

Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (for Example, Municipal Elections). Using MATLAB

Mikhail Mikhailovith Taenvat

Vladivostok Postgraduate of the Department of State and Municipal Management Institute of Law and Governance Vladivostok State University Economics and Service, Russia

*Corresponding Author: Mikhail Mikhailovith Taenvat, Vladivostok Postgraduate of the Department of State and Municipal Management Institute of Law and Governance Vladivostok State University Economics and Service, Russia

Abstract: When calculating the probabilities of a polynomial distribution with a large number of events ¹¹k, the researcher encounters either very large or very small numbers that even powerful programs cannot master. For a fast enough and with a small error of calculation, the author compiled a program in MATLAB attached to municipal elections. The program is applicable to satellite launches, in military affairs, pharmacological tests, at work, in trade, in the services sector, in emergency situations and in many other things. All actions are presented in such detail that a non-specialist will quickly master them.

Keywords: *multinomial (polynomial) distribution, MATLAB program, multinomial calculator, factorial calculator, election campaign.*

1. INTRODUCTION

The multinomial (polynomial) distribution in elections of various levels in science and life is reflected in perhaps the only publication. Dr. Lothar Sachs in the book Statistical Evaluation [1] considered the application of the multinomial distribution in the election of candidates. But Dr. Sachs did not consider:

- 1. Computational difficulties caused by large factorials manually and even using standard computer programs;
- 2. Difficulties of a computational nature, caused by rather small values of probabilities manually and even using standard computer programs;
- 3. Difficulties due to the participation in the elections of a significant number of candidates;
- 4. The substitution of unequal probabilities in the multinomial formula.

In the proposed article, the author considers the multinomial distribution on the example of the municipal elections of the head of the city of Vladivostok on September 8, 2013.

The author set a goal to investigate the use of the multinomial distribution formula for complications that block the outcome.

Lothar Zaks explains [1]: "In the binomial distribution, if the probability of a random choice of a smoker is p, and that of a non-smoker is - (1-p), then the probability of getting exactly x smokers from the total number n is equal to

$$P(x/n, p) = P_{n,p}(x) = \binom{n}{x} p^{x} q^{n-x} = C_{x}^{n} p^{x} q^{n-x} = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}.$$
(1)

If instead of two outcomes there are several $-E_1, E_2, ..., E_k$ with probabilities $p_1, p_2, ..., p_k$, then the probability in n experiments to get exactly $n_1, n_2, ..., n_k$ of events $E_1, E_2, ..., E_k$ determined by expression 2; otherwise: if more than two outcomes are possible and the population consists of

outcomes $A_1, A_2, ..., A_k$ with probabilities $p_1, p_2, ..., p_k$ at $\sum_{i=1}^{k} p_i = 1$, then the probability that in a sample of n independent observations n_1 times the outcome A_2 etc., distributed according to the multinomial law (polynomial distribution). The parameters of this distribution:"

average value: $\mu_i = np_i$; dispersion: $\sigma_i^2 = np_i(1-p_i) = np_iq_i$. $p(n_1; n_2; ...; n_k / p_1; p_2; ...; p_k / n) = \frac{n!}{n_1 \ltimes n_2 \ltimes ... \ltimes n_k!} \ltimes p_1^{n_1} \ltimes p_2^{n_2} \ltimes ... \ltimes p_k^{n_k};$ (2) provided $\sum_{i=1}^k n_i = n$.

Dr. Sachs gives an example [1]: "10 should choose one of three candidates (A, B, C). What is the probability of choice 8A, $1B \ \mu \ 1C$?"

provided
$$\sum_{i=1}^{k=3} n_i = 10$$
.

Figure 1 shows a quick solution to this example.

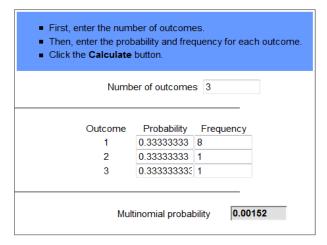


Fig1. The multinomial calculator window

So, the probability $P_{8A, 1B, 1C} = 0.00152$.

Using the formula (2) of the multinomial distribution proposed by L. Sachs, which gives a binomial distribution for k = 2 (special case), we determine the chances that for each of the 9 candidates (Andreichenko, Vasilyev, Velgodsky, Monastyrev, Protchenko, Pushkaryov, Ulyanov, the late V. I. Cherepkov, Yurtaev) a certain number of voters will vote for the position of mayor of Vladivostok (table 1).

Table 1. Excerpts from the minutes of September 10, 2013. Vladivostok Municipal Election Commission [3] on the results of the election of the mayor of 08.09.2013

The number of voters listed at the end of voting		4	5	2	0	7	6
	The number of votes cast for each registere candidate			gistered			
names, first names, patronymic names of istered candidates included in the ballot paper	absolute value		Percentage of th number of voter who participated i				

Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (For Example, Municipal Elections). Using MATLAB

								the voting
19	Andreichenko Andrei Valerievich	0	0	1	5	1	1	1,80%
20	Vasilyev Viktor Evgenievich	0	0	0	8	8	4	1,05%
21	Velgodsky Oleg Nikolaevich	0	0	8	7	0	4	10,34%
22	Monastyryov Alexander Vyacheslavovich	0	0	2	2	1	3	2,63%
23	Protchenko Danil Aleksandrovich	0	0	0	3	7	9	0,45%
24	Pushkaryov Igor Sergeevich	0	5	0	0	2	5	59,45%
25	Ulyanov Ilya Mikhailovich	0	0	0	7	9	6	0,95%
26	Cherepkov Viktor Ivanovich	0	1	5	9	0	5	18,90%
27	Yurtaev Alexander Grigorievich	0	0	2	4	8	3	2,95%
								98,52%

Source: "Election Commission of Primorsky Krai" [Electronic resource]. – Access mode: www.izbirkom.primorsky.ru/elections/show.php?id=558, (Access date 04.07.2014).

The number of voters who took part in the elections: absolute - 84208, in percentage - 18.63%.

In accordance with Part 8 of Article 78 of the Electoral Code of the Primorsky Territory [4] Igor Sergeyevich Pushkarev, who received the largest number of votes of the voters who participated in the voting, was recognized as the elected head of the city of Vladivostok

Let us point out the mistakes of the Vladivostok city municipal election commission. The absolute number of voters who took part in the elections is equal to 82.900 people $\sum_{i=1}^{k=9} n_i = 82900$. Further, the

relative number, as is evident from table 1, is equal to 98.52% in total, and not 100%. If we enter this data into the multinomial calculator¹, it will refuse to process it, demanding to bring it to 100% (Figure 2).

ERROR: The sum of equal to 1.0797. The			
Number of	foutcomes 9		
Outcome	Probability	Frequency	
1	0.018	1511	
2	0.105	884	
3	0.1034	8704	
4	0.0263	2213	
5	0.0045	379	
6	0.5945	50025	
7	0.0095	796	
8	0.189	15905	
9	0.0295	2483	

Fig2. The multinomial calculator window

Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (For Example, Municipal Elections). Using MATLAB

But having corrected the mistakes of the commission, we cannot use the calculator. A manual solution will require a huge investment of time and effort.

It's a pity, but we come across limitations first, Microsoft Office Excel 2010, when using the "FACTORY" function, but large numbers, for example, the factorial of the number 171 program no longer masters, numerous factorials calculators can help (Figure 4). Note that this is a high power calculator; but it also has a limit, factorial 40,000 is its ceiling. Secondly, raising a fractional number to a power with a very high index in theory does not give 0, but in practice the program shows 0, that is, it is not able to show a very small fraction. And we should divide each number into 10, 100, 1000, etc. But since factorial is defined only for non-negative integers, we have to pay for this with a significant rounding error

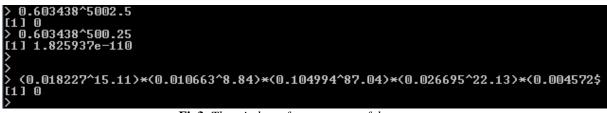


Fig3. The window of a more powerful program

As proof of the above in Figure 3 with a touchstone, we raised the probability of Pushkarev's victory to the level of 0.603438 (50025/10). The second line of Figure 3 showed 0 – this path is closed. By raising to the same degree (50025/100) we received a small number 1.825937e-110, and this is a good shot! But the complete solution of our example again gave 0. It is necessary to divide by 1000. In this division, the votes for Andreichenko, Monastyryova and Yurtaev equaled (2 each), for Vasilyev and Ulyanov 1 each, and for Protchenko – 0 votes.

Введите целое число	N= 8290	(N≤40000)	
	Отправить		
3290!=7.4847077E+2	8886=		
-74847077755859990	832085955728	83928854272	18970167958021649544299858183493292443
171660049170250172	851606774698	46642385415	49446665042349742723752522041614337505
388520655298323492	036214825088	45876855811	282012749091568080078478485001430379615
40040268287406822	170165078338	84182485111	151538816145790053122049237974054235496
03109157326315248	362824114242	76418633805	351193820701076184073720184538470228390
82792855118058281	613348826334	90367353859	14272372739001820229714819172810701747
97803098131431374	045288556427	60975514459	70032916902625451595831656275615314894
355975805115485675	262451161517	41666427895	47902785146239285211868960618210541757
98429411419382193	134381485037	37029478972	98599939019999946564671542258721547269
26017446708143327	038079863043	71664170000	57360256354001986615638874082103938771
592269991561714023	484830693431	27090810838	53518359954440045764725580835514433025
40568379496629460	412944630944	58919987921	99583449748798498097216149785844111532
98174651376384854	749828555693	41605583155	47739475698113915665274693677270501629
37572877233284954	663537234783	46632781515	15410165110857943944260894335980059704
16313954230042441	983750617205	15202590458	65982851174204207824354084373487581614
83742199744508236	879605800769	23700830525	36024980502095501155859800854274621496
			06604724203850900839961351718337332647
			45816068546565507817672410174131468641
			16240430674544626837963621741704028930
94041688254174587	874239099329	72396126240	29561823329182140417195146536701429281
			86369711834627508348186196407285203288
			53336340009272734695767728482343571180
			06848305172193568805112300117604115318
			82477939096504973481955304737660750645
			62041429529067959487146528240061347344
			84081534646067496700657843695301121802
			53801369432328616371202559268709673853
			06558381276462261456831568679020756106
			93608301153883304473926686609271607816
			71492980085008638803597270834995888897

Fig4. Factors calculator window ($\frac{general \ population}{10}$)

That is why the author has compiled a solution program in MATLAB, which shows a solution that, although approximate, but with a significantly higher degree of hitting, does not harm the rights of candidates who have received modest support.

Matfile in MATLAB:

a=[sqrt(2*pi) 82900 exp(1);

sqrt(2*pi) 1511 exp(1);

sqrt(2*pi) 884 exp(1);

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (For Example, Municipal Elections). Using MATLAB

sqrt(2*pi) 8704 exp(1);

sqrt(2*pi) 2213 exp(1);

sqrt(2*pi) 379 exp(1);

sqrt(2*pi) 50025 exp(1);

sqrt(2*pi) 796 exp(1);

sqrt(2*pi) 15905 exp(1);

sqrt(2*pi) 2483 exp(1)];

log10(a)

b=[1 0.5+82900 82900;

1 0.5+1511 1511;

1 0.5+884 884;

1 0.5+8704 8704;

1 0.5+2213 2213;

1 0.5+379 379;

1 0.5+50025 50025;

1 0.5+796 796;

1 0.5+15905 15905;

1 0.5+2483 2483];

b.*log10(a)

u = b.*log10(a)

c=[1511; 884; 8704; 2213; 379; 50025; 796; 15905; 2483]; d=[0.018226779; 0.01066345; 0.104993969; 0.026694813; 0.004571773; 0.603437877; 0.00960193; 0.19185766; 0.029951749]; log10(d)

c.*log10(d)

w=c.*log10(d)

```
q=w(1,1)+w(2,1)+w(3,1)+w(4,1)+w(5,1)+w(6,1)+w(7,1)+w(8,1)+w(9,1)
```

```
 \begin{array}{l} p=u(1,1)+u(1,2)-u(1,3)-((u(2,1)+u(2,2)-u(2,3))+(u(3,1)+u(3,2)-u(3,3))+(u(4,1)+u(4,2)-u(4,3))+(u(5,1)+u(5,2)-u(5,3))+(u(6,1)+u(6,2)-u(6,3))+(u(7,1)+u(7,2)-u(7,3))+(u(8,1)+u(8,2)-u(8,3))+(u(9,1)+u(9,2)-u(9,3))+(u(10,1)+u(10,2)-u(10,3)))+q \end{array}
```

10^p

ans = 0.3991 4.9186 0.4343 0.3991 3.1793 0.4343 0.3991 2.9465 0.4343 0.3991 3.9397 0.4343 0.3991 3.3450 0.4343 0.3991 2.5786 0.4343 0.3991 4.6992 0.4343 0.3991 2.9009 0.4343 Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (For Example, Municipal Elections). Using MATLAB

0.3991	4.2015	0.4343				
0.3991	3.3950	0.4343				
ans $= 1$.	0e+05 *					
0.0000	4.0775	0.3600				
0.0000	0.0481	0.0066				
0.0000	0.0261	0.0038				
0.0000	0.3429	0.0378				
0.0000	0.0740	0.0096				
0.0000	0.0098	0.0016				
0.0000	2.3508	0.2173				
0.0000	0.0231	0.0035				
0.0000	0.6683	0.0691				
0.0000	0.0843	0.0108				
u = 1.0e	+05 *					
0.0000	4.0775	0.3600				
0.0000	0.0481	0.0066				
0.0000	0.0261	0.0038				
0.0000	0.3429	0.0378				
0.0000	0.0740	0.0096				
0.0000	0.0098	0.0016				
0.0000	2.3508	0.2173				
0.0000	0.0231	0.0035				
0.0000	0.6683	0.0691				
0.0000	0.0843	0.0108				
ans = -1	.7393; -1.	9721; -0.9788; -1.5736; -2.3399; -0.2194; -2.0176; -0.7170;				
-1.5236						
ans $= 1$.	0e+04 *					
	; -0.1743;	-0.8520; -0.3482; -0.0887; -1.0974; -0.1606; -1.1404;				
-0.3783 w = 1.00	~ 04 *					
		-0.8520; -0.3482; -0.0887; -1.0974; -0.1606; -1.1404;				
-0.3783	, ,					
q = -4.5	027e+04					
p = -16.						
ans = 4.7176e-17 So, the probability						
$P_{1511AND}$	REICHENKO.	. 884VASILYEV .8704VELGODSKY .2213 MONASTYRYO V .379 PROTCHENCO .50025 PUSHCARUOV .796ULYANOV .				

 $P_{1511 \text{ ANDREICHENKO}, 884 \text{ VASILYEV}, 8704 \text{ VELGODSKY}, 2213 \text{ MONASTYRYOV}, 379 \text{ PROTCHENCO}, 50025 \text{ PUSHCARUOV}, 796 \text{ ULYANOV}, = 15905 \text{ CHEREPKOV}, 2483 \text{ YURTAEV}$

$$=4.7176\times10^{17}$$
.

To solve the example of Dr. Sachs, the matfile looks like this:

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (For Example, Municipal Elections). Using MATLAB

```
a=[sqrt(2*pi) 10 exp(1);
sqrt(2*pi) 8 exp(1);
sqrt(2*pi) 1 exp(1);
sqrt(2*pi) 1 exp(1)];
\log 10(a)
b=[1 0.5+10 10;
10.5+88;
10.5+11;
1 0.5 + 1 1];
b.*log10(a)
u = b.*log10(a)
c=[8; 1; 1]; d=[1/3; 1/3; 1/3]; log10(d)
c.*log10(d)
w=c.*log10(d)
q=w(1,1)+w(2,1)+w(3,1)
p=u(1,1)+u(1,2)-u(1,3)-((u(2,1)+u(2,2)-u(2,3))+(u(3,1)+u(3,2)-u(3,3))+(u(4,1)+u(4,2)-u(4,3)))+q
10^p
ans =
0.3991
       1.0000 0.4343
0.3991 0.9031 0.4343
0.3991
           0 0.4343
0.3991
           0 0.4343
ans =
0.3991 10.5000 4.3429
0.3991
       7.6763 3.4744
0.3991
           0 0.4343
0.3991
           0 0.4343
u =
0.3991 10.5000 4.3429
0.3991
                  3.4744
       7.6763
0.3991
           0
                  0.4343
0.3991
           0 0.4343
ans = -0.4771 -0.4771 -0.4771
ans = -3.8170 -0.4771 -0.4771
w = -3.8170 -0.4771 -0.4771
q = -4.7712
p = -2.7457
ans = 0.0018
So, the probability P_{8A, 1B, 1C} = 0.0018.
```

2. CONCLUSION

In conclusion, it should be noted that we did the calculation, looking ahead. Prior to the elections, the probabilities are calculated on the basis of sociological surveys or by a vote of a commission of experts. In this case, calculations are not carried out with the general population, and your task should be easier.

Of course, the multinomial distribution is also suitable for presidential elections. The election of candidates – is not the only field of application of the multinomial distribution. Instead of applicants, defense issues, satellite launches, manufacturing, trade data, services, emergency situations and much more can be explored.

Thus, having studied the application of the multinomial distribution in municipal elections, the author came to the following conclusions:

- Dr. Sachs, ahead of his time, suggested using a multinomial distribution when electing candidates, but using his formula (2) is expensive;
- Dr. Sachs used the equally probable multinomial model, as if the sympathies of the voters are distributed as when throwing a flawless three -, four -, five -, six and so on. an outside dice;
- Dividing each number of voters by 10, 100, 1000, etc., to simplify the calculations, requires us to pay an accuracy of the total data in relation to candidates "non-heavyweight". In this case, two pairs of candidates artificially received an equal number of votes, and one remained without votes. For the election headquarters of these persons, this is unacceptable;

Using the matfile for MATLAB, proposed by the author of this article, allows you to perform calculations on many objects. But this also gives an error, the size of which you, the reader, can compare by comparing the solution of Dr. Sachs example in Figure 1, equal to 0.00152 with the solution of the same example in MATLAB, where the answer was 0.0018.

REFERENCES

- [1] Sachs, L. Statistical evaluation, transl. from germ. / L. Sachs Moscow: Statistics, 1976. 598 p.
- [2] Numbers Empire [Electronic resource]. Access mode: www.ru. Numbere pire.com/fctorialcalculato r.php, (Access date 04.07.2014).
- [3] Election Commission of the Primorsky Territory [Electronic resource]. Access mode: www.izbirkom. primorsky.ru/elections/show.php?id=558, (Access date 10.12.2018).
- [4] Electoral Code of Primorye Territory of July 22, 2003 № 62 [Electronic resource]. Access mode: http://www.primorsk.izbirkom.ru/zakonodatelstvo-o-vyborakh-i-referendumakh/, (Access date 10.10. 2018).

Citation: Taenvat, M. (2018). Overcoming Computational Difficulties in the Multinomial (Polynomial) Distribution with an Increased Number of Events (for Example, Municipal Elections). Using MATLAB. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 6(9), pp.1-8. http://dx.doi.org/10.20431/2347-3142.0609001

Copyright: © 2018 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.