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1. INTRODUCTION  

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are 

denoted by V(G) and E(G) respectively. For standerd terminology and notations we follow 

Harrary[1]. S Somasundaram &  S.S Sandhya introduced the concept of Harmonic Mean Labeling of 

Graphs in [2] and its basic results was proved in [3] and [4].We will provide a brief summary of other 

informations which are necessary for our present investigation. 

Definition 1.1  

A graph G=(V,E) with P vertices and q edges is called Lehmer  -3 mean graph. If it is possible to 

label vertices x ЄV with distinct labels f(x) from 1,2,3,………….q+1 in such a way that when each 

edge e=uv is labeled with f(e=uv)= 
𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
  (or)  

𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
  , then the edge labels are distinct. In 

this case “f ” is called Lehmer -3 mean labeling of G. 

Definition 1.2  

Let f:V(G)→{1,2,…..p+q} be an injective function .For a vertex labeling “f ” the induced edge 

labeling f(e=uv) is defined by ,f(e)=  
𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
  (or)  

𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
 , then f is called Super Lehmer -3 

mean labeling ,if {f (V(G))}  {f(e)/e Є E(G)} ={1,2,3,…..p+q}, A graph which admits Super 

Lehmer -3 Mean labeling is called Super Lehmer -3 Mean graph 
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Definition 1.3  

Let f:V(G)→{1,2,3,……k+p+q-1} be an injunctive function , for a vertex labeling the induced edge 

labeling f(e=uv) is defined by f(e)=  
𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
  (or)  

𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
 ,  then f is called k-super Lehmer-3 

mean labeling if (f(V(G) {f(e):e єE(G)}={k,k+1,k+2,……k+p+q-1}. A graph which satisfies this 

labeling condition is called k-super Lehmer-3 mean graph. 

2. MAIN RESULTS 

Theorem 2.1 

Any path is a k- Super Lehmer-3 mean graph. 

Proof :- 

Let Pn be a path of n vertices u1,u2,……un.  

We define a function f:V(G)→ {k,k+1,k+2,……k+p+q-1} by 

 f(ui)=k+(2i-2)     ; i=1,2,3,….n  

The edges are labeled with 

 f(uiui+1)= k+(2i-1) ; 1≤i≤n-1, 

 Then we get distinct edge labels in which both f(V(G) E(G)) gives the values from 

{k,k+1,k+2,……k+p+q-1}. Thus any path forms a k -super Lehmer 3 mean graph. 

Example 2.2 

Let us check with k=20 upto 5 vertices we get. 

Theorem 2.3 

Any (PnʘK1)  is a k-Super Lehmer-3 mean graph. 

Proof :- 

Let Pn be  a path with n vertices K1 be a pendant vertices from each vertex of the path Pn . let the 

vertices of Pn be u1,u2,….un and that of the pendant vertices be v1,v2,,….vn. 

 We define a function f:V(G)→ {k,k+1,k+2,……k+p+q-1} by  

f(ui)=k+(4i-4)       ; 1≤i≤n 

 f(vi)=k+(4i-2)      ; 1≤i≤n.  

The edge labelings are  

f(uiui+1)=k+(4i-3)  ;1≤i≤n-1 , 

f(uivi)=k+(4i-1)     ;1≤i≤n-1.  

Thus the union of vertices of G and edges of G together equals {k,k+1,k+2,……k+p+q-1} which are 

all distinct and hence forms a k-Super Lehmer-3 mean graph. 

Example 2.4 

12-Super Lehmer-3 mean labeling pattern on (P4ʘK1) is given below. 
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Theorem 2.5 

Any graph obtained by attaching C3 to an end vertex of Pn is a k-Super Lehmer-3 mean graph. 

Proof :- 

Let G be a graph obtained by attaching C3 to an end vertex of Pn . let the vertices of Pn be u1,u2,….un 

and the vertices of the cycle C3 be unvw. 

Define a function f:V(G)→ {k,k+1,k+2,……k+p+q-1} by  

f(ui)=k+(2i-2)   ; 1≤i≤n,  

f(v)=k+2n and  

f(w)= k+(2n+3) 

Thus the edges obtained are all distinct. Also  f(V(G) E(G)) ={k,k+1,k+2,……k+p+q-1}. Hence this 

graph G admits a k- Super Lehmer-3 mean graph.  

Example 2.6 

We obtain a graph by giving the value of k=100 we get. 

 
Theorem 2.7 

nPm is a k-Super Lehmer-3 mean graph.   

Proof:- 

Let n be the number of graphs and m be the number of vertices of each path. Let uij, 1≤i≤n, 1≤j≤m be 

the vertices of nPm . The edge set is E={uijuij+1/1≤i≤n, 1≤j≤m-1}. 

 Let us define a function f;V(nPm) )→ {k,k+1,k+2,……k+p+q-1} by 

 f(uij)=k+(2m-1)(i-1)+(2j-2)  
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Then the edge labels are all distinct such that (f(V(G) E(G)) ={k,k+1,k+2,……k+p+q-1}  which is a 

k-Super Lehmer-3 mean graph. 

Example 2.8 

50 -Super Lehmer-3 mean labeling of 4P5 graph is shown below. 

 
Theorem 2.9 

Pn(Pmʘk1) is a k-Super Lehmer-3 mean graph. 

Proof:-  

Let G be a graph obtained from the union of two graphs Pn and  Pmʘk1 consider the vertices of Pn as 

u1,u2,…..un.and the vertices of the comb Pmʘk1 be vl,wl where 1≤l≤m. 

We define a function f:V(G)→ {k,k+1,k+2,……k+p+q-1} by  

f(ui)=k+(2i-2)              ; 1≤i≤n  

f(vl)=k+(2n-2)+(2j-1)  ; j=1,3,5,…..2m-1 

 f(wl)=k+(2n-2)+(2j-1) ; j=2,4,6,….2m where 1≤l≤m  

Then the edge labels are all distinct such that  (f(V(G) E(G)) ={k,k+1,k+2,……k+p+q-1}. Thus  

Pn(Pmʘk1) is a k-Super Lehmer-3 mean graph. 

Example 2.10 

A 25-Super Lehmer-3 mean labeling of P4(P6ʘk1) is  
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Theorem 2.11 

Pn union graph obtained by attaching C3 to an end vertex of Pm is a k-Super Lehmer-3 mean graph . 

Proof :- 

Let G be a graph with vertices be u1,u2,…..un, v1,v2,….vm,w,x  respectively. 

 A function defined by f:V(G)→ {k,k+1,k+2,……k+p+q-1} by  

f(ui)=k+(2i-2)              ; 1≤i≤n 

f(vj)=k+(2n-2)+(2j-1)  ; 1≤j≤m  

f(w)=k+(2n-2)+(2m+1)  

f(x)=k+(2n-2)+(2m+4)  

Thus the edge labels obtained are all distinct so that (f(V(G) E(G)) ={k,k+1,k+2,…k+p+q-1}. 

Hence Pn union graph obtained by attaching C3 to an end vertex of Pm is a k -Super Lehmer-3 mean 

graph . 

Example 2.12 

100 -Super Lehmer-3 mean labeling is 

 

Theorem 2.13 

The union of comb and a graph obtained by attaching C3 to an end vertex of Pm is a k-Super Lehmer-3 

mean graph. 

Proof:- 

Let G be the union of graphs. Let its vertices be u1,u2,….un, v1,v2,….vn,w1,w2,…wm,x,y respectively. 

 Let us define a function f:V(G)→ {k,k+1,k+2,……k+p+q-1} by 

 f(ui)=k+(4i-4)               ; 1≤i≤n 

f(vi)=k+(4i-2)                ; 1≤i≤n 

 f(wj)=k+(4n-2)+(2j-1)  ; 1≤j≤m  

 f(x)=k+(4n-2)+(2m+1) 

 f(y)=k+(4n-2)+(2m+4)  

The edge labels are all different and (f(V(G) E(G)) ={k,k+1,k+2,……k+p+q-1}. Thus G forms a k-

Super Lehmer-3 mean graph. 
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Example 2.14 

1000-Super Lehmer-3 mean labeling of G is given below. 

 

Theorem 2.15 

nPm(Plʘk1) is a k- Super Lehmer-3 mean graph. 

Proof:-  

Let G be a graph of nPm, Plʘk1 union graphs. Let the vertices be uij where 1≤i≤n, 1≤j≤m, vp,wp where 

1≤p≤l.   

We define a function f:V(G)→ {k,k+1,k+2,……k+p+q-1} by  

f(uij)=k+(2m-1)(i-1)+(2j-2) 

 f(vp)=k+(2m-1)(n-1)+(2m-2)+(2s-1) ; s=1,3,5,7,….2l-1  

f(wp)=k+(2m-1)(n-1)+(2m-2)+(2s-1) ; s=2,4,6,8,…..2l  and   1≤p≤l  

Then the edge labels are all distinct. Thus (f(V(G) E(G)) ={k,k+1,k+2,……k+p+q-1} and hence  

nPm(Plʘk1) is a k-Super Lehmer-3 mean graph. 

Example 2.16 

72 -Super Lehmer-3 mean labeling of G is given below. 
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Remark 2.17 

nPmkite  is a k-Super Lehmer-3 mean graph. 
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