\textbf{Γ-Semigroups in which Primary Γ- Ideals are Prime and Maximal}

S. Savithri1, A. Gangadhara Rao2, L. Achala3, J. M. Pradeep4

\textit{Dept. of Mathematics,}
1YA Govt. Degree College for Women, Chirala, India
2V S R and N V R College, Tenali;3JKC College, Guntur;4AC College, Guntur, India

*Corresponding Author: Suragani Savithri, Lecturer in Mathematics, YAGovt. Degree College for Women, Chirala-523157, Prakasam District, India

Abstract: In this paper, the terms, Maximal Γ- ideal, Primary Γ-semigroup, prime Γ-ideal and simple Γ-semigroup are introduced. It is proved that if \(S \) is a Γ-semigroup containing 0 and identity with the maximal Γ-ideal \(M \). Then every non zero primary Γ-ideal is prime as well as maximal if and only if \(S \backslash M \) is a 0-simple Γ-semigroup with either 1) \(M = (S \backslash M) \Gamma a^{-1} (S \backslash M) \cup \{0\}, a \in M \) and \(\langle a \rangle \cap \langle a \rangle = 0 \) or 2) \(M \) is a 0-simple Γ-semigroup. Also it is proved that if \(S \) is a duo Γ-semigroup containing 0 and identity with the maximal Γ-ideal \(M \). Then every non zero primary Γ-ideal is prime as well as maximal if and only if \(S \backslash M \) is one of the following types 1) \(S = G \cup M \) where \(G \) is the Γ-group of units and \(M = \{a \in G : a \gamma = 0, a \in M, \gamma \in \Gamma \} \cup \{0\} \). 2) \(S \) is the union of two Γ-semigroups with 0-adjoined. Also it is proved that if \(S \) is a commutative Γ-semigroup with 0 and identity and with the maximal Γ-ideal \(M \). Suppose that every non zero primary Γ-ideal is prime or every nonzero Γ-ideal is prime. Then \(S \) satisfies one of the following conditions 1) \(S = G \cup M \) where \(G \) is the Γ-group of units in \(S \) and \(M = (a \Gamma G) \cup \{0\}, a \in M \) and \(\alpha a = 0 \) 2) \((MI)^n = M \) for every positive integer \(n \). Furthermore if \(S \) has maximum condition on Γ-ideals then for every \(m \in M \), we have \(m \in M \Gamma e, e \) being a proper idempotent and also proved that if \(S \) is a quasi commutative Noetherian Γ-semigroup containing identity. Suppose every primary Γ-ideal in \(S \) is prime. Then the following are equivalent 1) \(S \) is cancellative, 2) \(S \) has no proper Γ-ideomponents. 3) \(S \) is a Γ-group.

Keywords: Γ-semigroup, Maximal Γ-ideal, Primary Γ-semigroup, commutative Γ-semigroup, left (right) identity, identity, Zero element, Prime Γ-ideal simple Γ-semigroup and duo Γ-semigroup.

1. INTRODUCTION

2. PRELIMINARIES

\textbf{DEFINITION 2.1:} Let \(S \) and \(\Gamma \) be any two non-empty sets. Then \(S \) is said to be a \textbf{Γ-semigroup} if there exist a mapping from \(S \times \Gamma \times S \to S \) which maps \((a, \gamma, b) \to a \gamma b \) satisfying the condition : \((ab)c = a(bc) \) for all \(a, b, c \in S \) and \(\alpha, \beta, \gamma \in \Gamma \).

\textbf{NOTE 2.2:} Let \(S \) be a Γ-semigroup. If \(A \) and \(B \) are two subsets of \(S \), we shall denote the set \(\{a \beta b : a \in A , b \in B \text{ and } \gamma \in \Gamma \} \) by \(\gamma \Gamma B \).

\textbf{DEFINITION 2.3:} A Γ-semigroup \(S \) is said to be \textbf{commutative Γ-semigroup} provided \(a \gamma b = b \gamma a \) for all \(a, b \in S \) and \(\gamma \in \Gamma \).

\textbf{NOTE 2.4 :} If \(S \) is a commutative Γ-semigroup then \(a \Gamma b = b \Gamma a \) for all \(a, b \in S \).
NOTE 2.5: Let S be a Γ-semigroup and $a, b \in S$ and $a \in \Gamma$. Then $aaba$ is denoted by $(aa)b$ and consequently $aaaaab$ is denoted by $(aa)^2b$.

DEFINITION 2.6: A Γ-semigroup S is said to be **quasi commutative** provided for each $a, b \in S$, there exists a natural number n such that $aby = (by)^n a \forall y \in \Gamma$.

NOTE 2.7: If a Γ-semigroup S is **quasi commutative** then for each $a, b \in S$, there exists a natural number n such that $a\Gamma b = (b \Gamma)^n a$.

DEFINITION 2.8: An element a of a Γ-semigroup S is said to be a **left identity** of S provided $a\alpha s = s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.9: An element a of a Γ-semigroup S is said to be a **right identity** of S provided $s\alpha a = s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.10: An element a of a Γ-semigroup S is said to be a **two sided identity** or an identity provided it is both a left identity and a right identity of S.

NOTATION 2.11: Let S be a Γ-semigroup. If S has an identity, let $S_1 = S$ and if S does not have an identity, let S_1 be the Γ-semigroup S with identity adjoined, usually denoted by the symbol 1.

DEFINITION 2.12: An element a of a Γ-semigroup S is said to be a **left zero** of S provided $a\Gamma s = a$ for all $s \in S$.

DEFINITION 2.13: An element a of a Γ-semigroup S is said to be a **right zero** of S provided $s\Gamma a = a$ for all $s \in S$.

DEFINITION 2.14: An element a of a Γ-semigroup S is said to be a **zero** of S provided it is both left and right zero of S.

NOTATION 2.15: Let S be a Γ-semigroup. If S has a zero, let $S^0 = S$ and if S does not have a zero, let S^0 be the Γ-semigroup S with **zero adjoined**, usually denoted by the symbol 0.

DEFINITION 2.16: A non empty subset A of a Γ-semigroup S is said to be a **left Γ-ideal** of S if $s \in S, a \in A, \alpha \in \Gamma$ implies $s\alpha a \in A$.

NOTE 2.17: A non empty subset A of a Γ-semigroup S is a **left Γ-ideal** of S iff $S \Gamma A \subseteq A$.

DEFINITION 2.18: A non empty subset A of a Γ-semigroup S is said to be a **right Γ-ideal** of S if $s \in S, a \in A, \alpha \in \Gamma$ implies $a\alpha s \in A$.

NOTE 2.19: A non empty subset A of a Γ-semigroup S is a **right Γ-ideal** of S iff $A\Gamma S \subseteq A$.

DEFINITION 2.20: A non empty subset A of a Γ-semigroup S is said to be a **two sided Γ-ideal** or simply a Γ-ideal of S if $s \in S, a \in A, \alpha \in \Gamma$ imply $s\alpha a \in A, a\alpha s \in A$.

DEFINITION 2.21: A Γ-ideal A of a Γ-semigroup S is said to be a **maximal Γ-ideal** provided A is a proper Γ-ideal of S and is not properly contained in any proper Γ-ideal of S.

DEFINITION 2.22: A Γ-ideal P of a Γ-semigroup S is said to be a **prime Γ-ideal** provided A, B are two Γ-ideals of S and $AB \subseteq P \Rightarrow$ either $A \subseteq P$ or $B \subseteq P$.

DEFINITION 2.23: A Γ-ideal A of a Γ-semigroup S is said to be a **semiprime Γ-ideal** provided $x \in S, x\Gamma S \Gamma x \subseteq A$ implies $x \in A$.

DEFINITION 2.24: If A is a Γ-ideal of a Γ-semigroup S, then the intersection of all prime Γ-ideals of S containing A is called a **prime Γ-radical** or simply **Γ-radical** of A and it is denoted by \sqrt{A} or $\text{rad } A$.

THEOREM 2.25 [5]: If A is a Γ-ideal of a Γ-semigroup S then \sqrt{A} is a semiprime Γ-ideal of S.

THEOREM 2.26 [5]: A Γ-ideal Q of a Γ-semigroup S is a semiprime Γ-ideal of S iff $\sqrt{Q} = Q$ implies $x\Gamma S \Gamma y \subseteq A$.

DEFINITION 2.27: An element a of a Γ-semigroup S is said to be **left cancellative** provided $a \Gamma x = a \Gamma y$ for all $x, y \in S$ implies $x = y$.
\textbf{DEFINITION 2.28:} An element \(a \) of a \(\Gamma \)-semigroup \(S \) is said to be \textit{right cancellative} provided \(x \Gamma a = y \Gamma a \) for all \(x, y \in S \) implies \(x = y \).

\textbf{DEFINITION 2.29:} An element \(a \) of a \(\Gamma \)-semigroup \(S \) is said to be \textit{cancellative} provided it is both left and right cancellative element.

\textbf{DEFINITION 2.30:} A \(\Gamma \)-ideal \(A \) of a \(\Gamma \)-semigroup \(S \) is said to be a \textit{left primary \(\Gamma \)-ideal} provided
1) If \(X, Y \) are two \(\Gamma \)-ideals of \(S \) such that \(X \Gamma Y \subseteq A \) and \(Y \not\subseteq A \) then \(X \not\subseteq \sqrt{A} \).
2) \(\sqrt{A} \) is a prime \(\Gamma \)-ideal of \(S \).

\textbf{DEFINITION 2.31:} A \(\Gamma \)-ideal \(A \) of a \(\Gamma \)-semigroup \(S \) is said to be a \textit{right primary \(\Gamma \)-ideal} provided
1) If \(X, Y \) are two \(\Gamma \)-ideals of \(S \) such that \(X \Gamma Y \subseteq A \) and \(X \not\subseteq \sqrt{A} \) then \(Y \not\subseteq \sqrt{A} \).
2) \(\sqrt{A} \) is a prime \(\Gamma \)-ideal of \(S \).

\textbf{EXAMPLE 2.32:} Let \(S = \{ a, b, c \} \) and \(\Gamma = \{ x, y, z \} \). Define a binary operation \(\cdot \) in \(S \) as shown in the following table.

\[
\begin{array}{ccc}
 \cdot & a & b & c \\
 a & a & b & c \\
 b & a & a & a \\
 c & b & c & c \\
\end{array}
\]

Define a mapping \(S \times \Gamma \times S \to S \) by \(a \cdot \gamma \cdot b = ab \), for all \(a, b \in S \) and \(\gamma \in \Gamma \). It is easy to see that \(S \) is a \(\Gamma \)-semigroup. Now consider the \(\Gamma \)-ideal \(\langle a \rangle = S^1 \Gamma a \Gamma S^1 = \{ a \} \). Let \(p \Gamma q \subseteq \langle a \rangle \), \(p \not\subseteq \langle a \rangle \) \(\Rightarrow q \not\subseteq \sqrt{\langle a \rangle} \Rightarrow (q \Gamma n^{-1} q) \subseteq \langle a \rangle \) for some \(n \in N \). Since \(b \Gamma c \subseteq \langle a \rangle \), \(c \not\subseteq \langle a \rangle \Rightarrow b \subseteq \langle a \rangle \). Therefore \(\langle a \rangle \) is left primary. If \(b \not\subseteq \langle a \rangle \) then \((c \Gamma n^{-1} c) \not\subseteq \langle a \rangle \) for any \(n \in N \Rightarrow c \not\subseteq \sqrt{\langle a \rangle} \). Therefore \(\langle a \rangle \) is not right primary.

\textbf{DEFINITION 2.33:} A \(\Gamma \)-ideal \(A \) of a \(\Gamma \)-semigroup \(S \) is said to be a \textit{primary \(\Gamma \)-ideal} provided \(A \) is both left primary \(\Gamma \)-ideal and right primary \(\Gamma \)-ideal.

\textbf{DEFINITION 2.34:} A \(\Gamma \)-ideal \(A \) of a \(\Gamma \)-semigroup \(S \) is said to be a \textit{principal \(\Gamma \)-ideal} provided \(A \) is a \(\Gamma \)-ideal generated by a single element \(a \). It is denoted by \(J[a] = \langle a \rangle \).

\textbf{DEFINITION 2.35:} An element \(a \) of a \(\Gamma \)-semigroup \(S \) with 1 is said to be \textit{left invertible} or \textit{left unit} provided there is an element \(b \in S \) such that \(b \Gamma a = 1 \).

\textbf{DEFINITION 2.36:} An element \(a \) of a \(\Gamma \)-semigroup \(S \) with 1 is said to be \textit{right invertible} or \textit{right unit} provided there is an element \(b \in S \) such that \(a \Gamma b = 1 \).

\textbf{DEFINITION 2.37:} An element \(a \) of a \(\Gamma \)-semigroup \(S \) is said to be \textit{invertible} or a \textit{Unit} in \(S \) provided it is both left and right invertible element in \(S \).

\textbf{DEFINITION 2.38:} A \(\Gamma \)-semigroup \(S \) is said to be a \textit{simple \(\Gamma \)-semigroup} provided \(S \) has no proper \(\Gamma \)-ideals.

\textbf{DEFINITION 2.39:} An element \(a \) of a \(\Gamma \)-semigroup \(S \) is said to be a \textit{\(\Gamma \)-idempotent} provided \(a \alpha a = a \) for all \(\alpha \in \Gamma \).

\textbf{NOTE 2.40:} If an element \(a \) of a \(\Gamma \)-semigroup \(S \) is a \textit{\(\Gamma \)-idempotent}, then \(a \Gamma a = a \).

\textbf{DEFINITION 2.41:} A \(\Gamma \)-semigroup \(S \) is said to be an \textit{idempotent \(\Gamma \)-semigroup} or a \textit{band} provided every element in \(S \) is a \(\Gamma \)-idempotent.

\textbf{DEFINITION 2.42:} A \(\Gamma \)-semigroup \(S \) is said to be a \textit{globally idempotent \(\Gamma \)-semigroup} provided \(S \Gamma S = S \).

\textbf{DEFINITION 2.43:} A \(\Gamma \)-semigroup \(S \) is said to be a \textit{left duo \(\Gamma \)-semigroup} provided every left \(\Gamma \)-ideal of \(S \) is a two sided \(\Gamma \)-ideal of \(S \).

\textbf{DEFINITION 2.44:} A \(\Gamma \)-semigroup \(S \) is said to be a \textit{right duo \(\Gamma \)-semigroup} provided every right \(\Gamma \)-ideal of \(S \) is a two sided \(\Gamma \)-ideal of \(S \).

\textbf{DEFINITION 2.45:} A \(\Gamma \)-semigroup \(S \) is said to be a \textit{duo \(\Gamma \)-semigroup} provided it is both a left duo \(\Gamma \)-semigroup and a right duo \(\Gamma \)-semigroup.
Primary Γ - Ideals are Prime and Maximal

Definition 2.46: An element \(a \) of a Γ-semigroup \(S \) is said to be **regular** provided \(a = a x b a \) for some \(x \in S, a, b \in \Gamma \). i.e., \(a \in a \Gamma S \Gamma a \).

Definition 2.47: A Γ- semigroup \(S \) is said to be a **regular Γ- semigroup** provided every element is regular.

Definition 2.48: An element \(a \) of a Γ-semigroup \(S \) is said to be **left regular** provided \(a = a a x f x \), for some \(x \in S, a, b \in \Gamma \). i.e., \(a \in a \Gamma a \Gamma S \).

Definition 2.49: An element \(a \) of a Γ- semigroup \(S \) is said to be **right regular** provided \(a = a x a f a \), for some \(x \in S, a, b \in \Gamma \). i.e., \(a \in S \Gamma a \Gamma a \).

Definition 2.50: An element \(a \) of a Γ- semigroup \(S \) is said to be **completely regular** provided there exists an element \(x \in S \) such that \(a = a x x \beta \) for some \(a, \beta \in \Gamma \) and \(a x x = x f a \), for all \(a, \beta \in \Gamma \). i.e., \(a \in a \Gamma x \Gamma a \) and \(a \Gamma x = x \Gamma a \).

Definition 2.51: A Γ-semigroup \(S \) is said to be a **completely regular Γ- Semigroup** provided every element is completely regular.

Definition 2.52: An element \(a \) of a Γ-semigroup \(S \) is said to be **intra regular** provided \(a = a x a f a \gamma y \) for some \(x, y \in S \) and \(a, b, \gamma \in \Gamma \).

Definition 2.53: An element \(a \) of a Γ- semigroup \(S \) is said to be **semisimple** provided \(a \in <a> \Gamma <a> \), that is, \(<a> \Gamma <a> = <a> \).

Definition 2.54: A Γ-semigroup \(S \) is said to be **semisimple Γ- semigroup** provided every element is a semisimple.

Definition 2.55: A Γ-semigroup \(S \) is said to be a **Noetherian Γ- semigroup** provided every ascending chain of Γ-ideals becomes stationary.

Theorem 2.56 [6]: Let \(S \) be a Γ-semigroup with identity and \(M \) be the unique maximal Γ-ideal of \(S \). If \(\forall A = M \) for some Γ-ideal of \(S \). Then \(A \) is a primary Γ-ideal.

Theorem 2.57 [6]: If \(S \) is a duo Γ-semigroup, then the following are equivalent for any element \(a \in S \).
1) \(a \) is completely regular.
2) \(a \) is regular.
3) \(a \) is left regular.
4) \(a \) is right regular.
5) \(a \) is intra regular.
6) \(a \) is semisimple.

Theorem 2.58: Let \(S \) be a Γ- semigroup with identity. If (non zero, assume this if \(S \) has zero) proper prime Γ-ideals in \(S \) are maximal then \(S \) is primary Γ-semigroup.

Proof: Since \(S \) contains identity, \(S \) has a unique maximal Γ- ideal \(M \), which is the union of all proper Γ- ideals in \(S \). If \(A \) is a (non zero) proper Γ-ideal in \(S \) then \(\forall A = M \) and hence by theorem 2.56, \(A \) is primary Γ- ideal. If \(S \) has zero and if \(<0> \) is a prime Γ-ideal, then \(<0> \) is primary and hence \(S \) is primary. If \(<0> \) is not a prime Γ-ideal, then \(\forall <0> = M \) and hence by theorem 2.56, \(<0> \) is a primary Γ- ideal. Therefore \(S \) is a primary Γ- semigroup.

Definition 2.59: A Γ-semigroup \(S \) is said to be a **Γ-group** provided \(S \) has no left and right Γ-ideals.

3. **Primary Γ- Ideals Are Prime and Maximal**

Theorem 3.1: Let \(S \) be a Γ-semigroup containing 0 and identity with the maximal Γ-ideal \(M \). Then every nonzero primary Γ-ideal is prime as well as maximal if and only if \(S \setminus M \) is a 0-simple Γ-semigroup with either
1) \(M = (S \setminus M) \Gamma a (S \setminus M) \cup \{0\}, a \in M \) and \(<a> \Gamma <a> = 0 \)
or
\textbf{THEOREM 3.4:} Let S be a duo Γ-semigroup. Then every nonzero primary Γ-ideal is prime as well as maximal if and only if S is either a simple Γ-semigroup or a 0-simple extension of a simple Γ-semigroup.

\textbf{Proof:} The proof can write by using theorem 3.1.

\textbf{THEOREM 3.5:} Let S be a Γ-semigroup containing identity and not containing 0. Then every primary Γ-ideal is prime as well as maximal if and only if S is either a simple Γ-semigroup or a 0-simple extension of a simple Γ-semigroup.

\textbf{Proof:} The proof can write by using theorem 3.1.
\textbf{THEOREM 3.11:} Let S be a quasi commutative Noetherian Γ-ideal M is a prime Γ-ideal and hence $M \Gamma M$ is a prime Γ-ideal by hypothesis. Thus $M = M \Gamma M$ and hence $M = (M \Gamma)^{n+1} M$ for every natural number n.

\textbf{THEOREM 3.8:} Let S be a Γ-semigroup containing identity and not containing 0 in which primary Γ-ideals are prime. Then S is a 0-simple Γ-semigroup extention of a globally idempotent Γ-semigroup.

\textbf{Proof:} The proof of this theorem is a direct consequence of theorem 3.7.

\textbf{THEOREM 3.10:} Let S be a Γ-semigroup containing 0 and identity with the maximal Γ-ideal M. If every nonzero primary Γ-ideal is prime, then S satisfies either one of the following conditions.

1) $S = G \cup M$ where G is the Γ-group of units in S and $M = a \Gamma G \cup \{0\}, a \in M$ and $a \Gamma a = 0$.

2) $(M \Gamma)^{n+1} M = M$ for every natural number n. Furthermore if S is Noetherian and quasi commutative, then for every $a \in M$, we have $a \in a \Gamma e$, e being proper idempotent in S.

\textbf{Proof:} By theorem 3.7, if every nonzero primary Γ-ideal is prime, then either 1) $S = G \cup M$, where G is the Γ-group of units in S and $M = (a \Gamma G) \cup \{0\}, a \in M$ and $a \Gamma a = 0$, 2) $(M \Gamma)^{n+1} M = M$ for every natural number n. Suppose S is a Noetherian quasi commutative Γ-semigroup with $M \Gamma M = M$. Since $M \Gamma M = M$, every $x \in M$ is of the form $a \Gamma b$ where $a, b \in M$. Suppose there exists a nonzero element $a \in M$ such that a cannot be a product of itself and some element in M, that is, let $a \in b_1 \Gamma a_1$ where $a_1, b_1 \in M$ and $\neq a$. Then $a_1 \neq b_2 \Gamma a_2$ where $b_2, a_2 \in M$ and $\neq a_1$. Since otherwise $a_1 \neq b_1 \Gamma a_2$ and so $a \not\in a_1 \Gamma a_2$, this is a contradiction. Proceeding in this manner, we have $a_2 \neq b_3 \Gamma a_3, \ldots, a_{n+1} \neq b_{n+1} \Gamma a_{n+1}, \ldots$. Thus we obtain a strictly ascending chain of Γ-ideals $<a_1> \subseteq <a_2> \subseteq \ldots$. Since S is Noetherian, this chain terminates and hence we have $a_n \in b_{n+1} \Gamma a_{n+1}$ where $a_{n+1} \in S \Gamma a_n$. This implies $a_n \in b_{n+1} \Gamma e \Gamma a_n$, this is a contradiction. Therefore there does not exist a nonzero $a \in M$ such that a cannot be a product of itself and some element in M. We claim that for every nonzero $a \in M$, $a \in a \Gamma e, e \not\in a \Gamma e \in M$. Let us assume the contrary, that is, suppose that there exists $a \in M$ such that a is not a product of a Γ-idempotent and itself. So $a \in a \Gamma b_1$ where b_1 is not a Γ-idempotent. Clearly $<a> \subseteq <b_1>$. Since otherwise $b_1 \not\in a \Gamma a$ and so $a \neq (a \Gamma a) \Gamma a$ which implies by theorem 2.57, a is regular and hence a is a product of a Γ-idempotent and itself, which is a contradiction. Thus we have a strictly ascending chain of Γ-ideals $<a_1> \subseteq <a_2> \subseteq \ldots$. Since S is Noetherian, this chain terminates and hence $<a_1> = <a_2> = \ldots \ldots$ for some natural number n. Now we have b_n is a product of an idempotent and itself, this is a contradiction. Therefore $a \in a \Gamma e, e \in e \Gamma a, e \in M$.

\textbf{THEOREM 3.9:} Let S be a commutative Γ-semigroup with 0 and identity and the maximal Γ-ideal M. Suppose that every nonzero primary Γ-ideal is prime or every nonzero Γ-ideal is prime. Then S satisfies either one of the following conditions.

1) $S = G \cup M$ where G is the Γ-group of units in S and $M = (a \Gamma G) \cup \{0\}, a \in M$ and $a \Gamma a = 0$.

2) $(M \Gamma)^{n+1} M = M$ for every positive integer n. Furthermore if S satisfies maximum condition on Γ-ideals then for every $m \in M$, we have $m \in M \Gamma e, e$ being a proper idempotent.

\textbf{Proof:} The proof of this theorem is an immediate consequence of theorem 3.9.

\textbf{THEOREM 3.11:} Let S be a quasi commutative Noetherian Γ-semigroup containing identity. Suppose every primary Γ-ideal in S is prime. Then the following are equivalent.

1) S is cancellative.

2) S has no proper Γ-idempotents.

3) S is a Γ-group.

\textbf{Proof:} 3) implies 1) is clear. Let e be a Γ-idempotent in S. Let $a \in S$. Now $a \gamma e = a \gamma e \gamma e$ implies $a = a \gamma e \gamma e \gamma$ in Γ. This is true for all $a \in S, \gamma \in \Gamma$. Similarly $e \gamma a = a$. Therefore e is the identity in S. Therefore S has no proper idempotents. Therefore 1) implies 2). Assume 2). If S is not a Γ-group,
\(\Gamma \)-Semigroups in which Primary \(\Gamma \)-Ideals are Prime and Maximal

then \(S \) has a unique maximal \(\Gamma \)-ideal \(M \) and hence theorem 3.9, for every \(a \in M \), \(a = a \Gamma e \) for some proper idempotent \(e \). This is a contradiction. Therefore 2) implies 3).

THEOREM 3.12: Let \(S \) be a quasi commutative \(\Gamma \)-semigroup with 0 and with out identity in which every nonzero \(\Gamma \)-ideal is prime. If \(S \) is Noetherian, then every element \(x \in S \) of the form \(x = x \Gamma t, t \in S \) or \(x \Gamma x = (x \Gamma x)\Gamma e \) where \(e \) is an idempotent. Furthermore, if \(S \) is cancellative, then every \(x \in S \) is of the form \(x = x \Gamma t, t \in S \).

Proof: If \(S \) has no proper nonzero \(\Gamma \)-ideals, then for any nonzero \(x \in S \), \(x \Gamma S = S \). Thus \(x = x \Gamma t, t \in S \). If \(S \) has no proper \(\Gamma \)-ideals, then \(S \) is Noetherian, \(S \) contains maximal \(\Gamma \)-ideals. Suppose there exists a maximal \(\Gamma \)-ideal \(M \) such that \(M \Gamma M = 0 \). Then for any prime \(\Gamma \)-ideal \(P \), we have \(M \Gamma M \subseteq P \) and hence \(M = P \). So \(M \) is a unique nonzero \(\Gamma \)-ideal in \(S \). Then \(0 \neq x \in M \) implies \(x \Gamma S = M \). Hence \(x = x \Gamma t \) for some \(t \in S \). If \(x \in M \), then since \(M \) is prime \(x \Gamma x \notin M \). So \(x \Gamma S = S \). Thus \(x \in x \Gamma t \) for some \(t \in S \). Now assume that \(M \Gamma M \neq 0 \) for any maximal \(\Gamma \)-ideal \(M \). Let \(x \in S \). Then since \(S \) is Noetherian \(x \Gamma S \) contained in maximal \(\Gamma \)-ideal, say \(M \).

Since \(M \Gamma M \neq 0 \), \(M \Gamma M \) is prime and hence \(M \Gamma M = M \). Then it can be easily verified as in the proof of the theorem 3.9, that \(x \Gamma x = x \Gamma x \Gamma e \) where \(e \) is a \(\Gamma \)-idempotent. Clearly if \(S \) is cancellative, then \(x \in x \Gamma t \) for some \(t \in S \).

Conclusion: It is proved that if \(S \) is a quasi commutative \(\Gamma \)-semigroup with 0 and without identity in which every no-zero \(\Gamma \)-ideal is prime. If \(S \) is Noetherian, then every element \(x \in S \) of the form \(x = x \Gamma t, t \in S \) or \(x \Gamma x = (x \Gamma x)\Gamma e \) where \(e \) is an idempotent. Furthermore, if \(S \) is cancellative, then every \(x \in S \) is of the form \(x = x \Gamma t, t \in S \).

Acknowledgment: The Principal Author is thankful to the University Grants Commission for the award of Teacher Fellowship under Faculty Development Programme for College Teachers during the Twelfth Plan Period (2012-2017) and also thankful to the authorities of Acharya Nagarjuna University, Guntur for providing facilities to undertake the research work.

REFERENCES

Copyright: © 2017 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.