International Journal of Scientific and Innovative Mathematical Research(IJSIMR)

Volume 8, Issue 10, 2020, PP 14-17 ISSN No. (Online) 2347-3142

DOI: https://doi.org/10.20431/2347-3142.0810002

www.arcjournals.org

Ternary Permutable Semigroups of the First Kind

Rushadije R. HALILI*, Merita AZEMI, Lazim KAMBERI

Faculty of Natural Sciences and Mathematics, University of Tetovo, Ilinden n.n., 1200 Tetovo, Republic of North Macedonia

*Corresponding Author: Rushadije R. HALILI, Faculty of Natural Sciences and Mathematics, University of Tetovo, Ilinden n.n., 1200 Tetovo, Republic of North Macedonia

Abstract: A semigroup S is called a permutable semigroup if $\rho \cdot \sigma = \sigma \cdot \rho$ is satisfied for all congruences ρ and σ of S . A non empty set S together with a ternary multiplication denoted by juxtaposition, is said to be a ternary semigroup if (abc)de = a (bcd)e = ab(cde) for all a,b, c, d, e \in S . In this paper we deal with permutable ternary semigroups of the first kind.

Keywords: Ternary semigroup, permutable semigroup.

1. Introduction

The first paper about permutable semigroups is [4] where some general theorems are proved and the commutative permutable semigroups are described.

Using the terminology of [5], a semigroup S is called a semigroup of type A if it is a semilattice of a nil semigroup S_0 and a rectangular group $S_1 = L \times G \times R$ with $|L| \le 2$, $|R| \le 2$ (L is a left zero semigroup, G is a group, G is a right zero semigroup). A semigroup G of type G is called of the first kind if $G \in S_1 G$, for every $G \in S$.

Let S be a ternary permutable semigroup of the first kind. Then S is a semilattice of a nil semigroup S_0 and a rectangular abelian group $S_1 = L \times G \times R$ with $|L| \le 2$, $|R| \le 2$ (L is a left zero semigroup, G is a group, R is a right zero semigroup). It is obvious that S_1 is a rectangular band $L \times R$ of discoint subgroups $G_{ij} = \{i\} \times G \times \{j\}$ ($i \in L, j \in R$) and the idempotent elements of S_1 are the identity elements $e_{ij} = (i, e, j)$ of G_{ij} (here e denotes the identity element of G).

Introduce the following notation: for an element t of a non-empty set T containing at most two elements, let $\bar{t} = t$ if |T| = 1 and let $\bar{t} \in T - \{t\}$ if |T| = 2.

Definition1:A semigroup S is called a permutable semigroup if $\rho \cdot \sigma = \sigma \cdot \rho$ is satisfied for all congruences ρ and σ of S.

Definition2: A non empty set S together with a ternary multiplication denoted by juxtaposition, is said to be a ternary semigroup if (abc)de = a(bcd)e = ab(cde) for all $a,b,c,d,e \in S$.

Definition3: A ternary semigroup S is said to be commutative if $x_1x_2x_3 = x_{\sigma(1)}x_{\sigma(2)}x_{\sigma(3)}$ for every permutation σ of $\{1,2,3\}$ and $x_1,x_2,x_3 \in S$.

2. TERNARY PERMUTABLE SEMIGROUPS OF THE FIRST KIND

Lema 1: If S is a ternary permutable semigroup of the first kind then, for every $a \in S, i \in L$ and $i \in R$ we have

- (i) $e_{ij}a = e_{ij}a$.
- (ii) $ae_{ii} = ae_{ii}$.

Proof. As S is ternary permutable semigroups for every $a \in S, i \in L$ and $j \in R$ we have

$$e_{ij}a = e_{ij}e_{i\bar{i}}e_{ij}a = e_{ij}e_{i\bar{i}}e_{i\bar{i}}a = e_{i\bar{i}}a$$

and

$$ae_{ii} = ae_{ii}e_{ii}e_{ij} = ae_{ii}e_{ij}e_{ij} = ae_{ii}$$
. \square

Introduce the following notations. For arbitrary $i \in L$ and $j \in R$, let

$$A_i = e_{ij}S = e_{-i}S$$
 and $B_j = Se_{ij} = Se_{-i}$

It is clear that $A_i = G_{ij} \cup G_{i\bar{j}} \cup e_{ij}S_0$ and $B_j = G_{ij} \cup G_{\bar{i}j} \cup S_0e_{ij}$.

A semigroup is said to be left (right) commutative if it satisfies the identity abc = bac(abc = acb).

Lema 2: Let S be a ternary permutable semigroup of the first kind. Then $A_i (i \in L)$ and $B_i (j \in R)$ are left and right commutative subsemigroups of S, respectively.

Proof. It is clear that e_{ij} is left identity elements of A_i . Then, for arbitrary elements $a, x, y \in A_i$,

$$xya = e_{ii}xya = e_{ii}yxa = yxa.$$

Hence A_i is left commutative. The proof of the assertion for B_i is similar. \square

Lemma 3: Let S be a ternary permutable semigroup of the first kind. Then

$$S = A_i \cup A_{\overline{i}} = B_j \cup B_{\overline{i}} (i \in L, j \in R).$$

Moreover, $A_i \cap A_{\overline{i}}$ and $B_j \cap B_{\overline{i}}$ $(i \in L, j \in R)$ are ideals of S.

Proof. Let S be a ternary permutable semigroup of the first kind. Then for every $a \in S$ there is an element $e_{ij} \in E(S_1)$ such that $a = e_{ij}a \in A_i$.

Thus
$$S = A_i \cup A_{\overline{i}} (i \in L)$$
. Similarly, $S = B_j \cup B_{\overline{j}} (j \in R)$.

It is clear that $A_i \cap A_j \neq \emptyset$ is a right ideal of S. Let $s \in S, a \in A_i \cap A_j$ be arbitrary elements. Then

 $e_{t,k}a = a$ for every $t \in L, k \in R$. Assume $s \in A_i$. As A_i is a subsemigroup of $S, sa \in A_i$. As S is of the first kind, a = at for an element $t \in S_t$.

Thus for arbitrary $j \in R$, $e_{ii}sa = e_{ii}sat = e_{ij}ast = ast = e_{ii}ast = e_{ii}sat = sa$, that is $sa \in A_i$.

Thus $sa \in A_i \cap A_{\overline{i}}$. Hence $A_i \cap A_{\overline{i}}$ is an ideal of A_i . We can similarly prove that $A_i \cap A_{\overline{i}}$ is an ideal of $A_{\overline{i}}$. Hence $A_i \cap A_{\overline{i}}$ is an ideal of $A_{\overline{i}}$. The proof of the assertion that $B_j \cap B_{\overline{j}}$ is an ideal of $A_{\overline{i}}$ is similar. \Box

Lema 4: If f is an idempotent element of a ternary semigroup S, then

 $\eta_f = \{(x, y) \in S \times S \mid fx = fy\}$ and $\mu_f = \{(x, y) \in S \times S \mid xf = yf\}$ are congruences on S.

Proof. It is clear that η_f is a right congruence. Let x, y, z be arbitrary elements of S such that $(x, y) \in \eta_f$. Then fzx = ffzx = fzfx = fzfy = ffzy = fzy and so $(sx, sy) \in \eta_f$.

Hence η_f is a congruence on S. The proof is similar for μ_f . \square

Lema 5: If S is a ternary permutable semigroup of the first kind then, for every $i \in L$ and $j \in R$

(1)
$$\eta_{e_{i\bar{i}}} = \eta_{e_{i\bar{i}}} = \eta_{e_{i\bar{i}}} = \eta_{e_{i\bar{i}}} = \eta_{e_{i\bar{i}}}$$

(2)
$$\mu_{e_{ij}} = \mu_{e_{ij}} = \mu_{e_{ij}} = \mu_{e_{ij}}$$
.

Proof. By lema 1, $\eta_{e_{i\bar{i}}} = \eta_{e_{i\bar{i}}}$ and $\eta_{e_{i\bar{i}}} = \eta_{e_{i\bar{i}}}$.

We show that $\eta_{e_{ij}} = \eta_{e_{ii}}$.

Assume that $(a,b) \in \eta_{e_{ij}}$ for some $a,b \in S$. Then $e_{ij}a = e_{ij}b$ and so

$$e_{i\tilde{i}}a = e_{i\tilde{i}}e_{ij}a = e_{i\tilde{i}}e_{ij}b = e_{i\tilde{i}}b.$$

Then $(a,b) \in \eta_{e_{ij}}$. Thus, $\eta_{e_{ii}} \subseteq \eta_{e_{ij}}$. Similarly $(a,b) \in \eta_{e_{ij}}$ for some $a,b \in S$, then $e_{\bar{i}j}a = e_{\bar{i}j}b$

and so $e_{ij}a = e_{ij}$, $a = e_{ij}$, $b = e_{ij}$. Then $a_{ij} = e_{ij}$. Thus $a_{ij} = e_{ij}$. Thus $a_{ij} = e_{ij}$. Hence $a_{ij} = e_{ij}$. Thus $a_{ij} = e_{ij}$. Thus $a_{ij} = e_{ij}$. Thus $a_{ij} = e_{ij}$.

Lema 6: If S is a ternary permutable semigroup of the first kind then for every $i \in L$ and $j \in R$, $A_i \cong S / \eta$ and $B_i \cong S / \mu$.

Proof. Let $[a]_{\eta}$ denote the η -class of S containing the element a of S. We show that

 $[a]_{\eta} = (E(S_1))a$. Assume $(x, y) \in \eta$ for some $x, y \in A_i$. As e_{ij} is a left identity element of A_i , we have $x = e_{ij}x = e_{ij}y = y$. Thus $\eta / A_i = id_A$ where η / A_i is the restriction of η to A_i and id_A .

Is the identity relation of A_i . Let $a \in S$ be an arbitrary element. Then by lema3, $S = A_i \cup A_{\overline{i}}$, and so there is an element $i \in L$ such that $a \in A_i$. As $e_{ij}a = e_{ij}e_{ija}$ $j \in R$, we have $(a, e_{ij}a) \in \eta$.

Thus
$$[a]_{\eta} = \{a, e_{ij}a\}$$
.

Since
$$a = e_{ij}a = e_{ij}a$$
 and $e_{ij}a = e_{ij}e_{ij}e_{ij}a = e_{ij}e_{ij}e_{ij}a = e_{ij}a$, we get $[a]_{\eta} = \{a, e_{ij}a\} = (E(S_1))a$.

This result implies that $|A_i \cap [a]_{\eta}| = 1$ for every $a \in S$. Let Φ_i denote the mapping of S/η to A_i defined by $\Phi_i : [a]_{\eta} \to A_i \cap [a]_{\eta}$. Then Φ_i is bijective. As $(A_i \cap [a]_{\eta})(A_i \cap [b]_{\eta}) \in (A_i \cap [ab]_{\eta})$ we get $\Phi_i(a)\Phi_i(b) = (A_i \cap [a]_{\eta})(A_i \cap [b]_{\eta}) \in (A_i \cap [ab]_{\eta}) = \Phi_i(ab)$ which means that Φ_i is a homomorphism.

Thus Φ_i is an isomorphism of S/η onto A_i . The proof of $B_j \cong S/\mu$ is similar \square .

Corollary 1: Let *S* be a ternary permutable semigroup of the first kind. Then for every $i \in L$ and $j \in R$, $\phi_i : a \to a' = e_{ij} a (a \in A_i)$ and $\Psi_j : b \to b' = b e_{ij} (b \in B_j)$ are isomorphisms of A_i and B_j onto A_j and B_j , respectively.

REFERENCES

- [1] Cliford A.H. and G.B. Preston, The algebraic theory of semigroups, Math. Surveys N. Amer. Math. Soc. Providence, 1(1961).
- [2] Attila Nagy, Medial permutable semigroups of the first kind, Semigroup forum (2008),297-308. [3]Sioson FM. Ideal theory in Ternary semigroups, Math Japonica (1965) 63-84.
- [3] Hamilton H., Permutabiliti of congruences on commutative semigroups, Semigroup Forum, 10 (1975) 55-66.
- [4] Bonzini, C., Cherubini, Medial permutable semigroups, Coll Math. Soc. Janos Bolyai, vol.39(21-39)1981.
- [5] A. Deak and A. Nagy, Finite permutable Putcha semigroups.
- [6] Rushadije R. Halili, D. Ibishi, Exponential permutable semigroups, Journal of advances in Mathematics, vol.9(2014).

Citation: Rushadije R. HALILI, Ternary Permutable Semigroups of the First Kind, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), vol. 8, no. 10, pp. 14-17, 2020. Available: DOI: https://doi.org/10.20431/2347-3142.0810002

Copyright: © 2020 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.