k- Super Lehmer-3 Mean Graphs

S. Somasundaram
Professor
Department of Mathematics
Manonmaniam Sundaranar University, Tirunelveli, India

S.S. Sandhya
Assistant Professor
Department of Mathematics
Sree Ayyappa College for Women, Chunkankadai, India

T.S. Pavithra
Research scholar
Manonmaniam Sundaranar University, Tirunelveli, India

*Corresponding Author: T.S. Pavithra, Research scholar Manonmaniam Sundaranar University Tirunelveli, India.

Abstract: Let \(f:V(G)\rightarrow\{1,2,3,\ldots,k+p+q-1\} \) be an injective function. For a vertex labeling the induced edge labeling \(f(e=uv) \) is defined by \(f(e) = \left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right] \) (or) \(\left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right] \), then \(f \) is called \(k \)-super Lehmer-3 mean labeling if \(\{f(V(G))\cup\{f(e):e\in E(G)\}\} =\{k,k+1,k+2,\ldots,k+p+q-1\} \). A graph which satisfies this labeling condition is called \(k \)-super Lehmer-3 mean graph.

Keywords: Lehmer-3 mean graph, Super Lehmer-3 mean graph, k-Super Lehmer-3 mean graph, Path, Comb, Kite, Crown.

1. Introduction

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are denoted by \(V(G) \) and \(E(G) \) respectively. For standard terminology and notations we follow Harrary[1], S Somasundaram & S.S Sandhya introduced the concept of Harmonic Mean Labeling of Graphs in [2] and its basic results was proved in [3] and [4]. We will provide a brief summary of other informations which are necessary for our present investigation.

Definition 1.1

A graph \(G=V,E \) with \(p \) vertices and \(q \) edges is called \textbf{Lehmer-3 mean graph}. If it is possible to label vertices \(x \in V \) by \(1,2,3,\ldots,q+1 \) in such a way that each edge \(e=uv \) is labeled with \(f(e=uv) = \left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right] \) (or) \(\left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right] \), then the edge labels are distinct. In this case “\(f \)” is called Lehmer-3 mean labeling of \(G \).

Definition 1.2

Let \(f:V(G)\rightarrow\{1,2,\ldots,p+q\} \) be an injective function. For a vertex labeling “\(f \)” the induced edge labeling \(f(e=uv) \) is defined by \(f(e) = \left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right] \) (or) \(\left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right] \), then \(f \) is called Super Lehmer-3 mean labeling if \(\{f(V(G))\cup\{f(e):e\in E(G)\}\} =\{1,2,3,\ldots,p+q\} \). A graph which admits Super Lehmer-3 Mean labeling is called \textbf{Super Lehmer-3 Mean graph}.
k- Super Lehmer-3 Mean Graphs

Definition 1.3

Let $E(V(G) \rightarrow \{1,2,3,\ldots,k+p+q-1\}$ be an injunctive function, for a vertex labeling the induced edge labeling $f(e=uv)$ is defined by $f(e) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2} \right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2} \right]$, then f is called k-super Lehmer-3 mean labeling if $f(V(G) \cup \{f(e): e \in E(G)\}) = \{k, k+1, k+2, \ldots, k+p+q-1\}$. A graph which satisfies this labeling condition is called k-super Lehmer-3 mean graph.

2. **MAIN RESULTS**

Theorem 2.1

Any path is a k- Super Lehmer-3 mean graph.

Proof :

Let P_n be a path of n vertices u_1, u_2, \ldots, u_n.

We define a function $f: V(G) \rightarrow \{k, k+1, k+2, \ldots, k+p+q-1\}$ by

$f(u_i) = k + (2i - 2)$; $i = 1, 2, 3, \ldots, n$

The edges are labeled with

$f(u_iu_{i+1}) = k + (2i - 1)$; $1 \leq i \leq n - 1$,

Then we get distinct edge labels in which both $f(V(G) \cup E(G))$ gives the values from $\{k, k+1, k+2, \ldots, k+p+q-1\}$. Thus any path forms a k-super Lehmer 3 mean graph.

Example 2.2

Let us check with $k=20$ upto 5 vertices we get.

![Figure- 1](image)

Theorem 2.3

Any $(P_n \circ K_1)$ is a k-Super Lehmer-3 mean graph.

Proof :

Let P_n be a path with n vertices K_1 be a pendant vertices from each vertex of the path P_n. let the vertices of P_n be u_1, u_2, \ldots, u_n and that of the pendant vertices be v_1, v_2, \ldots, v_n.

We define a function $f: V(G) \rightarrow \{k, k+1, k+2, \ldots, k+p+q-1\}$ by

$f(u_i) = k + (4i - 4)$; $1 \leq i \leq n$

$f(v_i) = k + (4i - 2)$; $1 \leq i \leq n$.

The edge labelings are

$f(u_iu_{i+1}) = k + (4i - 3)$; $1 \leq i \leq n - 1$,

$f(u_iv_i) = k + (4i - 1)$; $1 \leq i \leq n - 1$.

Thus the union of vertices of G and edges of G together equals $\{k, k+1, k+2, \ldots, k+p+q-1\}$ which are all distinct and hence forms a k-Super Lehmer-3 mean graph.

Example 2.4

12-Super Lehmer-3 mean labeling pattern on $(P_4 \circ K_1)$ is given below.
Theorem 2.5
Any graph obtained by attaching C_3 to an end vertex of P_n is a k-Super Lehmer-3 mean graph.

Proof:
Let G be a graph obtained by attaching C_3 to an end vertex of P_n. Let the vertices of P_n be u_1, u_2, \ldots, u_n and the vertices of the cycle C_3 be u_nv_1w. Define a function $f: V(G) \rightarrow \{k, k+1, k+2, \ldots, k+p+q-1\}$ by

\[
f(u_i) = k + (2i-2); \quad 1 \leq i \leq n,
\]
\[
f(v) = k + 2n \quad \text{and}
\]
\[
f(w) = k + (2n+3)
\]

Thus the edges obtained are all distinct. Also $f(V(G) \cup E(G)) = \{k, k+1, k+2, \ldots, k+p+q-1\}$. Hence this graph G admits a k-Super Lehmer-3 mean graph.

Example 2.6
We obtain a graph by giving the value of $k=100$ we get.

Theorem 2.7
nP_m is a k-Super Lehmer-3 mean graph.

Proof:
Let n be the number of graphs and m be the number of vertices of each path. Let $u_{ij}, 1 \leq i \leq n, 1 \leq j \leq m$ be the vertices of nP_m. The edge set is $E = \{u_{ij}u_{ij+1}/1 \leq i \leq n, 1 \leq j \leq m-1\}$. Let us define a function $f: V(nP_m) \rightarrow \{k, k+1, k+2, \ldots, k+p+q-1\}$ by

\[
f(u_{ij}) = k + (2m-1)(i-1) + (2j-2)
\]
Then the edge labels are all distinct such that \((f(V(G) \cup E(G)) = \{k, k+1, k+2, \ldots, k+p+q-1\}\) which is a k-Super Lehmer-3 mean graph.

Example 2.8

50-Super Lehmer-3 mean labeling of 4P5 graph is shown below.

![Image showing a graph with labels]

Theorem 2.9

\(P_n(P_m \square k_1)\) is a k-Super Lehmer-3 mean graph.

Proof:

Let \(G\) be a graph obtained from the union of two graphs \(P_n\) and \(P_m \square k_1\), consider the vertices of \(P_n\) as \(u_1, u_2, \ldots, u_n\) and the vertices of the comb \(P_m \square k_1\) be \(v_l, w_l\) where \(1 \leq l \leq m\).

We define a function \(f: V(G) \rightarrow \{k, k+1, k+2, \ldots, k+p+q-1\}\) by

- \(f(u_i) = k + (2i-2)\) ; \(1 \leq i \leq n\)
- \(f(v_l) = k + (2n-2) + (2j-1)\) ; \(j = 1, 3, 5, \ldots, 2m-1\)
- \(f(w_l) = k + (2n-2) + (2j-1)\) ; \(j = 2, 4, 6, \ldots, 2m\) where \(1 \leq l \leq m\)

Then the edge labels are all distinct such that \((f(V(G) \cup E(G)) = \{k, k+1, k+2, \ldots, k+p+q-1\}\). Thus \(P_n(P_m \square k_1)\) is a k-Super Lehmer-3 mean graph.

Example 2.10

A 25-Super Lehmer-3 mean labeling of \(P_3(P_6 \square k_1)\) is

![Image showing a graph with labels]
Theorem 2.11

P\(_n\) union graph obtained by attaching C\(_3\) to an end vertex of P\(_m\) is a k-Super Lehmer-3 mean graph.

Proof :-

Let G be a graph with vertices be u\(_1\), u\(_2\),, u\(_n\), v\(_1\), v\(_2\),, v\(_m\), w, x respectively.

A function defined by f: V(G)→ {k,k+1,k+2,......k+p+q-1} by

\[f(u_i) = k + (2i-2) \quad ; \quad 1 \leq i \leq n \]

\[f(v_j) = k + (2(n-2)+(2j-1)) \quad ; \quad 1 \leq j \leq m \]

\[f(w) = k + (2n-2)+(2m+1) \]

\[f(x) = k + (2n-2)+(2m+4) \]

Thus the edge labels obtained are all distinct so that (f(V(G)∪ E(G)) =\{k,k+1,k+2,......k+p+q-1\}. Hence P\(_n\) union graph obtained by attaching C\(_3\) to an end vertex of P\(_m\) is a k-Super Lehmer-3 mean graph.

Example 2.12

100 -Super Lehmer-3 mean labeling is

![Graph](image)

Theorem 2.13

The union of comb and a graph obtained by attaching C\(_3\) to an end vertex of P\(_m\) is a k-Super Lehmer-3 mean graph.

Proof:-

Let G be the union of graphs. Let its vertices be u\(_1\), u\(_2\),, u\(_n\), v\(_1\), v\(_2\),, v\(_n\), w\(_1\), w\(_2\),, w\(_m\), x, y respectively.

Let us define a function f: V(G)→ {k,k+1,k+2,......k+p+q-1} by

\[f(u_i) = k + (4i-4) \quad ; \quad 1 \leq i \leq n \]

\[f(v_i) = k + (4i-2) \quad ; \quad 1 \leq i \leq n \]

\[f(w_j) = k + (4(n-2)+(2j-1)) \quad ; \quad 1 \leq j \leq m \]

\[f(x) = k + (4n-2)+(2m+1) \]

\[f(y) = k + (4n-2)+(2m+4) \]

The edge labels are all different and (f(V(G)∪ E(G)) =\{k,k+1,k+2,......k+p+q-1\}. Thus G forms a k-Super Lehmer-3 mean graph.
Example 2.14

1000-Super Lehmer-3 mean labeling of G is given below.

![Diagram showing 1000-Super Lehmer-3 mean labeling of G]

Theorem 2.15

\(nP_m \cup (P_l \cup k_1) \) is a k- Super Lehmer-3 mean graph.

Proof:

Let G be a graph of \(nP_m, P_l \cup k_1 \) union graphs. Let the vertices be \(u_{ij} \) where \(1 \leq i \leq n, 1 \leq j \leq m \), \(v_p, w_p \) where \(1 \leq p \leq l \).

We define a function \(f : V(G) \rightarrow \{k, k+1, k+2, \ldots, k+p+q-1\} \) by

\[
\begin{align*}
 f(u_{ij}) &= k + (2m-1)(i-1) + (2j-2) \\
 f(v_p) &= k + (2m-1)(n-1) + (2m-2) + (2s-1) ; s=1,3,5,7,\ldots,2l-1 \\
 f(w_p) &= k + (2m-1)(n-1) + (2m-2) + (2s-1) ; s=2,4,6,8,\ldots,2l \text{ and } 1 \leq p \leq l
\end{align*}
\]

Then the edge labels are all distinct. Thus \((f(V(G)) \cup E(G)) = \{k, k+1, k+2, \ldots, k+p+q-1\} \) and hence \(nP_m \cup (P_l \cup k_1) \) is a k-Super Lehmer-3 mean graph.

Example 2.16

72-Super Lehmer-3 mean labeling of G is given below.

![Diagram showing 72-Super Lehmer-3 mean labeling of G]
Remark 2.17

nPₐ∪kite is a k-Super Lehmer-3 mean graph.

REFERENCES