The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations

Hui Quan*

Department of mathematics, Xiangtan University, Xiangtan 411105, China

*Corresponding Author: Hui Quan, Department of mathematics, Xiangtan University, Xiangtan 411105, China

Abstract: In 2019, Zübeide Ulukök obtained an important theorem in reference [1]: When \(H = \begin{bmatrix} A & C \\ C^* & B \end{bmatrix} \) is a positive semi-definite matrix, then \(H' \leq \lambda(A) + \lambda(B) \begin{bmatrix} A \\ B \end{bmatrix} \), where \(A, B \) are n-order square matrices. In this paper, we firstly do the same thing for a \(3 \times 3 \) positive semi-definite block matrix, and give a generalization of the above theorem. Next, we further generalize the case of \(k \times k \) positive semi-definite block matrix, and discuss the partial ordering relationship between the sum of matrices on quasi-diagonal lines and block matrices at other locations. Thus, we gave a new eigenvalue inequality.

Keywords: Positive Semi-Definite Matrix Hermitian Matrix Partial Order Relation

1. INTRODUCTION AND PRELIMINARIES

Inequalities of positive semi-definite block matrices have been widely used in matrix theory. In recent years, inequalities about block matrices have become a hot topic of research. At the same time, some very good results have been obtained, such as references [1, 3, 4, 5]. In this paper, we mainly discussed some positive semi-definite block matrices and obtained some matrix inequalities.

As we all know, the positive semi-definite block matrices have very good properties. Their eigenvalues are real numbers, so they can always be arranged in ascending order and we recorded them as \(\lambda_1(A) \leq \cdots \leq \lambda_n(A) \). In this paper, we use symbol \(\lambda_n(A) \) to represent the largest eigenvalue of a positive semi-definite matrix \(A \). And use symbol \(A \preceq B \) to represent \(B - A \) be a positive semi-definite matrix, obviously, \("\preceq" \) is a partial order relation. In particular, \(A \succeq 0 \) denotes that matrix \(A \) is positive semi-definite. In addition, we call \(U \) a unitary matrix if it satisfies \(U^* U = I \), we call \(A \) a Hermitian matrix if it satisfies \(A^* = A \). Last, the \(A \oplus B \) denotes the direct sum of \(A \) and \(B \), the block diagonal matrix \(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \); and \(0 \) represents a zero block matrix.

2. MAIN RESULTS

Let’s start with the following lemmas

Lemma 1.1 Let \(A \in M_{m \times n} \) with \(m \geq n \), then \(\lambda(AA^*) = \lambda(A^*A) \oplus 0 \) with \(0 \in M_{m-n} \).

Lemma 1.2 Let \(A \in M_m \) be positive semi-definite matrix. Then \(\lambda_n(A)I \preceq A \preceq \lambda_1(A)I \), where \(I \) denotes...
The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations

Lemma 1.3 If \(\begin{pmatrix} A & B \\ B & A \end{pmatrix} \) is a positive semi-definite matrix, then \(A \geq B \).

Proof Just consider the equation \(A - B = \frac{1}{2} (I - I) \begin{pmatrix} A & B \\ B & A \end{pmatrix} (I - I) \geq 0 \) and we can get the conclusion.

Lemma 1.4 If \(\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \) is a positive semi-definite matrix, \(A, C \) are square matrices of the same order, then we have \(A + C \geq B + B^* \) and \(A + C \geq -(B + B^*) \).

Proof Because \(\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \) is a positive semi-definite matrix, So, for any unitary matrix \(U \), we have

\[
U^* \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} U \geq 0 \, , \text{ thus there is } \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} + U^* \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} U \geq 0 \, . \text{ In particular, take}
\]

\[
U = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}
\]

then we have \(\begin{pmatrix} A + C & B + B^* \\ B + B^* & A + C \end{pmatrix} \geq 0 \). From lemma 1.3 we can get that

\[
A + C \geq B + B^* \, . \text{ And we can draw another conclusion by replacing the original } B \text{ with } -B.
\]

Lemma 1.5 If \(H \in M_n \) is a positive semi-definite matrix, then for any \(n \times k \) unitary matrix \(U \) satisfying \(U^* U = I_k \) and for each \(i = 1, \ldots, k \), we have \(\lambda_{i+m-k}(H) \leq \lambda_i(U^* HU) \leq \lambda_i(H) \).

Theorem 1 \(H = \begin{bmatrix} A & D \\ D^* & E \end{bmatrix} \) is a positive semi-definite matrix, where \(A, B, C \) are all \(n \)-order square matrices, then

\[
H' \leq 3[\lambda_i(A) + \lambda_i(B) + \lambda_i(C)]^{-1} \begin{bmatrix} A \\ B \\ C \end{bmatrix} \text{ for } r \geq 1.
\]

Proof Because \(H \) is a positive semi-definite matrix, so there exists an invertible matrix \(P \) such that \(H = P^* P \). We divide \(P \) into blocks: \(P = [X, Y, Z] \), where \(X, Y, Z \in M_{n \times n} \), and we can know that

\[
X^* X = A, \ Y^* Y = B, \ Z^* Z = C. \text{ From Lemma 1.1, we can get the following results:}
\]

\[
\lambda_i(XX^*) = \lambda_i(X^* X \oplus 0) = \lambda_i(A), \ \lambda_i(YY^*) = \lambda_i(Y^* Y \oplus 0) = \lambda_i(B), \ \lambda_i(ZZ^*) = \lambda_i(Z^* Z \oplus 0) = \lambda_i(C).
\]

Noting that the following equation holds: \(H' = (P^* P)' = P^* (P P^*)^{-1} P \), and we denote
The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations

\[T = (PP^T)^{-1} \]. So, for \(H^r \), there is the following decompositions :

\[
H^r = P^r TP = \begin{bmatrix}
X^T X & X^T Y & X^T Z \\
Y^T X & Y^T Y & Y^T Z \\
Z^T X & Z^T Y & Z^T Z
\end{bmatrix} = \begin{bmatrix}
X & Y & Z \\
T & T & T \\
T & T & T
\end{bmatrix} \begin{bmatrix}
X \\
T \\
T
\end{bmatrix}
\]

We notice that

\[
\begin{bmatrix}
T & T & T \\
T & T & T \\
T & T & T
\end{bmatrix} = \begin{bmatrix}
T^1 & 0 & 0 \\
T^1 & 0 & 0 \\
T^1 & 0 & 0
\end{bmatrix}, \quad \text{and} \quad \lambda \begin{bmatrix}
T & T & T \\
T & T & T \\
T & T & T
\end{bmatrix} = 3\lambda(T)^r.
\]

So, for \(r \), there is the following decompositions :

\[
\begin{bmatrix}
X & Y & Z \\
T & T & T \\
T & T & T
\end{bmatrix} = \begin{bmatrix}
X \\
T \\
T
\end{bmatrix} = 3\lambda_r(T)
\]

So, from lemma 1.2. We can get that:

\[
H^r \leq 3\lambda_r(T) \begin{bmatrix}
A & B \\
C & C
\end{bmatrix} = 3\lambda_r(PP^T)^{-1} \begin{bmatrix}
A & B \\
C & C
\end{bmatrix}
\]

On the basis of this conclusion, we can easily get the results of Zübeyde Ulukök in reference[1]:

Corollary 1 \(H = \begin{bmatrix}
A & C \\
C^* & B
\end{bmatrix} \) is a positive semi-definite matrix, where \(A, B \) are n-order square matrices, then

\[
H^r \leq 3[\lambda_r(A) + \lambda_r(B)]^{r-1} \begin{bmatrix}
A \\
B
\end{bmatrix} \quad \text{for} \quad r \geq 1.
\]

Next, we will discuss the case of \(k \times k \) positive semi-definite block matrices and explore the relationship between quasi-diagonal matrices and other block matrices at other locations.

Theorem 2 \(H = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1k} \\
M_{21} & M_{22} & \cdots & M_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
M_{k1} & M_{k2} & \cdots & M_{kk}
\end{bmatrix} \) is a positive semi-definite matrix, and \(M_{ij}, \ldots, M_{kk} \) are all n-order square matrices, if it satisfied \(M_{ij} \) are all Hermitian matrices, for \(1 \leq i \leq j \leq n \), then

\[
\sum_{i=1}^{k} M_{ii} \geq \frac{2}{k-1} \sum_{1 \leq i < j \leq k} M_{ij}
\]

Proof First of all, notice the following facts: if \(U_1, \ldots, U_k \) are all unitary matrices, \(A \) is a positive semi-definite matrix, then \(U^*_1AU_1 + \cdots U^*_kAU_k \) is still a positive semi-definite matrix.
After calculation, we can get that \(\sum_{i=1}^{k} \sum_{l=1}^{1} (M_{ii} + M_{il}) \geq \sum_{i=1}^{k} \sum_{l=1}^{1} (M_{il} + M_{il}) = 2 \sum_{1 \leq i < j \leq n} M_{ij} \).

So, there is \(\sum_{i=1}^{k} M_{ii} \geq \frac{2}{k-1} \sum_{1 \leq i < j \leq n} M_{ij} \).

Corollary 2 If \(\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \) is a positive semi-definite matrix, \(A, C \) are square matrices of the same order, and \(B \) is a Hermitian matrix, then \(\text{tr}B \leq \max \{\text{tr}A,\text{tr}B\} \).

Theorem 3 \(H = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1k} \\ M_{21} & M_{22} & \cdots & M_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ M_{k1} & M_{k2} & \cdots & M_{kk} \end{bmatrix} \) is a positive semi-definite matrix, and \(M_{11}, \ldots, M_{kk} \) are all \(n \)-order square matrices, if it satisfied \(M_{ij} \) are all Hermitian matrices, for \(1 \leq i < j \leq n \), then for these \(1 \leq i \leq n \), we have

\[
\frac{2}{k} \lambda_i (\sum_{1 \leq i < j \leq n} M_{ij}) \leq \lambda_i (H)
\]

Proof Take a unitary matrix \(U = \begin{bmatrix} I \\ I \\ \vdots \\ I \end{bmatrix} \), then \(U^*U = I_n \), noticed that \(M_{ij} \) are all Hermitian matrices, for \((1 \leq i < j \leq n) \), so we have

\[
U^*HU = \frac{1}{k} \sum_{i=1}^{k} M_{ii} + \frac{2}{k} \sum_{1 \leq i < j \leq n} M_{ij} \geq \frac{1}{k} \frac{2}{k-1} \sum_{1 \leq i < j \leq n} M_{ij} \sum_{1 \leq i < j \leq n} M_{ij} \quad \text{(from Theorem 2)}
\]

\[
= \frac{2}{k} \sum_{1 \leq i < j \leq n} M_{ij} \left(\frac{1}{k-1} + 1 \right) \geq \frac{2}{k} \sum_{1 \leq i < j \leq n} M_{ij} .
\]

Then for \(1 \leq i \leq n \), from lemma 1.5 we have \(\frac{2}{k} \lambda_i (\sum_{1 \leq i < j \leq n} M_{ij}) \leq \lambda_i (U^*HU) \leq \lambda_i (H) \), thus the conclusion \(\frac{2}{k} \lambda_i (\sum_{1 \leq i < j \leq n} M_{ij}) \leq \lambda_i (H) \) is proved.

REFERENCES

The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations

Citation: Hui Quan (2019). The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(8), pp. 3-7. http://dx.doi.org/10.20431/2347-3142.0708002

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.