Fuzzy ideal of Partially Ordered Near-Ring

T. Nagaiah¹, L. Bhaskar²

1. Department of Mathematics, University Arts & Science College, Kakatiya University, Warangal, India
2. Department of Mathematics, Kakatiya University, Warangal, India.

*Corresponding Author: T. Nagaiah, Department of Mathematics, University Arts & Science College, Kakatiya University, Warangal, India

Abstract: In this paper we introduce the notion of fuzzy ideal of a partially ordered near-ring (PON), T-fuzzy ideal of PON, normal T-fuzzy ideal of PON and fuzzy magnified translation. Also we study the characterizations partially ordered near-rings.

Keywords: Fuzzy ideal of PON, T-fuzzy ideal of PON, normal T-fuzzy ideal of PON and f-invariant.

1. INTRODUCTION

2. PRELIMINARIES

For the sake of continuity we recall the following definitions.

Definition 1. A non-empty set N with two binary operations “+” and “·” is called a near-ring if

(i) \((N, +)\) is a group (not necessarily abelian)
(ii) \((N, \cdot)\) is a semi group
(iii) \(x \cdot (y + z) = x \cdot y + x \cdot z\) for all \(x, y, z \in N\).

We will use the word “near-ring” to mean “left near-ring”.

Definition 2[4]. A t-norm is a function \(T: [0, 1] \times [0, 1] \rightarrow [0, 1]\) that satisfies the following condition for all \(x, y, z \in [0, 1]\)

(i) \(T(x, 1) = x\)
(ii) \(T(x, y) = T(y, x)\) (commutativity)
(iii) \(T(x, T(y, z)) = T(T(x, y), z)\) (associativity)
(iv) \(T(x, y) \leq T(x, z)\) whenever \(y \leq z\) (monotonicity).

Note that a t-norm \(T(0, 0) = 0\), \(T(1, 1) = 1\) and \(T(x, y) \leq \min(x, y)\).
Fuzzy ideal of Partially Ordered Near-Ring

Definition 3 [10]. Let N be a near-ring. A near-ring N is called a PON if

(i) $a \leq b$ then $a + g \leq b + g \quad \forall a, b, g \in N$

(ii) $a \leq b$ and $c \geq 0$ then $ac \leq bc$ and $ca \leq cb \quad \forall a, b, c \in N$.

Definition 4 [8]. Let μ be a fuzzy subset of X and $a \in \{0, 1 - \sup \{\mu(x)/x \in X\}\}$, $b \in [0, 1]$. The mappings

$\mu^a : X \to [0, 1]$, $\mu^b : X \to [0, 1]$ and $\mu^a \cdot b : X \to [0, 1]$ are called fuzzy translation, fuzzy multiplication and fuzzy magnified translation of μ respectively for all $x \in X$ respectively.

3. Fuzzy ideals of partially ordered near-rings

Definition 5. Let N be a PON. A fuzzy subset μ of N is said to be a fuzzy sub near-ring of N if

(i) $\mu(x - y) \geq \min \{\mu(x), \mu(y)\}$

(ii) $\mu (x y) \geq \min \{\mu(x), \mu(y)\}$

(iii) $x \leq y \Rightarrow \mu(x) \geq \mu(y)$ for all $x, y \in N$

Definition 6. Let μ be a non-empty fuzzy subset of a PON N. Then μ is called a fuzzy ideal of N if

(i) $\mu(x - y) \geq \min \{\mu(x), \mu(y)\}$

(ii) $\mu(xy) \geq \mu(y)$

(iii) $\mu(x + z)y - xy) \geq \mu(z)$

(iv) $x \leq y \Rightarrow \mu(x) \geq \mu(y)$ for all $x, y \in N$

Note that μ is fuzzy left ideal of N if it satisfies (i), (ii) and (iv) and μ is fuzzy right ideal of N if it satisfies (i), (iii) and (iv).

Definition 7. A fuzzy subset μ of PON N is called T-fuzzy right (resp. left) ideal if

(i) $\mu(x - y) \geq T(\mu(x), \mu(y))$

(ii)$\mu ((x + z)y - x y) \geq \mu (z) (\mu(x y) \geq \mu(y))$

(iii) $x \leq y \Rightarrow \mu(x) \geq \mu(y)$ for all $x, y, z \in N$.

If μ is a T-fuzzy left ideal and T-fuzzy right ideal of a PON then μ is called a T-fuzzy ideal of N.

Theorem 1: If $\{\mu_i : i \in I\}$ is a family of T-fuzzy ideal of PON N, then $V_{i \in I} \mu_i$ is also a T-fuzzy ideal of N where $V_{i \in I} \mu_i$ is defined by $\left(\bigcup_{i \in I} \mu_i\right)(x) = \sup \{\mu_i(x) : i \in I\}$ for all $x \in N$.

Proof. Let $\{\mu_i : i \in I\}$ be a family of T-fuzzy ideal of a PON N. For any $x, y, z \in N$ then

(i) $\left(\bigcup_{i \in I} \mu_i\right)(x - y) = \sup \{\mu_i(x - y) : i \in I\}$

$\geq \sup \{T(\mu_i(x), \mu_i(y)) : i \in I\}$

$= T\{\sup \mu_i(x) : i \in I, \sup \mu_i(y) : i \in I\}$

$= T\left(\bigcup_{i \in I} \mu_i\right)(x), \left(\bigcup_{i \in I} \mu_i\right)(y)$
Fuzzy ideal of Partially Ordered Near-Ring

(ii) \((V_{i\ell} \mu_i)(xy) = \sup \{ \mu_i(xy^i) : i \in I \} \)
\[\geq \sup \{ \mu_i(y) : i \in I \} \]
\[= (V_{i\ell} \mu_i)(y) \quad \text{and} \]
\((V_{i\ell} \mu_i)((x + z)y - xy) = \sup \{ \mu_i((x + z)y - xy) : i \in I \} \)
\[\geq \sup \{ \mu_i(z) : i \in I \} \]
\[= (V_{i\ell} \mu_i)(z) \]

(iii) \(x \leq y \Rightarrow (V_{i\ell} \mu_i)(x) = \sup \{ \mu_i(x) : i \in I \} \)
\[\geq \sup \{ \mu_i(y) : i \in I \} \]
\[= V_{i\ell} \mu_i(y) \]

Hence \(V_{i\ell} \mu_i \) is a T-fuzzy ideal of \(N \).

Theorem (2): An epimorphic pre-image of a T-fuzzy ideal of a PON \(N \) is a T-fuzzy ideal.

Proof. Let \(R \) and \(S \) be T-fuzzy ideals of a PON \(N \). Let \(f : R \rightarrow S \) be an epimorphism. Let \(v \) be a T-fuzzy ideal of \(S \) and \(\mu \) be the pre-image of \(v \) under \(f \). Then for any \(x, y, z \in R \), we have

(i) \(\mu(x - y) = (v \circ f)(x - y) \)
\[\geq v(f(x - y)) = v(f(x) - f(y)) \]
\[\geq T(v(f(x)), v(f(y))) \]
\[= T((v \circ f)(x), (v \circ f)(y)) \]
\[= T(\mu(x), \mu(y)) \]

(ii) \(\mu(xy) = (v \circ f)(xy) \)
\[\geq v(f(xy)) = v(f(x)f(y)) \]
\[\geq \mu(f(y)) \]
\[= (v \circ f)(y) \]
\[= \mu(y) \quad \text{and} \]
\(\mu((x + z)y - xy) = (v \circ f)((x + z)y - xy) \)
\[= v(f((x + z)y - xy)) \]
\[= v(f(yz)) \]
\[= v(f(x)f(z)) \]
\[\geq v(f(z)) \]
\[= (v \circ f)(z) \]
\[= \mu(z). \]

(iii) \(x \leq y. Then \mu(x) = (v \circ f)(x) \)
\[= v(f(x)) \]
\[= v(f(y)) \]
\[= (v \circ f)(y) \]
\[= \mu(y). \]
Hence μ is a T-fuzzy ideal of a PON N.

Theorem (3): Let μ be a T-fuzzy ideal of PON N and μ^* be a fuzzy set in N defined by $\mu^*(x) = \frac{\mu(x)}{\mu(1)}$

for all $x \in N$. Then μ^* is normal T-fuzzy ideal of N containing μ.

Proof. Let μ be a T-fuzzy ideal of a PON N. For any $x, y, z \in N$, then

(i) $\mu^*(x - y) = \frac{\mu(x - y)}{\mu(1)}$

$\geq \frac{1}{\mu(1)} T((\mu(x), (\mu(y)))$

$= T\left(\frac{1}{\mu(1)} \mu(x), \frac{1}{\mu(1)} \mu(y)\right)$

$= T\left(\mu^*(x), \mu^*(y)\right)$.

(ii) $\mu^*(xy) = \frac{\mu(xy)}{\mu(1)}$

$\geq \frac{1}{\mu(1)} (\mu(y))$

$= \mu^*(y)$ and

$\mu^*((x + z)y - xy) = \frac{\mu((x + z)y - xy)}{\mu(1)}$

$\geq \frac{1}{\mu(1)} (\mu(z))$

$= \mu^*(z)$.

(iii) $x \leq y \Rightarrow \mu^*(x) = \frac{\mu(x)}{\mu(1)}$

$\geq \frac{\mu(y)}{\mu(1)}$

$= \mu^*(y)$.

Hence μ^* is a T-fuzzy ideal of N. Clearly $\mu^*(1) = \frac{1}{\mu(1)} \mu(1) = 1$ and $\mu \subseteq \mu^*$.

Lemma (1): Let R and S be a PON’S and $f : R \rightarrow S$ is a homomorphism. Let μ be f-invariant fuzzy ideal of R. If $x = f(a)$, then $f(\mu)(x) = \mu(a)$ for all $a \in R$.

Theorem (4): Let $f : R \rightarrow S$ be an epimorphism of a PON’S R and S. If μ is f-invariant T-fuzzy ideal of R, then $f(\mu)$ is a T-fuzzy ideal of S.

Proof. Let $a, b, c \in S$. Then there exist $x, y, z \in R$ such that $f(x) = a, f(y) = b$ and $f(z) = c$. Suppose μ is f-invariant T-fuzzy ideal of R. Then we have
Fuzzy ideal of Partially Ordered Near-Ring

(i) \(f(\mu)(a-b) = f(\mu)(f(x) - f(y)) \)
 \[= f(\mu)f(x - y) \]
 \[= \mu(x - y) \]
 \[\geq T(\mu(x), \mu(y)) \]
 \[= T(f(\mu)(a), f(\mu)(b)). \]

(ii) \(f(\mu)(ab) = f(\mu)(f(x)f(y)) \)
 \[= f(\mu)f(xy) \]
 \[= \mu(xy) \]
 \[\geq \mu(x) \]
 \[= f(\mu)(b) \quad \text{and} \]

\[f(\mu)((a+b)c-ab)) = f(\mu)(f(x+y)z - f(xy)) \]
\[= f(\mu)(f(x) + f(y))f(z) - f(x)f(y)) \]
\[= f(\mu)(f(x+y)f(z) - f(x)f(y)) \]
\[= \mu((x+y)z - xy) \]
\[\geq \mu(z) \]
\[= f(\mu)(c) \]

(iii) Let \(a \leq b \Rightarrow f(\mu)(a) \)
 \[= f(\mu)(f(x)) \]
 \[= \mu(x) \]
 \[\geq \mu(y) \]
 \[= f(\mu)(b). \]

Hence \(f(\mu) \) is a T-fuzzy ideal of \(S \).

Theorem (5): Let \(\mu \) be a T-fuzzy left ideal of PON \(N \) and \(\mu^*(x) = \mu(x) + 1 - \mu(0) \) for all \(x \in N \). Then \(\mu^* \) is a normal T-fuzzy left ideal of \(N \) containing \(\mu \), provided t-norm holds for combined translation.

Proof: Let \(\mu \) be a T-fuzzy left ideal of PON \(N \). We have \(\mu^*(x) = \mu(x) + 1 - \mu(0) \) for all \(x \in N \). Put \(1 - \mu(0) = a \) then \(\mu^*(x) = \mu(x) + a \) and hence \(\mu^*(x) = \mu^T \). \(\mu^* \) is a T-fuzzy left ideal of \(N \). By definition of \(\mu^* \), \(\mu \leq \mu^* \) and \(\mu^*(0) = \mu(0) + 1 - \mu(0) \) and hence \(\mu^*(0) = 1 \). Therefore \(\mu^* \) is a normal T-fuzzy left ideal of \(N \).

Theorem (6): Let \(\psi \) be an imaginable fuzzy subset of partially ordered near-ring \(N \). Then \(\psi \) is a T-fuzzy left ideal of a partially ordered near-ring \(N \) if and only if the strongest fuzzy relation \(\mu_\psi \) on \(N \) is an imaginable T-fuzzy left ideal of partially ordered near-ring \(N \times N \).

Proof: Suppose that \(\psi \) is an imaginable T-fuzzy left ideal of PON \(N \) then obviously \(\mu_\psi \) is a T-fuzzy left ideal of a PON \(N \times N \), for any \((x_1, x_2), (y_1, y_2) \in N \times N \). Then
Fuzzy ideal of Partially Ordered Near-Ring

\[\mu_{\psi}(x_1, x_2) = T(\psi(x_1), \psi(x_2)) \geq T(T(\psi(x_1-x_1), \psi(y_1)), T(T(\psi(x_2-x_2), \psi(y_2))) \]

\[= T(\mu_{\psi}(x_1-y_1, x_2-y_2), \mu_{\psi}(y_1-y_2)) \]

\[T(\mu_{\psi}(x_1, x_2), \mu_{\psi}(x_1, x_2)) = T(T(\psi(x_1), \psi(x_1), T(\psi(x_1), \psi(x_2))) \]

\[= T(T(\psi(x_1), \psi(x_1), T(\psi(x_2), \psi(x_2))) = T(\psi(x_1), \psi(x_2)) = \mu_{\psi}(x_1, x_2) \]

Suppose \((x_1, x_2), (y_1, y_2) \in N \times N \) and \((x_1, x_2) \leq (y_1, y_2)\) then \(x_1 \leq y_1\) and \(x_2 \leq y_2\). Therefore \(T(\psi(x_1), \psi(x_2)) \geq T(\psi(y_1), \psi(y_2))\). Hence \(\mu_{\psi}(x_1, x_2) \geq \mu_{\psi}(y_1, y_2)\). Thus \(\mu_{\psi}\) is an imaginable T-fuzzy left ideal of a partial ordered near-ring. Let \(x, y \in N\). Then

(i) \(\psi(x - y) = T(\psi(x - y), \psi(x - y)) = \mu_{\psi}(x - y, x - y) = \mu_{\psi}((x, x) - (y, y)) \geq T(\mu_{\psi}(x, x), (y, y)) = T(T(\psi(x), \psi(x)), T(\psi(y), \psi(y))) = T(\mu_{\psi}(x, x), \mu_{\psi}(y, y)) = T(T(\mu_{\psi}(x, x), \mu_{\psi}(x, y))) = T(\psi(x), \psi(y)) \)

(ii) \(\psi(xy) = T(\psi(xy), \psi(xy)) = \mu_{\psi}(xy, xy) = \mu_{\psi}((x, x)(y, y)) \geq T(\mu_{\psi}(y, y)) = T(\psi(y), \psi(y)) = \psi(y)\) and \(\psi(x) = T(\psi(x), \psi(x)) = \mu_{\psi}(x) \geq T(\mu_{\psi}(x - y, x - y), \mu_{\psi}(y, y)) = T(T(\psi(x - y), \psi(x - y)), T(\psi(y), \psi(y))) = T(\psi(x - y), \psi(y)) \)

(iii) Let \(x, y \in N\) and \(x \leq y\). then \((x, x) \leq (y, y)\)

\[\mu_{\psi}(x, x) \geq \mu_{\psi}(y, y) \]

\[T(\psi(x), \psi(x)) \geq T(\psi(y), \psi(y)) \]

Hence \(\psi\) is a T-fuzzy left ideal of a PON N.

REFERENCES

AUTHORS’ BIOGRAPHY

Dr. T. Nagaiah received his B. Sc degree from Osmania University, Telangana. He completed his M. Sc and Ph. D from Kakatiya University, Telangana, India. Also he qualified AP SET in 2012. He has published many research papers in national and international journals and completed UGC minor research project. He is life member of Andhra Pradesh and Telangana Society for Mathematical Science. His research area of interest near-rings, fuzzy near-rings and fuzzy semi groups.

L. Bhaskar received his B.Sc and M. Sc degree from Kakatiya University. He is doing the Ph. D in Mathematics at Kakatiya University, Telangana, India. He has presented four papers in national and international conferences and he is life member of Andhra Pradesh and Telangana Society for Mathematical Science.

Copyright: © 2017 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.