-10, 2020. Available : DOI: https://doi.org/10.20431/2347-3142.0806002

Copyright: © 2020 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.