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1. INTRODUCTION 

There is an abundance of proofs available for Pythagoras’ Theorem on right-angled triangles, from 

Pythagoras’ own alleged proof in the 6th  century B.C., through Euclid’s proof, the proof by Thabit ibn 

Qurra of Baghdad in the 9th  century, the Indian 12th century mathematician Bhaskara’s proof, to the 

one by the 20th  President of the United States James Garfield, who published his paper in 1876, five 

years before taking up office as President.  

The aim of this paper is to present a new  proof of the Pythagorean theorem. Firstly I will prove a 

formula which will help us to know the length of a square inscribed in a right triangle and the formula 

is ab/(a+b), here a and b are the legs of a right triangle that's why we will be able to calculate the length 

of the square inscribed in a right triangle without using the length of hypotenuse. We know, in two 

similar triangles the ratios of the lengths of their corresponding sides are equal. In this prove some 

similar triangles will be used. By the help of similar triangles and the above formula the Pythagorean 

theorem will be easily proved. 

2. PYTHAGOREAN THEOREM 

Ask anyone you happen to meet socially what theorem he/she remembers from high-school geometry. 

The chances are high that the reply would be the Pythagorean theorem. But if they are asked to state the 

theorem they may not be able to do so except, perhaps, to say that it concerns triangles and that the 

conclusion is a² + b² = c². 

It is believed that Pythagoras lived in the 6th century B. C. in the island of Samos, Egypt and in Croton 

in southern Italy, besides visits to neighbouring countries. He was the leader of a society, called 

Brotherhood, which was devoted to the study of mathematics, astronomy, religion and music. Among 

other things he is famous for the theorem attributed to him. The theorem was known earlier in some 

form or other in India and China; the Hindu mathematician Baudhayana discussed it around 800 B.C. 

in his book Baudhayana Sulba Sutra. It was known even earlier to the Babylonians. 

Pythagoras seems to have been the one who formulated it in a form such that he is considered as the 

first pure mathematician in history. The theorem is called Pythagorean sometimes due to the secretive 

nature of his society. There is an interesting story of how he happened to notice the truth of the theorem. 

While waiting in a palace to be received by the king, his attention was drawn to the stone-square tiling 

of the floor. He imagined right angled triangles in half-squares implicit in the tiling together with the 

squares on its sides. It occurred to him that the area of the square over the hypotenuse of the right 

triangle is equal to the sum of the areas of the squares over the other two sides. Legend has it that 

Pythagorean brotherhood celebrated this discovery by sacrificing to gods a hetacomb (100 heads) of 

oxen! Regarding this, C. L. Dodgson (Lewis Carroll) wrote: “One can imagine oneself, even in these 

degenerate days, marking the epoch of some brilliant discovery by inviting a convivial friend or two, to 
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join one in a beefsteak and a bottle of wine. But a hecatomb of oxen! It would produce a quite 

inconvenient supply of beef.” 

Is there a theorem in Euclidean geometry that has the most number of proofs? 

Yes: the Pythagorean theorem. There seems to be about 500 different proofs of this theorem. The usual 

texts in geometry for high schools give the theorem in the form stated by Euclid, Book I, (Proposition 

47): “In a right-angled triangle the square on the side subtending the right angle is equal to the squares 

on the sides containing the right angle” (Figure 1). 

 
Figure1. A right-angled triangle with integer sides is called a Pythagorean triangle (PT). 

Such a triangle with sides 3, 4 and 5, with the hypotenuse of length 5, is the only PT with the three sides 

as consecutive numbers, and also the only triangle with the sum of the sides (=12) which is double its 

area (=6). The next PT with consecutive leg lengths has sides 21, 20, 29. The tenth such triangle has 

large sides: 27304196, 27304197, 38613965. 

3. THE NEW PROOF OF THE PYTHAGOREAN THEOREM 

The theorem that we are setting out to prove, the Pythagoras’ Theorem, says the following. Take any 

right-angled triangle, in which the hypotenuse has a length of c and the other two sides lengths of a and 

b. The theorem asserts that a² + b² = c². 

 

Figure2. Here ABC is a right triangle and BDEF is the inscribed square in the triangle. Here DC > FB and       

CD = FG. 

At first we have to increase AB to G so that FG becomes equal to DC. Then we have to join E, G. 

According to drawing, here DC > FB     that’s why we have to increase AB. But when DC will be 

shorter than FB the point G will be on the line AB or FB. That time the figure will be as following 

 

Figure2. Here ABC is a right triangle and BDEF is the inscribed square in the triangle. Here DC < FB and CD 

= FG. 
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When DC and FB will be equal the figure will be as following,  

 

Figure 2”: Here ABC is a right triangle and BDEF is the inscribed square in the triangle. Here DC = FB 

and the point G is on the point B. That’s why sometimes we will consider the point B as the point G 

and sometimes will we consider it as point B. If we see the figure 2 and 2’ we will know that DC is 

equal to FG and here FB = FG that’s why B and G are the same point. 

Proof: 

Here AB = a, BC = b, AC = c, BDEF is a square that’s why BD = DE = EF = FB = f, a = d + f, b = e + 

f, c = x + y, CD = FG = e, AF = d, (according to drawing), EF || BC. 

In the figures, EF || BC  

Therefore, ∠AEF = ∠ECD 

In the case of triangle AEF and triangle ECD 

∠AFE = ∠EDC = 90̊                    

∠AEF = ∠ECD 

That’s why ∆AEF ~ ∆ECD 

So,  
AF

DE
=

EF

CD
 

  
d

f
=

f

e
                

 
 a−f

f
=

f

b−f
   [see figure- 2,2’ and 2”] 

  f2 = (a-f) (b-f) 

  f2 = ab – af – bf + f2 


   f2 - f2 +af +bf = ab 

  f(a + b) = ab 

a     ∴ f = 
ab

a + b
  

 Through this formula we can calculate the length of the square (like BDEF) inscribed in a right triangle.  

Again,  

AF

DE
=

AE

EC
             

⇒
d

f
=

y

x
                                                                                                                                             

 ∴ y = 
dx

f
                                                                                                                                                                     [1] 

Now, 

d = a - 
ab

a+b
              [∵ d = a - f] 

=  
a2 +  ab − ab

a + b
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=   
a2

a + b
 

Again,    

e = b - 
ab

a+b
        [∵ e =  b − f ] 

= 
ab+ b 2− ab

a + b
 

= 
b2

a + b
 

Here,  

AG = AF + FG 

= AF + CD         [∵ FG = CD] 

= d + e 

= 
a2

a + b
+

b2

a+b
 

= 
a2+ b2

a +b
 

Again,  

y = 
dx

f
   [ see Eq. (1)] 

 y = 

a2

a + b
 × x

ab

a + b

 [∵d=  
a2

a + b
 and f= 

ab

a + b
 ]  

 y = 
xa2

(a+b)
 ×

(a + b)

ab
 

∴   y = 
ax

b
                                                                                                                                                                                                  [2] 

In the case of ∆FGE and ∆ECD, 

EF = DE = f 

FG = CD = e[ According to drawing ] 

And  ∠EFG = ∠EDC  

∴  ∆FGE ≅ ∆ECD 

So,           ∠FEG = ∠DEC 

And  EG = EC = x 

Now,          ∠AEF + ∠DEC = 90̊  

Again,        ∠FEG = ∠DEC 

That’s  why,      ∠AEF + ∠FEG = 90̊  

∴ ∠AEG = 90̊ [∵∠AEF + ∠FEG = ∠AEG] 

∴ ∆AEG is a right triangle.  

Here, the area of the triangle AEG 

 = 
1

2
 × AE × EG  = 

1

2
× AG × EF 

    
1

2
 × y × x   =  

1

2
 × AG × f 

   
1

2
 ×

ax

b
 × x   =  

1

2
 ×

a2+ b2

a + b
 ×

ab

a + b
 

 x2 = 
(a2+ b2 )ab × b 

(a + b)2  × a 
 

∴ x  = 
b√a2 + b2

a + b
                                                                                                                                                                                     [3] 

By Combining Eq [2] and [3], we get, 

y =  
a ×

b √a2+b2 

a + b

b
  

=  
ab√a2 + b2 

a+b
 ×

1

b
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= 
a√a2 + b2 

a+b
   

Now,  

x + y = 
b√a2+ b2

a + b
+  

a√a2 + b2 

a+b
 

      c   = 
b√a2+ b2 + a√a2 + b2 

a+b
 [∵ c = x + y] 

       c  = 
(a + b)√a2+ b2 

(a + b)
 

       c  = √a2 +  b2  

       c2 = a2 + b2 

 

∴ a2 + b2 = c2 [Proved] 

4. CONCLUSION   

From 6th century B.C mathematicians are trying to prove the Pythagorean theorem differently. That's 

why there are so many proofs of this theorem. The Conclusions of this study are as follows: 

 This study will help us to know more about right triangles. This study will also increase the number 

of proofs of Pythagorean theorem. 

 We will be able to know more different uses of similar triangles in case of proving Pythagorean 

theorem. 
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