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1. INTRODUCTION 

In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two 

functions f and g, providing a third function that is typically viewed as a modified version of one of 

the original functions, giving the area overlap between the two functions as a function of the amount 

that one of the original functions translated. Convolution is similar to cross-correlation. It has 

applications that include probability, statistics, computer vision, natural language processing, image 

and signal processing electrical engineering and differentials equations. Generalizations of 

convolution have applications in field of numerical analysis, numerical linear algebra and in the 

design and implementation of finite implse response filters in signal processing. 

The integral transforms plays an important role in signal processing. Fourier analysis is one of the 

frequently used tools in signal processing and many other scientific disciplines. The Stieltjes 

transform has been widely used in applied mathematics. Here we discuss the properties of convolution 

and convolution theorem for Fourier-Stieltjes transform which is very applicable. The convential 

Fourier-Stieltjes transform of complex valued smooth function f(t,x) is defined by the convergent 

integral. 

F(s, y) = FS {f(t, x)} = dtdxyxextf pist 
 

   )(),(
0 0

 

2. DEFINITIONS 

2.1. The function Space:The Space FSα 

A function f defined on 0 < t < ∞, 0 < x < ∞ is said to be member of FSα if ϕ (t, x) is smooth for each 

non-negative integer l, q. 
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Where the constant A and C l q depend on the testing function ϕ. 

The space FSα areequiparallel with their natural Housdoff locally topology τα. This topology is 

respectively generated by the total families of semi norms {γk, p, l, q} given by (2.1). 

2.2.Distributional Fourier-Stieltjes transform of generalized function in 
*

FS  

Let 
*

FS  is the dual space FS α. This space 
*

FS consists of continuous linear function on FS α.  

Let
*),(  FSxt   , for some s >0 and k > Re p, then distributional Fourier-Stieltjes Transform F(s, y) 

of   

                                 FS {f (t, x)} = F(s, y) =   𝑓 𝑡, 𝑥 , 𝑒−𝑖𝑠𝑡 (𝑥 + 𝑦)−𝑝                         (2.2.1) 

Where for each fixed t (0 < t < ∞), x (0 < x < ∞) the right side of above equation has same as an 

application of  
*),( FSxtf  to 𝑒−𝑖𝑠𝑡 (𝑥 + 𝑦)−𝑝 ∈ 𝐹𝑆𝛼 . 

 2. 3.   Fourier-Stieltjes Type Convolution: 

Fourier-Stieltjes type convolution is an operation that assigns to each arbitrary pair 
 FSf and

 FSg , the Fourier-Stieltjes type convolution
 FSgf  defined by 

),(),,(),,(, yxstysgxtfgf   , where  FS                                              (2.3.1) 

3. MAIN RESULTS 

3.1. Theorem: 

If 
 FSxtf ),( and  FSxt ),( then    is a continuous linear mapping of  FSFS  , 

where ),(),,(),( yxstxtfys                                                                  (3.1.1) 

Proof: By induction method we can show that 
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Where r1 and r2 are non-negative integers depending on f. 
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Thus  FS  continuity follows from (3.1.2) and hence theorem.□ 

Properties of Fourier-Stieltjes Type Convolution 

3.2. Theorem: 

If 
 FSxtf ),( and )(IDg  then gfg    is continuous linear map from D+ into E+, where

),(),,(),)(( xytsgxtfysgf  .sagggd 

Proof: It is easy to prove that )gf  is smooth and the mapping is linear. 
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For its continuity, 
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Since )(IDg   , continuity follows from above inequality. We call 

),(),,(),)(( xytsgxtfysgf  as Fourier-Stieltjes type regularization.□ 

3.3. Theorem: 

Convolution operation in (3.2) commutes with shifting scaling operator S i.e. ))(()( gSfgfS   

Proof: Consider 

),(,),(),( yxstgfxtgfS    

),(,, xytsgf                                                                    (3.3.1) 

Now ),(),(,),(),( yxstgSfxtgSf    

),(,, xytsgf       (3.3.1) 

Therefore from (3.3.1) and (3.3.2), we write 

))(()( gSfgfS   

3.4. Theorem: 



 Df and ),,()},{( ysfvuFS  and fy  and


 Dg , ),()},({ ysGxtgFS  , s and y g

and gf  is not empty, then gf  exists in the sense of FS-type convolution in 


FS  where the 

strip of definition is the intersection of gf   with real axis. Moreover 

)().()( gFSfFSgfFS   

Proof: Using theorem (3.3) it can be easily shown that 
 FSgf  . 

Further as FSyxeysxtK pist   )(),,,( for each fixed s and y 

pist yxegfgfFS   )(,)(  
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Hence the theorem. 

4. CONCLUSIONS 

This paper is concerned with the generalization of Fourier-Stieltjes transform in the distributional 

sense. In this paper the Fourier-Stieltjes type convolution and its properties are proved. 
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