International Journal of Scientific and Innovative Mathematical Research(l1JSIMR)
Volume 8, Issue 10, 2020, PP 18-22

ISSN No. (Online) 2347-3142 -~
DOI: https://doi.org/10.20431/2347-3142.0810003 m
www.arcjournals.org

Topological Medial Semigroups

Rushadije R. HALILI *, Merita AZEMI

Faculty of Natural Sciences and Mathematics, University of Tetovo, Ilinden n.n., 1200 Tetovo, Republic of
North Macedonia

*Corresponding Author: Rushadije R. HALILI, Faculty of Natural Sciences and Mathematics,
University of Tetovo, Ilinden n.n., 1200 Tetovo, Republic of North Macedonia

Abstract: In this paper, we prove some results for topological medial semigroups. Throghout, a semigroup will
mean a topological semigroup, i.e., a Hausdorff space with a continuous associative multiplication. A medial
semigroup is a semigroup satisfaying the medial low.
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1. INTRODUCTION

John B. and Pan, S.J. [2] proved some theorems for topological semigroups. Pettis, B.J.[5] proved some
theorems for continuity and openness of homomorphism in topological groups. Paul S., Moster [6]have
investigated the structure of topological semigroups. The purpose of this paper is to generalize some of
their results to topological medial semigroups.

Let X and Y be topological space. Let p: X — Y be a surjective (onto) map. The map p is a quotient

map provided a subset U of Y is open in Y if and only if p_l (U) is open in X. Let X and Y be
topological space. Let p: X — ¥ be a surjective (onto) map. Set C < X is saturated with respect to p

if for all ¥ €T such that p_l ({1})0(? # (D we have p_l ({1}) < C. If C saturated with respect to p .
then for some 4 C ¥ we have p™ (A) = (. Let X and Y be topological space. Then p: X —Y isa
quotient map if and only if p is continuoius and maps saturated open sets of X to open sets of Y. The
map f : X — Y is an open map if for each open set I < X the set f(U] isopeninY. If p: X =Y
is continuous and surjective and p is either open or closed map if for each closed set 4 C X the set
f(A] is closed in Y. If X is a space, A is a set, and p: X — A is surjective (onto) map, then there

exists exactly one topology T on A relative to which p is a quotient map . This topology is called the

quotient topology induced by p .
2. THEOREMS FOR TOPOLOGICAL HOMOMORPHISM
A semigroup S is medial if xaby =xbay for all x,a,b, y €5 . Such a semigroup S satisfies

(x0)" =x"y" and (SxS)" =S"x"S” forall x,y€S and nelN.

A topological semigroup is a system consisting of a set S , an operation * - * and a topology T
satisfaying the following conditions:

Dforany x.veSsS', xyesS ;

2)for x.y.zeS. (xv)z=x(2z):

mn

3) the operation is continuous in the topology T .

A topological subsemigroup H of a semigroup S is a topological subspace of S and also a
subsemigroup of S .

An equivalence relation R defined on a semigroup S is called homomorphic is for any a.b.c.d € 5.
aRb and cRd imply acRbd .
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Given an homomorphic equivalence relation R on S . we call the set of equivalence classes mod R the
quotient set and we denote itby S/ R .

The mapping from S into S/ R defined by ?‘.'(x) = the class mod R to which x belongs is called the
natural mapping from S into S/ R.

The family U of all subsets U * of S/ R such that 7™ (U *) is openin S is a topology for S/ R and is
called quotient topology for S/ R.

In general use the term homomorphism to mean continuous homomorphism. the terms mapping, function
to mean continuous mapping, continuous functions .

Let S be a semigroup , R be a homomorphic equivalence relation on S and let S/ R be the quotient set.
We define an operation on S/ R in the following manner. Suppose that .4 and B are two arbitrary
elementsin S/ R, then AB=C ifforany @ € 4 and b € B we have ab € C . This operation is well-
defined because R is a homomorphic equivalence relation. Also it is associative, because the semigroup
S is associative. Therefore the quotient set S’/ R with the operation just defined is a semigroup. We call it
the quotient semigroup.

We say a semigroup S statisfies the condition A if for every open set U of S . the subset 1" (H(U ))

is also open where 7 is the natural mapping from S onto S/ R.

Theorem1: If the medial semigroup S statisfies the condition A . then the quotient set S/ R is a

topological medial semigroup with the quotient topology. and the natural mapping » from S into S/ R
is an open topological homomorphism.

Proof: We have shown that S/ R is an abstract semigroup. Now we wish to show that the natural
mapping # from S to S/ R is an abstract homomorphism.

Let X and ¥ be two equivalence classes mod R and let XT = Z. Then by definition of the operation
in S/R.forany x€X and ve¥. xyv € Z. Since the natural mapping 77 assigns each element to the
class it belongs. we have n(X)=X. n(Y)=Y.and n(xy)=n(z)=Z .These equations together with

the equation XV = Z imply that J'.'(.\j‘):n(_\-)n(_1-)_
This shows that the natural mapping 7 is an abstract homomorphism from § into S/ R.

Now let U * be an open set in S/ R . By the definition of the quotient topology for S/ R. n™ (U*) is
open. Hence 5 is continuous. Let U be an open setin S . Since § satisfies the condition 4 .

nt [n (U)] is open. Then by definition of the quotient topology, 1 (U) is open.

Now we wish to show that the semigroup operation in S/ R is continuous. Let .4 and B be two
orbitrary elements in S/ R such that 4B = C . Suppose that " * is an open neighborhood of C. Then

W=n" [IT *) is an open neighborhood of C . considered as a subset of S . Since the semigroup

operation in S is continuous. for every @ € 4 and every b € B such that ab =c. there is an open
neighborhood U, of @ and an open neighborhood ¥, of b such that UV, W .Choose such a

neighborhood ¥, forevery be B. Then U UV, = [ Uu, ][ U VbJ cw .
asd asd beB

be

Now U U, is an open neighborhood of 4 in 5. and 77 is an open mapping. It follows that n[ U Uﬂ]
asd acd

is an open neighbordood of the element A4 in S/ R. Similarly » [ ;[f; Vb] is an open neighborhood of the

element B in 5/ R. Since |:{f; U, :|L{f; If;] W . we have

a?[U Ua]n[U I»;] :}r[U UL U Vb]c;-a(W)zﬁ’*
asd bsB beB

a4
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Hence we have found an open neighborhood 7 [ U UA} of A and an open neighborhood 1 LL; VbJ of

asd

B such that 3?[ Uu, } }.r|: U Vb} C W * . This shows that the semigroup operationin S/ R is
acA b=B
continuous.

Theorem?2: If S and T are two medial semigroups and g is a homomorphism from S into T then g

induces a homomorphic equivalence relation Rg on §.

Proof: We define a relation Rg on S in the following manner. Suppose that @ and @ * are two element

of S.then: a=a* if and only if g ((J) = g((i *). Evidently. R_ is an equivalence relation.

14
&

We show that R, is homomorphic. 7e. . if a.a*.b.b*e S such that ¢ =a@*mod R_ and
b=b*modR, .then ab=a*b*mod R, . Now a=a*modR_ implies g (n) =g(a*) and

b=b*mod R, implies g (b) =g (b *} . These two equations imply that g a)g {b] =g ((f *)g (b *} :
Since g is a homomorphism we have g((i]g(b) :g{(ib) and g(a*)g(b*)= g((i*b*).
Hence g(ab)=g(a*b*).

Theorem3: Let S and T be two topological medial semigroups and let g be an open homomeorphism

from § onto T . Then

a) S/ R, is a topological medial semigroup with the quotient topology:

b) the natural mapping » from S onto S/ R_ is an open homomorphism:

¢) the mapping /2 from S/ R, onto I defined by h{:l) = g{ﬂ) for any @ € 4 as a subset of § and
A€ S/ R, is atopological isomorphism.

Proof: By theorem2. g includes a homomorphic equivalence relation R, on S.Let S/ R, be the
quotient set. Then S/ R, is a medial semigroup. Let 1 be the natural mapping from S onto 5§ R, . We

show that the medial semigroup S satisfies the condition A .

Let IV be an open subset in 5. Since g is an open map. g[U) isopenin 7. Also g is continuous,
Hence the subset g™ [g(U)] is openin S.But g™ [g(U)] = {.\‘ es/ g(.‘r] = g(j') for some 1 € U}

and n”" {H(U):I = {.T eS/g (*r] = g(_l') for some y e U} thence 1™ [H(U):I = g_l [g (U):I and

i?_l[ﬁ([fr)] is open. This shows that S satisfies the condition A . Since S satisfies the condition A.

the parts a) and b) follow from theorem1. Before proving part ¢). we wish to show that the mapping /
defined in the theorem is well-defined.

Let A be any element of S/R_ andlet a* and a** be any two elements of 4 as a subset of S. Then

a*=a**mod R, . This implies g(a*)=g(a**). Hence h(4)=g(a*)=g(a**).
This shows that /2 is well-defined. Also / is a one to one mapping.
Foreach A4S/ Rg there corresponds a unique value h{ A) = g(ﬂ) in T as shown above.
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Now since g is amapping from S onto T . for each f €T there is an element @ €.5 such that

t=g(a). by definition of Rg. a =bmod R, if and only if g(a)=g(b) .

It follows that for each g(a) =, there is one and only one equivalence class 4 mod Rg such that
h(A) = g(a) =1.Hence /1 is a one to one mapping. We further show that /7 is an algebraic
homomorphism. Let A and B be any two elements in S/ Rg . Then

h (AB) = g(ﬂb) = g(ﬂ)g (b) =h (A) h (B) . where a and b are orbitrary elements of 4 and B

respectively. This shows that /7 is an algebraic homomorphism.

We show also that 7 is continuous. Let .4 be an element in S/ R, such that h(A) =1 and let ¥ be an
open neighborhood of /.

Since JI(A) :g(-‘.’r) for every a € A .and since g is continuous, for every a € A, there is an open

neighborhood U, of a such that g(Ua) W .

Choose such an open neighborhood U, for every @ € A. Then [J (U a) is a neighborhood of 4 in §

asd

U (Uﬂ)} is an open neighborhood of the element A in S/ Rg . But

asd

and n[

elg@)]=rlr[g@)]er.

So for any neighborhood W of h(A) . we have found a neighborhood n[ u (Ua )] of A such that

acd

h {?‘.’|: LL (Uﬂ ):|} C WV . This shows that 7 is continuous.
ae

Finally we show that /7 is open. Let U * be an open subset of S/ Rg . Since the natural mapping » from

S onto § f"Rgis continuous, n (U *) is an open subset in § into T . So g[}?_l (U*)] isopenon T .

But g[n_l (U*):I = h{n[n_l {U*)]} =h(U*) .Hence h(U*) is open in T . This shows that 7 is an
open mapping. This completes the proof.
If the medial semigroup S satisfies the condition A . then the quotient set S/ R is a topological medial

semigroup with the quotient topology. and the natural mapping 7 from S onto S/ R is an open
topological homomorphism.

Conversely, if g is an open homomorphism from S into a medial semigroup T . then T is topologically

isomorphic to the quotient semigroup S/ Rg . where Rg is homomorphic equivalence relation defined

by aR,b ifand only if g(a)=g(b).a.beS.

3. FUNDAMENTAL THEOREM OF HOMOMORPHISM OF THE TOPOLOGICAL MEDIAL SEMIGROUPS

Theoremd4: Let § and T be two topological medial semigroups both satisfying the condition A4 .

Let g be an open homomorphism from S onto 7 and let R * be a homomorphic equivalence relation

defined on T . Then there is a homomorphic equivalence relation R on S and there is a mapping /1 from
S/ R onto T/ R* which is a topological isomorphism.

Proof: Since R* is a homomorphic equivalence relation on 7. by theorem1.7 / R* is a topological
medial semigroup and the natural mapping # from 7" onto 7'/ R* is an open topological
homomorphism. Since the mapping g from I” onto 7'/ R* is an open topological homomorphism.

&

Since the mapping g from S onto I is also a homomorphism. it follows that the product mapping ng

from S onto 7/ R* is also a homomorphism. We show that 71g is open.
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Let UV be an open setin S . Since g is open g(U] isopenin I . Also, n is an open map:;
So ng [U} is openin 7'/ R*. This shows that 71¢g is an open topological homomorphism.

Now S and T/ R*are two topological medial semigroups. S satisfies the condition 4. and ng is an
open topological homomorphism from S onto 7/ R*. Hence. by theorem2 #¢g induces a homomorphic

equivalence relation R, and '/ R*. Denote R by R.Thenwe have S/R=T/R*.
We call this isomorphism 7.
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