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1. INTRODUCTION 

Here we will discuss some interesting subsets of ω1 – sets, Borel subsets, stationary and bi-stationary 

subsets of ω1 – and some theorems . In addition, we will mention some topological applications of 

stationary sets . Let us know that ω1 is an uncountable well-ordered set with the special property that 

if α < ω1, then the initial segment [0, α) of ω1 is countable, and that the countable union of countable 

sets is countable. Like any linearly ordered set, ω1 has an open interval topology. Le us consider that  

α is a limit point of the space ω1.  

2. MAIN RESULTS 

Theorem 1.1 : A Borel subset of B(k) which is not in )( kLW    is a homeomrphic to B(k). 

Definition : B(k) is the Baire zero dimensional space of weight k, is a function from  k  with the 

given 
ngfd  2),( ,where n is the least of .// ngnf    

Definition: A space ‘x’ is a Baire space iff intersection of countable many dense open subsets of  X is 

a dense in X.  

Definition: Any set that intersects every club-set in ω1 is called a stationary subset of ω1. 

 Definition:  Any set S ⊆ ω1 with the property that both S and ω1 − S intersect every club-set is called 

a bi-stationary set.  

Definition:  A topological space X is said to be metrizable if there exists a metric d such that {Br(x) : 

x ∈ X and r > 0} forms a basis generating the topology on X.  

Proposition:  Any subspace of a metrizable space is metrizable. 

Lemma : Let X is a metrizable space with weight k, where k is an uncountable regular  cardinal , let 

( ): kd   be a dense subset of X. For .k  

Theorem 1.2: There is a subset “s” of B(w) such that both s and B(k)-S meet every  subset of B(w) is 

homeomorphic. 

Proof :  Let us consider the note that there are Gofw2  subsets of B(w) and that each uncountable 

G has 
2  points. Here we consider the well ordered uncountable  G  subsets and inductively 

choose any two points from each one be in S, the other to be in B(w)-S. The induction continuous 

because at each step there are less than  
2  points which are chosen so that there are plenty of 

possible new points. 

We would like to construction with B(k) in the place of  B(w) , However ,when 
2k     Then there 

are 
k2 open sets, but only k points in the space.  

Abstract: In this paper we study some  new techniques from set theory to general topology and its 

applications , here we study some the partition relations ,cardinal functions and its principals and some more 

theorems . Further we develop the combinatory of stationary sets we have aimed at person with some 

knowledge of topology and a little knowledge of set theory. 
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Theorem 1.3: Let k be an uncountable regular cardinal, then their S of B(k) such that both S and 

B(k)-S meet every subset of B(k) is homeomorphic to B(k). 

Proof :  Let introduce the new function with B(k) ,for k , Let us consider 

},,:{ 


 randomfunctionais For 
k

 define for 

}:)({ fkBf   . Such that for each    is closed and open subset of B(k),and 

}:]{[ 
i

 is a base for B(k),for B(k) define 
k

forfranSupf *
define 

 ranSup*
. Note that for each .}:{, * kk    By using the above Lemma it is clear 

that kCFA    such that both A and CF  of kCF  are stationary sets in k, Thus z satisfies 

the conclusion of Theorem 1.3 . 

Theorem 1.4: There are two Baire spaces whose product is not a Baire. 

Proof  : Let A and B are any disjoint  stationary sub sets of  1 .  Further consider  

}:)({:}:)({ *

1

*

1 BgBgYAfBfX   , for every dense of  G  of B(k) is 

homeomorphic to B(k), so by Definition , X any Y are Baire spaces.  

For n , let }.)()(:),{( ** fngandgnfYXgfUn  It is to verify that Un is dense and 

open subset of  XxY. Thus the Contradiction.  

Theorem 1.5:   Suppose there is a continuous injective mapping h: S → T where S and T are 

stationary sets. Then S ∩ T is also stationary.  

Proof: Because there is a continuous injective mapping from S to T, then S − T cannot be stationary. 

But S = (S ∩ T) ∪ (S − T) is stationary so that the set S ∩ T must be stationary. 
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