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1. INTRODUCTION 

Change in climate has been observed as a crucial issue over the past decade and temperature was 

categorized as the leading component for climate change (Roy, 2012). The Intergovernmental Panel on 

Climate Change (IPCC) report (IPCC, 2012)( Stocker et al, 2013), approved that the overall degree of 

hotness is increasing while cold days and cold nights are expected to decrease. As the world climate 

changes, massive effects are seen on the farming based societies as a result of extreme temperature and 

drought incidences (Stocker et al, 2013). Arguably, the impacts of climate change are still increasing 

(Shahin et al, 2016). It is evident that countries which are located in the tropical regions are more likely 

to be affected by change in climate than other regions. Also, developing countries are more affected by 

climatic change than developed countries because of lack of resources to adapt to changes, relying on 

rainfed agriculture and natural resource to control their livelihoods (UNFCCC, 2006). 

Vital sectors of the Tanzanian economy such as agriculture and fishing, to mention few, depend on 

climatic conditions. Considering this case, for the survival and growth of the plants, temperature is 

required, though too much or too little is still a problem (Shahin et al, 2016). On the other hand, increase 

in temperature may lead to drought, fall in crop production accompanied by food insecurity (Ojija et al, 

2017). Thus, early indication may help to solve a number of problems associated with climatic changes. 
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Abstract: Temperature is among the main climatic elements which is directly connected with climate change 

and recently the issues has become an important topic in many parts of the world. This is because the issue 

leads to variations in water, wind, rain, to mention few, that may results to meteorological disasters like floods 

and droughts. In this paper Seasonal Autoregressive Integrated Moving Average (SARIMA) model have been 

setup and carry out prediction of monthly maximum and minimum temperatures in Dar es Salaam region of 

Tanzania. The Box and Jenkins methodology was used to set up the Seasonal ARIMA models by using the 

temperature data recorded from the period of January 1985 to December 2015. Temperatures observations 

were found to have seasonality and non-stationarity and hence differencing and seasonal differencing was used 

to attain stationarity. Based on the ACF and PACF plots the optimum orders of the Seasonal ARIMA models 

were determined and evaluated by using the useful information criterion (AIC, AICc and BIC). The analysis 

reveals that the appropriate models which are useful in describing the temperature observations are SARIMA 

(1, 1, 2)×(1, 1, 1)12 for monthly maximum temperature and SARIMA (2, 0, 2)×(1, 1, 1)12 for monthly minimum 

temperature. After model evaluation and validation, the forecasting was made for the upcoming ten (10) years, 

from January 2016 to December 2025. In view of the forecasting, there is an increase in maximum and minimum 

temperature for the upcoming ten years. The increase in temperature suggests that climate change could 

continue to have negative impacts on different economic sectors including tourism, water resource, to mention 

few, in Dar es Salaam community and this call for increased adaptive capacity to the community. Moreover, 

higher temperatures have effects on droughts, changing rainfall patterns and availability of surface water 

whose consequences range from less food supply to general fewer water supplies in Tanzania particularly Dar 

es Salaam region . 
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Over the past decades Tanzania has witnessed increased prevalence of climatic events such as drought 

and floods, which are linked with grievous ecological and socio-economic intimation like loss of lives 

and destruction of structural design (Roy, 2012) (Kijazi A and Reason C, 2009). Serious floods that 

have recently tortured many parts of the country include those of 2006, 2009, 2010, 2011, 2012, 2014, 

2016 and 2017 (Chang’a et al, 2017). And it is important to notice that among the top ten catastrophes 

which cause devastating impacts on the country's economy, epidemics is ranked first followed by floods 

(Mboera et al. 2012). And it has no doubt that the massive increase in rainfall is directly connected with 

the increase in green house emission like carbon dioxide which rise the degree of hotness in the 

atmosphere. Research has declared that the developing country like Tanzania is likely to encounter 

irregular drought which pose effect to agriculture, water, energy, and livestock. Moreover, drought is 

associated with backwardness in development and crippled socio-economic activities. Current droughts 

which harm the country include those of 2003, 2005, 2011, 2014 and 2016 (Chang’a et al, 2017). Hence 

the need for a suitable prediction method to be applied in forecasting climatic pattern is important. 

Variation of climate has been a topic in many parts of the world due to its immediate effects on people's 

lives (Ghahraman, 2007). Dar es Salaam region located on the coastal areas of Tanzania is characterized 

by tropical type of climate with higher degree of hotness, high humidity and average annual 

precipitation over 1000 mm (UARK, 2017). The region is experiencing warmest time during January 

and February and coolest time during July and August. Thus due to change in climate the trends of 

climate variables like temperature for the region is dynamic and there is variability in rainfall caused 

by a number of different time scale from daily to decadal (UARK, 2017). It is evident that the trend and 

variability of climate will continue at a longer timescale (Roy, 2012). Dar es Salaam has been 

experiencing destructive rainfall in some rainy seasons which results to loss of lives and destruction of 

properties (Ngailo et al, 2016). Also studies has declared that the region has been experiencing back to 

back floods in recently years including 2010, 2011, 2012, and 2013 (Kebede et al, 2012). Therefore, 

there is a need of understanding the nature and scale of change in climate in Dar es Salaam region 

associated with finding better forecasting tool for temperature which will be crucial in taking 

precautions and formulation of policies for mitigation and adaptation measures. 

Recently Time series analysis and forecasting was observed to be an important tool when applied in 

studying the variations and trends of different hydo-meteorological variables such as precipitation, 

humidity, temperature, streamflow and many other environmental parameters (Nury et al, 2013). 

Various published papers have analyzed temperatures by using Time series Box and Jenkins Seasonal 

ARIMA approaches, which gives the usefulness of modelling temperature from different parts of the 

world. Libya (El-Mallah et al. (2016)), Bangladesh (Nury et al. (2013), Sultana et al. (2015)), Sri lanka 

(Alibuhtto et al. (2019)), Iran (Machekposhti et al. (2018)), Iraq (Chawsheen et al. (2017)) and 

Khuzestan (Sarraf et al. (2011)). Most of the observations and time series modelling results of the 

mentioned studies have declared projected increase in temperature. However, there are limited or no 

published papers that have attempted to understand, analyze, model and predict temperature by using 

Box and Jenkins ARIMA approach in Tanzania particularly Dar es salaam. Therefore, this paper would 

seem to be the first application of the Box and Jenkins ARIMA approach for temperature in Dar es 

Salaam Tanzania. 

Herein in this Paper, we will begin with finding the appropriate time series models for monthly 

maximum and minimum temperature by using previous available data from 1985 to 2015 of Dar es 

Salaam region, Tanzania. Second, we will predict the future trends of maximum and minimum 

temperature values by using the time series model developed. Box and Jenkins methodology will be 

used in developing the time series model. The approach flows through identification of the model, 

estimation of the model parameters, diagnostic checking and use the model for forecasting purposes 

(Box et al, 1976).  

Different researchers allude that socio economic development of the developing countries like Tanzania 

are hindered by the trends and patterns of climatic extremes (Chang’a et al, 2017). Efforts like achieving 

Millennium Development Goals (MDG), Sustainable Development Goals (SDG) and National 

Developmental Vision (Visions 2025) which are associated with reducing poverty, hunger and 

promoting food security are hampered by floods and natural disasters like drought, hence if not managed 

properly the prolonged impacts will continue in the future. Hence this study is importance for providing 

information to decision makers, planners, climatologist, meteorologist and others on predicting the 

future rainfall.  
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The rest of the paper are organized as follows. Section 2, describes methodology for fitting time series 

models. Finally, the Study area and type of data used together with the results of the appropriate time 

series model and their prediction are discussed in Section 3 and then we will give Conclusion. 

2. METHODOLOGY 

2.1. Stationary and Non stationary Series 

A time series is said to be stationary if the joint distribution  

𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑛
  and 𝑋𝑡1+𝑇

, 𝑋𝑡2+𝑇
, … , 𝑋𝑡𝑛+𝑇

 are the same. Note that shifting the position of period 𝑇 does 

not intervene the distribution simply because it depends 𝑡1, 𝑡2, … 𝑡𝑛. Time series model which is not 

stationary is given by: 

𝑌𝑡 =  𝜇𝑡 +  𝜀𝑡 , 

where, 𝜇𝑡 is the mean function of time and 𝜀𝑡  is the weakly stationary process. 

2.2. Unit Root Test 

The test was derived by Dickey and Fuller (1979) to test the presence of non-stationary (unit root) 

versus stationary process. The model for unit root and stationary process is given by system of equations 

below:  

𝑊𝑡 =  𝜙1𝑊𝑡−1 + 𝜀𝑡 

𝑊𝑡 =  𝜙0 + 𝜙1𝑊𝑡−1 +  𝜀𝑡 

when 𝜙 = 1, then the system is said to have the unit root (non-stationary). 

In this Paper we check the existence of unit root by using the following tests. 

Augmented Dickey Fuller Test (ADF) 

The test statistics is given by: 

𝐻0 ∶  𝜙1 = The series has a unit root 

𝐻1 ∶  𝜙1 = The series has no unit root 

If the test statistics of ADF test is less than the critical value then we reject the null hypothesis that the 

time series data has the unit root. 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test 

The Hypothesis test is given by: 

𝐻0 ∶  𝜙1 = The series is level or trends stationary 

𝐻1 ∶  𝜙1 = The series is level or trends non stationary, 

If the test statistics of the KPSS test is less than the critical values then we accept the null hypothesis 

that is the time series data has the level or trend stationary. 

2.3. ARIMA Models 

A short form ARIMA stands for Auto-Regressive Integrated Moving Average. Here the Lags of 

differenced series that appear in the forecasting equation are called auto-regressive terms while lags of 

forecast errors are known as moving average terms. Also the time series which needs to be differenced 

to be made stationary is said to be an "integrated" version of a stationary series. A classical non-seasonal 

ARIMA model is written as 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) model, where 𝑝 is the order of autoregressive terms, 𝑑 is 

the number of non-seasonal differences and 𝑞 is the order of lagged forecast errors (moving average) in 

the prediction equation. A process, 𝑋𝑡 is said to be 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) if 

(1 − 𝐵)𝑑  𝑋𝑡 =  ∇𝑑  𝑋𝑡 

is 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) model. This means that the process is said to be stationary after differencing non 

stationary process d times. The general form of 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) model is given by: 

  𝜙(𝐵) (1 − 𝐵)𝑑  𝑋𝑡 =  𝜃(𝐵)𝜀𝑇 
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If we set  𝐸 (∇𝑑𝑋𝑡) =  𝜇, then the model becomes 

  𝜙(𝐵) (1 − 𝐵)𝑑  𝑋𝑡 =  𝛼 +  𝜃(𝐵) 𝜀𝑡, 

Where, 𝛼 =  𝜇 (1 − 𝜙1, − ⋯ −  𝜙𝑝).  

2.4 The Box – Jenkins ARIMA Models 

The approach flows through identifying, fitting and Checking ARIMA models using the time series 

data. Forecasts follows directly after making sure all the procedures are true. By using Box-Jenkins, the 

𝑝𝑡ℎ order of Autoregressive model; the general form of 𝐴𝑅 (𝑝) model is given by: 

  𝑋𝑡 =  𝛼 + 𝜙1 𝑋𝑡−1 +  𝜙2 𝑋𝑡−2 + ⋯ + 𝜙𝑝 𝑋𝑡−𝑝 + 𝜀𝑡, 

Where, 𝑋𝑡  is the dependent (response) variable at time 𝑡, 𝑋𝑡−1 , 𝑋𝑡−2 , … , 𝑋𝑡−𝑝 are the response 

variables at time lags 𝑡 − 1, 𝑡 − 2, …  𝑡 − 𝑝 respectively.  𝜙1, 𝜙2 , … , 𝜙𝑝  are the Coefficients to be 

estimated and 𝜀𝑡 is the error term at time 𝑡. 

The 𝑞𝑡ℎ order of Moving Average Model, 𝑀𝐴 (𝑞) model is given by: 

𝑋𝑡 =  𝜇 + 𝑊𝑡 +  𝜃1 𝑊𝑡−1 +  𝜃2 𝑊𝑡−2 + ⋯ +  𝜃𝑞𝑊𝑡−𝑞 + 𝜀𝑡, 

Where, 𝑋𝑡 is the dependent variable at time 𝑡, 𝜇  is the constant mean of the process, 𝜃1, 𝜃2, … , 𝜃𝑞 are 

the coefficients to be estimated, 𝜀𝑡 is the error term and 𝑊𝑡−1, 𝑊𝑡−2, … , 𝑊𝑡−𝑞 are the errors in previous 

time periods in which they are normally included in the dependent variable 𝑋𝑡.    

Autoregressive Moving Average Model (ARMA) 

The general form of 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) model is given by:    

𝑋𝑡 =  𝛼 + 𝜙1 𝑋𝑡−1 +  𝜙2 𝑋𝑡−2 + ⋯ +  𝜙𝑝 𝑋𝑡−𝑝 +  𝜇 + 𝑊𝑡 +  𝜃1 𝑊𝑡−1 + 𝜃2 𝑊𝑡−2 + ⋯ +  𝜃𝑞𝑊𝑡−𝑞 + 𝜀𝑡 

The graph of sample autocorrelation function (ACF) and partial autocorrelation function (PACF) are 

used to determine the model. The process is summarized in the Table below: 

Table1. Characteristics of the ACF and PACF for ARMA Models (Shumway et al. 2006) 

Model ACF PACF 

AR(p) Dies down Cut off after lag q 

MA(q) Cut off after lag p Dies down 

ARMA(p,q) Dies down Dies down 

2.5 The Box and Jenkins Seasonal ARIMA Model (SARIMA) 

The weakness of ARIMA model is that it does not fit for observations with seasonality. To deal with 

this, (Box et al, 1976) introduce the general form of ARIMA model which deals with seasonality. The 

model is known as Seasonal ARIMA (SARIMA) model. Let 𝑋𝑖 (𝑖 = 1, 2, 3, … , 𝑡) be a series under 

consideration. The Seasonal ARIMA (SARIMA) model for the series is given by (Box et al, 1976): 

𝜙(𝐵)Φ(𝐵𝑆)[(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑋𝑡] − 𝜇 =  𝜃(𝐵)Θ(𝐵𝑆)𝑎𝑡 

Or 

𝜙(𝐵)Φ(𝐵𝑆)(𝑊𝑡 −  𝜇) =  𝜃(𝐵)Θ(𝐵𝑆)𝑎𝑡 

Where, 𝑋𝑡 is the time series observations at time 𝑡, 𝑡: is the discrete time, 𝑆 is the seasonal length, 𝜇: is 

the mean level of the time series process (Usually computed as average of 𝑊𝑡), note when 𝑑 +  𝐷 > 0 

implies 𝜇 ≡ 0, at: residual of the series, 𝑁𝐼𝐷(0;𝛿2), Φ(𝐵𝑆): is the seasonal AR operator (polynomial 

Φ(𝐵) = 1 −  Φ1(𝐵) − Φ2(𝐵2) − ⋯ −  Φ𝑝(𝐵𝑝) , (1 − 𝐵)𝐷 =  ∇𝑠
𝐷: is the seasonal difference operator 

of order 𝐷 (𝐷 =  0, 1, 2), 𝑊𝑡 =  ∇𝑑∇𝑠
𝐷𝑋𝑡 : is the stationary series formed after differencing 𝑋𝑡 number 

of terms of 𝑊𝑡 series are computed by 𝑛 =  𝑁 −  𝑑 −  𝑆𝐷, Θ(𝐵𝑆): is the seasonal MA operator of 

order 𝑄 (polynomials Θ(𝐵𝑆) = 1 - Θ1(𝐵𝑆) - Θ2(𝐵2𝑆), note that Θ1, Θ2, … , Θ𝑄 are the seasonal MA 

parameters and when Θ(𝐵𝑆) = 0 means the root of the polynomials lies outside the circle.  

SARIMA model is represented as 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝;  𝑑;  𝑞)(𝑃; 𝐷; 𝑄), where: (𝑝;  𝑑;  𝑞) are the non-seasonal 

operator and (𝑃; 𝐷; 𝑄) are the seasonal operator. Note: If the model is non seasonal, then only (𝑝;  𝑑;  𝑞) 

is required and if the model is seasonal then only (𝑃; 𝐷; 𝑄) are needed. 
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Likewise, the sample ACF and PACF plots are used to determine the Seasonal ARIMA model. At the 

preceding stage, the values of 𝑝;  𝑞;  𝑃; 𝑄 are obtained by studying ACF and PACF plots. The 

characteristics of the plots are shown in the Table 2 below: 

Table2. Characteristics of the ACF and PACF for Pure Seasonal ARMA models (Shumway et al, 2006)  

Plot AR(P) MA(Q) ARMA (P,Q) 

ACF Dies off at lags k’s, k=1,2 … Cur off after lag Q’s Dies off at lag k’s 

PACF Cuts off after lag P’s Dies off at lag k’s, k=1, 2… Dies off at lag k’s 

2.6. The Box and Jenkins Algorithm 

Normally, the approach used the previous values to give the predicted values. Box and Jenkins ARIMA 

time series model has the ability to generate the sequence of historical data and produce mathematical 

formula which will then be used to generate forecasted values. Studies have declared that the approach 

is convenient for short and medium predictions (Erhardt, 2001), also some articles have approved Box 

and Jenkins methodology as a very strong tools for giving solution of the prediction problems due to its 

ability to provide very tremendous correct prediction of the time series and also it yields a framework 

to develop the model and do analysis (Montgomery et al, 1967). The aims of using Box and Jenkins 

Prediction approach are to look for suitable formula that will force the error term to show no change in 

pattern and must be as small as possible. In this study the approach is used to develop the model and do 

prediction of monthly maximum and minimum temperature values. The Conceptual framework of Box 

and Jenkins modelling approach is given in the Table 3 below (Montgomery et al, 1967)(Box et al, 

1976)   

 

Figure1. Box and Jenkins Conceptual framework 

In the first phase of Box and Jenkins algorithm is to determine if the time series is stationary and if there 

is significant seasonality needs to be modelled. The inspection of the time series observation will 

follows to check the suitable class of ARIMA model by selecting the order of the consecutive and 

seasonal differencing required making series stationary, as well as specifying the order of the regular 

and seasonal autoregressive and moving average series of polynomials required to precisely represent 

the time series model. In this paper the useful elements of time series analysis and forecasting called 

Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) will be used in 

determining the time series models. Normally, the ACF measures the amount of linear dependence 

between observations in a time series that are separated by a lag k while the PACF plot is required to 

determine how many auto regressive terms are necessary to show one or more of the following 

characteristics; time lags where high correlations appear, seasonality of the series, trend either in the 

mean level or in the variance of the series. 

Stationary of the time series observations can also be identified by performing Portmanteau test, which 

is used to check whether observations is significantly different from a zero set. A common portmanteau 

test is the Box-Pierce test, designed by Box and Pierce (1970). This residual from a forecast model test 

is based on the Box-Pierce statistic: 
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𝑄 = 𝑛 ∑ 𝑟𝑘
2

ℎ

𝑘=1

 

where, ℎ is the maximum number of lags to be computed, 𝑛 is the number of data set and 𝑟𝑘 is the 

autocorrelation at 𝑙𝑎𝑔 𝑘. If the residuals follows a white noise, the statistic 𝑄 has a chi-square (𝜒2) 

distribution with degrees of freedom (ℎ −  𝑚) where 𝑚 is the number of parameters in the model which 

has been fitted to the time series observations. An alternative portmanteau test is the Ljung-Box due to 

Ljung and Box (Kijazi A and Reason C, 2009). They argued that the alternative statistic: 

𝑄∗ = 𝑛 (𝑛 + 2) ∑
𝑟𝑘

2

𝑛 − 𝑘
⁄𝑛

𝑘=1 , 

the model has a distribution closer to the chi-square distribution with (ℎ − 𝑚) degrees of freedom than 

does the 𝑄 statistic. It is normal to conclude that the data are not white noise if the value of 𝑄 or 𝑄∗ lies 

in the extreme 5% of the right-hand tail of the 𝜒2 distribution. 

To check whether the chosen model satisfies the normality, Shapiro-wilks test was used. The test 

statistics is given by: 

𝑊 =  
(∑ (𝑒𝑖𝑚𝑖)𝑛

𝑖=1 )2

∑ (𝑚𝑖− 𝑚̅)2𝑛
𝑖=1

, 

where, 𝑚𝑖 is the 𝑖𝑡ℎ order statistics, 𝑚̅ =  
(𝑚1+ 𝑚2+⋯+ 𝑚𝑛)

𝑛
 is the sample mean and constant 𝑒𝑖 is given 

by:       𝑒1, 𝑒2, … , 𝑒𝑖 =  
𝑘𝑇.𝑉−1

(𝑘𝑇.𝑊−2.𝑘)
1

2⁄
, 

here, 𝑘 =  (𝑘1, 𝑘2, … , 𝑘𝑛)𝑇 and 𝑘1, 𝑘2, … , 𝑘𝑛 are the expected value of the order statistics of 𝐼𝐼𝐷 random 

variables sampled from standard normal distribution and 𝑊 is the covariance statistics of those order 

statistics. 

The choice of the best model among the class of plausible models are done by using the informations 

criterion called Akaike's Information Criterion (AIC), proposed by Akaike (1974), Corrected Akaike 

Information Criterion (AICc) and Bayesian Information Criterion (BIC). 

The AIC deals with minimizing the following quantity: 

  𝐴𝐼𝐶 =  −2 ln(𝐿) + 2 (𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝐶), 

where, 𝐿 is maximum likelihood, 𝑝 and 𝑃 are non-seasonal and seasonal autoregressive order 

respectively, 𝑞 and 𝑄 are non-seasonal and seasonal moving average order respectively and 𝐶 is the 

constant term of the model. 

𝐵𝐼𝐶 is written mathematically as: 

𝐵𝐼𝐶 =  −2 ln(𝐿) + 2 (𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝐶) ln(𝑁), 

here, 𝑁 is the sample size. 

The model which has the minimum Information criterion value is our model of interest. Generally, the 

model with fewer number of parameters gives accurate forecasting (Chawsheen et al, 2017). After 

choosing the most suitable model (step 1 above), the next step is to estimate the model parameters (step 

2) by using either the least square method or maximum likelihood estimator. In this step, we choose 

them values of the parameters to make the Sum of the Squared Residuals (SSR) between the observed 

data set and the estimated values as small as possible. Normally, non-linear estimation method is used 

to estimate the parameters specified to maximize the likelihood (probability) of the observed series 

given the parameter values. In this paper 

Maximum likelihood estimation (MLE) is generally the preferred technique. In diagnose checking step 

(step three), we examine the residuals of the fitted models against adequacy. Normally, this is done by 

correlation analysis through the residual ACF plots. If the residuals are correlated, then the model should 

be refined as directed in step one above. Otherwise, the autocorrelations are white noise and the model 

is right choice for the set of time series data observed. After the application of the previous procedure 

for a given time series, a calibrated model will be developed which has enclosed the basic statistical 

properties of the time series into its parameters (step four). 
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3. NUMERICAL ANALYSIS AND DISCUSSION OF RESULTS 

3.1. Overview 

In this section, we present, discuss and give the interpretation of the results acquired from the study. In 

order to study suitable models for forecasting maximum and minimum temperature data of Dar es 

Salaam, Tanzania were used in the time series analysis. Thirty one (31) years daily maximum and 

minimum temperature data from 1985 to 2015 obtained from Tanzania Meteorological Agency (TMA) 

were used. The given daily temperature data was converted into monthly data by using the averaging 

method. Since temperature data are time dependent data then monthly data was converted into time 

series data and then smoothing moving average of five data points was applied. In this study, all 

numerical analyses were done by a statistical programming language R and in modal validation SPSS 

package was used. The rest of the section are subdivided into study area, preceding analysis, fitting the 

model, doing prediction and discussing the prediction accuracy. 

3.2.  Study Area 

Dar es Salaam is one among the thirty regions of Tanzania, lying at the latitudes of 6°52' South and 

longitudes of 39°12' East. It is among highly populated coastal regions with population of 6,368,272 

covering the area of 1,393km2 (WPR, 2019). The region constitutes of five districts which are 

Kinondoni, Ubungo, Kigamboni, Ilala and Temeke.  

Dar es Salaam region is characterized by tropical type of climate with higher degree of hotness, high 

humidity and average annual precipitation of over 1000 mm (UARK, 2017). The region is characterized 

by bimodal rainy seasons. The longer rain falls from March to May (MAM) and shorter rains fall from 

October to December (OND). The map of Tanzania and the extract of Dar es Salaam region from the 

map are exhibited in Figure 

 
 

Figure2. A map of Dar es Salaam region extracted from the map of Tanzania (IRA, GIS Laboratory UDSM) 

 

3.3.Time Plots for Temperature Data 

Time series graphs are used to display the variation of temperature series. The smoothed plots 

of maximum and minimum temperature in Dar es Salaam region were shown in Figure 3 and 

Figure 4. From Figure 3, for maximum temperature there was clear validation on systematic 

change in mean, also the increasing trend is clearly seen. Moreover, in Figure 4 for minimum 

temperature the positive trend is seen in the plot. 

 

Figure3. Smoothed Time Series Plot of Maximum Temperature from January 1985 to December 2015 
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Figure4. Smoothed Time Series Plot of Minimum Temperature from January 1985 to December 2015 

Both plots show evidence of change in temperature patterns and seasonal characteristics was 

observed in both plots, hence it is evident that the plots have strong yearly circle. 

3.4 Descriptive Analysis 

Summary of maximum and minimum temperature records (from January 1985 to December 

2015) are illustrated in the Table below. 

Table4. Summary Statistics of Monthly Maximum and Minimum Temperature Series 

 Range Highest 

value 

Lowest 

value 

Mean Standard 

Deviation 

(SD) 

Variance 

Maximum 

Temperature (℃) 

5.093 34.09 28.16 31.13 1.325018 1.755673 

Minimum 

Temperature (℃) 

9.0 26.02 17.02 21.65 1.230344 4.974434 

The temperature summary shown in Table 4, reveals that the highest maximum temperature in Dar es 

Salaam is 34.09℃ and was recorded in February 2003 while the lowest maximum temperature is 

28.16℃ and was recorded in July 1989. The lowest minimum temperature is 17.02℃ and was recorded 

in July 1986 and the highest minimum temperature is 26.02℃ and was recorded in December 2015. It 

was observed that the minimum temperature was more varying (Standard deviation (SD) = 2.230344) 

compared to the maximum temperature (Standard deviation (SD) = 1.32018). 

The months of November, December, January and February recorded the highest maximum temperature 

while the lowest maximum temperature were recorded in June, July and August. The lowest minimum 

temperature was recorded in June, July and August while the highest minimum temperature was 

recorded in November and December. 

With the fluctuations observed, both maximum and minimum temperature were seen to be not stable 

throughout the year. However, from March both minimum and maximum temperature dropped 

significantly till June and started rising again from July to November. 

3.4 Decomposition of Time Series Data 

We need to know whether time series data has trends, seasonal, cyclical and random components. For 

the case of monthly maximum and minimum temperature (in Figure 5 and Figure 6) the results reveal 

that both plots for maximum and minimum temperature series have random, seasonal and trend 

components. Also the positive trends were observed clearly for both maximum and minimum 

temperature series. 

 

Figure5.  Decomposition of Smoothed Maximum Temperature Series 
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Figure6. Decomposition of Smoothed Minimum Temperature Series 

Ordinarily, the Box and Jenkins methodology works under assumptions that the time series are 

stationary and serially correlated. In this study, graphical inspection and unit root tests were the most 

selected techniques for stationarity test of monthly maximum and minimum temperature observations. 

3.5 Stationarity Tests 

Graphical Approach 

For the case of monthly maximum and minimum temperature, Figure 7 and Figure 8 exhibits the plots 

of ACFs and PACFs. The plots revealed a very strong seasonal sinusoidal patterns that decay slowly. 

The observations show that non-seasonal lags declined so fast. 

Generally, ACF and PACF plots presented in Figure 7 and Figure 8, show almost all spikes at different 

lags are not within the confidence limits implying that the series are not stationary. Also the series are 

observed to have seasonality fluctuations that means seasonal differencing should be applied to convert 

non stationary time series data into stationary. 

 
Figure7. Autocorrelation and Partial Autocorrelation Function of Maximum Temperature 

 
 

Figure8. Autocorrelation and Partial Autocorrelation Function of Minimum Temperature 

The visual inspection technique used by plots showed that the monthly temperature time series were 

non-stationary. This was guaranteed by the fact that in ACF, as the number of lags increase the plots do 

not decay quickly. So statistical tests were conducted in order to verify the results of visual inspection 

technique. In this study ADF and KPSS tests were used for stationarity check. 

Unit Root Test 

Augmented Dickey Fuller Tests 

The hypothesis testing for the stationary series was formulated as: 

𝐻0: the time series has a unit root problem (It is non-seasonal and non-stationary). 

𝐻1: the time series is stationary 
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Table5. Augmented Dickey-Fuller Test for Monthly Maximum and Minimum  Temperature Series  

 Dickey Fuller Lag Order p-value 

Maximum Temperature -7.5935 7 0.3901 

Minimum Temperature -10.599 7 0.0631 

The ADF tests results of both maximum and minimum temperature series observed in Table 5, the null 

hypothesis is not rejected and therefore the two series are not stationary. This is guaranteed by the fact 

that both p-values for both maximum and minimum temperature series were greater than 5% (level of 

significance). 

KPSS Test 

The formal test with the KPSS test for stationarity was given by: 

𝐻0: the time series has trend-stationarity against 

𝐻1: the time series is non-stationary. 

Table6. KPSS Test for Monthly Maximum and Minimum Temperature Series 

  KPSS Level Lag Parameter p-value 

Maximum Temperature (℃) 1.5498 5 0.01 

Minimum Temperature (℃) 0.056401 5 0.01 

It is important to note that, lack of unit root in ADF test does not necessarily mean that the series has 

trends stationarity. More statistical test analyses are required. The KPSS test results for temperature in 

Table 6, for both maximum and minimum temperature series we reject the null hypothesis, that is the 

series trend stationary since the p-value are 0.01 which is less than 0.05 level of significance. Hence 

conclude that monthly maximum and minimum temperature series are non-stationary. 

Therefore the above three test results agree and suggest that there is non-stationarity in the original 

monthly maximum and minimum Temperature series. Natural logarithmic transformation and seasonal 

differencing are the mostly used techniques for eliminating non-stationarity from the time series 

observations (Box et al, 1976). Thus in this study seasonal differencing was used to remove non-

stationarity effects. 

3.6 Seasonal Differencing 

Figure 9 and Figure 10 exhibit the time series plots for monthly maximum and minimum temperature 

series after performing seasonal differencing. It was observed that there is no clear trends or repetitive 

cycles for monthly maximum and minimum series and seasonality was seen in both monthly maximum 

and minimum temperature time series. Thus conclude that monthly maximum and minimum 

temperature series have now achieved stationarity. 

 
Figure9. Smoothed Time Series Plot for Seasonal Differenced Maximum Temperature 

 
Figure10. Smoothed Time Series Plot for Seasonal Differenced Minimum Temperature 
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So more tests are required to ascertain that the monthly maximum and minimum temperature series 

have now attained stationarity. Janacek et al, (1993), suggests that the ACF and PACF plots can also be 

used to examine if the condition of stationarity is attained. The stationarity condition is achieved when 

the time series sequence converges very fast as the number of lags increases (Takele, 2012). 

By using the visual inspection technique from Figure 11 and Figure 12, as the number of lags increases 

the autocorrelation function for series converges to zero. Also almost all spikes are within the 95% 

confidence limit for all plots which confirm that the monthly maximum and minimum temperature 

series are now stationary after performing seasonal differencing. 

 

Figure11. ACF and PACF Plot for Seasonal Differenced Maximum Temperature Series 

 

 
Figure12. ACF and PACF Plot for Seasonal Differenced Minimum Temperature Series 

Formal statistical tests were performed again to validate the stationarity condition of the monthly 

maximum and minimum temperature series. The ADF and KPSS tests are used validate the stationarity 

of monthly maximum and minimum temperature series. According to ADF tests results for monthly 

maximum and minimum temperature series shown in Table 7, the null hypothesis is strictly rejected, 

which means there is a unit root at some confidence level. The test results is supported by the fact that 

the p-values for the tests are less than 5% and the DF values attenuate to negative. Thus conclude that 

the monthly maximum and minimum temperature series are now stationary. 

Table7. Augmented Dickey-Fuller Test for Differenced Seasonal Maximum and Minimum Temperature Series 

 Dickey Fuller Lag Order p-value 

Maximum Temperature (℃) -15.134 7 0.01 

Minimum Temperature (℃) -20.004 7 0.01 

 

From the results of the KPSS test for monthly maximum and minimum temperature series 

shown in Table 8, the null hypothesis are not rejected because the p-values are greater than 

5% (level of significance). This affirms that monthly maximum and minimum temperature 

series achieved trend-Stationarity. 

Table8. KPSS Test for Seasonal Differenced Maximum and Minimum Temperature Series  

 KPSS Level Lag Parameter p-value 

Maximum Temperature (℃) 0.010589 5 0.1 

Minimum Temperature (℃) 0.01229 5 0.1 



Monthly Temperature Prediction Based on Seasonal ARIMA Model: A Case Study of Dar es Salaam, 

Tanzania  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page | 39 

3.7 Model Building for Monthly Temperature Data 

It is crucial to note that when developing the model, it is important to plot the graphs of observations, 

do transformation if required, look for dependence coefficients of the model, estimate parameters of the 

model, do diagnostic checking for appropriateness of the model and select the appropriate model 

(Takele, 2012). In this sub-section, univariate Seasonal ARIMA (SARIMA) models was used to model 

monthly maximum and minimum temperature data. 

3.7.1 Model Identification 

After obtaining the value of differencing, the next step was to select the coefficients of autoregressive 

and moving average parameters by critically scrutinizing the sample autocorrelation and partial 

autocorrelation plots. 

The value of 𝑝, 𝑞, 𝑃 and 𝑄 were chosen based on Figure 7, Figure 8, Figure 11 and Figure 12, so as to 

get the speculative models. Since the study deals with approximate values, there is no fixed way of 

identifying if ACF or PACF dies down or cuts off (Shumway et al, 2006). Therefore at this stage, the 

numbers of provisionary values for 𝑝, 𝑞, 𝑃 and 𝑄 were identified, then followed by the parameter 

estimation of the models. Since the climate variables (maximum and minimum temperature) data 

follows seasonality (annual cycle) then the suitable model is 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐴𝑅𝐼𝑀𝐴 (p, d, q)(P, D, Q) 12. At first the rainfall and temperature time series data were non 

stationary hence the seasonal differencing was used to make it stationary. From Figure 11 and Figure 

12, the ACF (at low lags) i.e at lag 1 and lag 2 are significantly different from 0 since the spikes passes 

out of the confidence limits. Hence the order of non-seasonal MA term is 2 and that of seasonal MA 

occurs at lags that are multiples of 12. Only one spikes (Figure 12) are significant at lag 12. Hence the 

orders of seasonal MA terms is 1. Similarly for the case of AR, significant spikes in the PACF (at lower 

lags) indicated possible non seasonal AR terms. The order of non-seasonal AR parts is 2 and that of 

seasonal AR part is 2. The order of seasonal differencing for monthly data is 12 (𝑆 =  12). Following 

the nature of ACF and PACF plots, the number of models has been identified and the most competing 

ones were suggested. So the following models were suggested: 

Suggested Models for Monthly Maximum Temperature data 

𝑆𝐴𝑅𝐼𝑀𝐴 (0, 1, 1)(0, 1, 1)12, 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 0, 1)(2, 1, 1)12, 

𝑆𝐴𝑅𝐼𝑀𝐴 (2, 0, 1)(1, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 0, 1)(1, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (2, 0, 2)(1, 1, 1)12 

Suggested Models for Monthly Minimum Temperature data 

𝑆𝐴𝑅𝐼𝑀𝐴 (0, 1, 1)(1, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 0, 1)(1, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (0, 1, 1)(1, 0, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 0)(2, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 0)(1, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 2)(1, 1, 1)12 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 0)(2, 1, 0)12 

 3.8 Parameter Estimation 

After identifying the competing models, the next step is to perform efficient estimation of the model 

parameters. The model parameters for autoregressive and moving average should agree with two 

conditions; they should be stationarity and invertibility (Nury et al, 2013). In this study it was assumed 

that the process 𝑋𝑖  (𝑖 = 1, 2, … , 𝑛) followed a normal invertible Gaussian 𝐴𝑅𝑀𝐴(𝑝, 𝑞)(𝑃, 𝑄) process. 
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The parameter estimation by Box and Jenkins method was accompanied by the maximum likelihood 

approach computed, which relied on asymptotic condition for any time series observation (Brockwell 

et al, 2013). So maximum likelihood approach was used for monthly maximum and minimum 

temperature observations, in order to estimate the parameters of the models. The results for parameter 

estimates and selection criteria were presented in the Table 9 and Table 10 

Table9. Summary of Parameter Estimates and Selection Criteria for Maximum Temperature Models 

 

Table10. Summary of Parameter Estimates and Selection Criteria for minimum temperature models 

 

Here, Table 9 and Table 10 show the estimates of parameters for the suggested models of monthly 

maximum and minimum temperature respectively. Each model was classified into its estimated value, 

standard error (SE), t-value, p-value, AIC, AICc and BIC. Box et al, (1976), alludes that parameter to 

be estimated should vary significantly from zero and all the significant parameters must be incorporated 

in the model. The results revealed that autoregressive, moving average together with both seasonal and 

non-seasonal autoregressive and moving average were significant since their p-values were lower than 

0.05, and therefore must be preserved in the models. 

3.9 Model Selection 

The information criteria (AIC, AICc and BIC) were performed and compared to get the suitable model 

for monthly temperature data. The model with lower AIC, AICc and BIC was the best suited model. 

The analysis from Table 9 and Table 10 shows that 𝑆𝐴𝑅𝐼𝑀𝐴 (2, 0, 2)(1, 1, 1)12 and 𝑆𝐴𝑅𝐼𝑀𝐴 

(1, 1, 2)(1, 1, 1)12 models has the smaller AIC, AICc and BIC, hence the models best fit the monthly 

maximum and minimum temperature data respectively. Moreover the parameters for the selected 
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models were all significant since their p-values were less than 5% level of significance, hence they must 

be incorporated in the models. 

3.10 Diagnostic Testing 

In this sub-section we evaluates how the selected model effectively agrees with the given monthly 

maximum and minimum temperature data. Normally, if the model agrees with the data, then residual 

for the suited model has the behavior of randomness (Chatfield, 2003). Yurekli et al, (2005), asserts 

that in time series modelling using Seasonal ARIMA models, the selection of the suited model has the 

correlation with residual analysis computed. Thus, a number of statistical tests and different diagnostic 

plots can be used to explore how well the selected model fits the data. 

The residual analysis began by plotting the residual plots for the monthly maximum and minimum 

temperature data, followed by examining if the selected model agrees with the data. Shumway et al, 

(2006), propounded that for the suited model, the residuals must be independent and identically 

distributed with the condition of having zero mean, constant variance and they are not serially 

correlated. 

3:10:1 Diagnostic Checking for Monthly Maximum and Minimum Temperature Models 

Figure 13 and Figure 14, show the statistical plots, standardized plot for residual and ACF plot for 

residuals and the Q-statistics plots for the residuals of monthly maximum and minimum temperature 

data models respectively. A normal QQ plot was useful in inspecting clear deviation of residuals from 

normality. As it was observed in the second panel of Figure 13 and Figure 14, almost all points ow in a 

straight line with just very few observations close to the line. This indicates that the residuals in the 

models are normal. Also the Shapiro-Wilk test of normality has a test statistics of W = 0.98769 and W 

= 0.9945 leading to a p-values of 0.3070 and 0.2031, for monthly maximum and minimum temperature 

models respectively. Hence the results confirm that normality is not rejected at any of the usual 

significance levels since the p-values are all greater than 5% (level of significance). 

 

Figure13. Residuals of Maximum Temperature Model 

 

Figure14. Residuals of Minimum Temperature Model 
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Also, the first panel of Figure 13 and Figure 14, shows standardized residuals plots, which exhibit that 

the models residuals have zero mean and constant variance since the residuals were condensed around 

-2 to 2. Also plots for autocorrelation function (ACF) for residuals exhibits that, all the spikes for the 

two models (maximum and minimum temperature) are within the 95% confidence limit. This is an 

indication that the assumption of zero mean and constant variance for the model residuals were attained 

hence there was no correlation between residual values. Lastly, in order to test whether the residuals are 

white noise or not, the Ljung-Box test was computed. The test gives chi-squares of 10.261 and 19.301 

under 20 degree of freedom and the p-values of 0.9632 and 0.5023 for monthly maximum and minimum 

temperature models respectively, which are shown in the third panel of Figure 13 and Figure 14. The 

Ljung-Box results proves to us that the null hypothesis cannot be rejected since the p-value was greater 

than the significance level and conclude that the residuals were free from serial autocorrelation. 

Moreover from the test it is observed that the value of the Ljung-Box test was over 5% for all lag 

coefficients. This confirmed that there was no clear significant diversion from the Gaussian white noise 

for the residuals, that is the null hypothesis declared that autocorrelation function up to lag 20 was 

concurrently equal to zero, meaning that it is correct. 

Thus, 𝑆𝐴𝑅𝐼𝑀𝐴 (2, 0, 2)(1, 1, 1)12 and 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 2)(1, 1, 1)12 agree with all model assumptions. 

Hence they are appropriate models for monthly maximum and minimum temperature data in Dar es 

Salaam region of Tanzania. 

3.11. Model Validation 

In order to check the accuracy and the forecasting capability of the picked models 𝑆𝐴𝑅𝐼𝑀𝐴 

(2, 0, 2)(1, 1, 1)12 and 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 2)(1, 1, 1)12 for monthly maximum and minimum temperature 

respectively, the actual observations and the fitted ones were plotted and presented in Figure 15 and 

Figure 16. The temperature data (maximum and minimum) from January 1985 to December 31, 2015 

were designed as the test sets and were used to assess the ability of the models to fit the original data. 

The red and blue lines are the fitted and actual values respectively. The plots exhibited that, the fitted 

values (red lines) are very close to the original data (blue lines). This indicates that the selected models 

for maximum and minimum temperature series were the better ones for the set of data. 

 
Figure15. Observed and Fitted Values of Maximum Temperature Series 

 

 
Figure16. Observed and Fitted Values of Minimum Temperature Series 
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3.12 Forecasting 

After performing the parameter estimation and conclude that all parameters were significant and then 

conduct diagnostic analysis and confirm that residuals followed a normal property, the next step was to 

do forecasting. In this case the term forecast refers to the process of predicting the future monthly 

maximum and minimum temperature values of the studied time series. It should be noted that 

forecasting is important in decision making and planning process for all socio-economic sectors. In any 

time series analysis, getting the suitable model does not mean that it is a better model for prediction. 

Machekposhti et al, (2018), asserts that the superiority of the model depends on the measure of errors. 

So in this study, prediction performance were judged by a number of methods, in which the measures 

of errors such as MAE, MASE and RMSE were used. The performance measures obtained for the 

monthly rainfall, maximum and minimum temperature models respectively are shown in the Table 11. 

Table11. Forecasting Accuracy Statistic for Temperature Models 

Measure of Error Maximum Temperature Model Minimum Temperature Model 

RMSE 0.5725927 0.5115882 

MAE 0.442904 0.396314 

MASE 0.587302 0.3729361 

Normally, the best model must show low forecasting inaccuracy (Czerwinski et al, 2007). The 

performance measure of errors reported in Table 11, revealed that the prediction accuracy is high. This 

is because the MAE, RMSE and MASE for monthly temperature (maximum and minimum) models are 

all around zero which means lowest errors for the models. Thus, it is a good indication that 𝑆𝐴𝑅𝐼𝑀𝐴 

(2, 0, 2)(1, 1, 1)12 and 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 2)(1, 1, 1)12 are appropriate models for forecasting monthly 

maximum and minimum temperature values respectively. 

For the case of predicted maximum temperature specified by the blue line in Figure 17, it was observed 

that the trends of maximum will increase for the coming ten years. Also, it was noticed that the months 

of September, October, November, December, January and February in each year will have significant 

increasing trends. However from March to June the maximum temperature will drop significantly. 

Despite the variation of temperature, the results show that, February will remain to be the hottest month 

followed by January and December. 

 

Figure17. The Forecasted Maximum Temperature using 𝑆𝐴𝑅𝐼𝑀𝐴 (2, 0, 2)(1, 1, 1)12 Model from January 2016 

to December 2025 

In predicted minimum temperature designated by the blue line in Figure 18, it was observed that the 

trends of minimum temperature will increase for the upcoming ten years. Also the minimum 

temperature was noticed to have increasing trends for all months except from march to June. The 

findings pointed out January as a month with the highest minimum temperature followed by February 

and December. 
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Figure18. The Forecasted Minimum Temperature using 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 2)(1, 1, 1)12 Model from January 2016 

to December 2025 

Generally, the maximum temperature is projected to increase by 0.20℃ per decades. Also the minimum 

temperature is predicted to increase by 0.98℃ per decades. The forecast plots (Figure 17 and Figure 18) 

indicates that the minimum temperature has a sharp increasing trends than maximum temperature. This 

result implies that the trends of minimum temperature for Dar es Salaam region will increase rapidly 

than the maximum temperature. Hence indicates that the region is expected to have warmer night in the 

future. This results is in line with few studies conducted in this area like (Chang'a et al, 2017), thus 

proves the fact that global warming is in fact a reality. Also the result gives the implication that there 

will be changing climate in the whole country. Moreover for an agro-based economy like Tanzania, the 

increase in forecasted temperature trends will threaten the significant achievements the country has 

made over the last decades in increasing incomes and reducing poverty. Hence, in view of these 

changes, it is necessary to uniformly and systematically assemble, examine and analyze the relevant 

climatic parameters like temperature for assessing the impacts of climate change. 

Finally, the forecasted plots from Figure 17 and Figure 18 were observed to have minimal spread of 

confidence intervals from 2016 to 2020. However as time goes for example, from 2021 to 2025 the 

spread of confidence intervals seems to be higher implying that uncertainty of prediction becomes 

larger. Hence we again realized that the Box and Jenkins Seasonal ARIMA approach is the good method 

for short period of time forecasting of meteorological variables such as rainfall and temperature. This 

result is in line with few studies like that of (Erhardt, 2015). 

4. CONCLUSION 

The monthly temperature records of Dar es Salaam station in Tanzania has been studied using the Box 

and Jenkins methodology. Dar es Salaam monthly maximum and minimum temperature have shown to 

follows 𝑆𝐴𝑅𝐼𝑀𝐴 (2, 0, 2)(1, 1, 1)12 and 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 2)(1, 1, 1)12 respectively. The estimation and 

diagnostics analysis reveals that the models adequately fit the original data. Ljung-Box statistic 

indicated that the model is the better one for modelling of maximum and minimum temperature data. 

The residual analysis confirm that there is no violations of assumption connecting to model adequacy. 

The adequacy of the model also shown to be suitable and a forecast from 2016 to 2025 was made. The 

results show that there will be an increase in maximum and minimum temperature for the upcoming ten 

years. The increase in temperature suggests that climate change will continue to bring the negatively 

impact on different economic sectors and livelihood options in Dar es salaam community and this call 

for increased adaptive capacity for the community. With this magnitude of future climate change as 

forecasted in this study the less concerned of marginalized social groups would continue to remain to 

be attacked by the impacts of climate change unless deliberate efforts are put in place to help the 

community to adapt to climate change effects. Higher temperatures have effects on droughts, changing 

rainfall patterns and availability of surface water whose consequences range from less food supply to 

general fewer water supplies in Dar es Salaam region of Tanzania. 
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