

k- Super Lehmer-3 Mean Graphs

S. Somasundaram

Professor Department of Mathematics Manonmaniam Sundaranar University, Tirunelveli, India **S.S. Sandhya**

Assistant Professor

Department of Mathematics

Sree Ayyappa College for Women, Chunkankadai, India

T.S. Pavithra

Research scholar

Manonmaniam Sundaranar University, Tirunelveli, India

*Corresponding Author: T.S. Pavithra, Research scholar Manonmaniam Sundaranar University Tirunelveli, India.

Abstract: Let $f:V(G) \rightarrow \{1,2,3,\ldots,k+p+q-1\}$ be an injunctive function, For a vertex labeling the induced edge labeling f(e=uv) is defined by $f(e) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, then f is called k-super Lehmer-3 mean labeling if $(f(V(G) \cup \{f(e): e \in E(G)\} = \{k, k+1, k+2, \ldots, k+p+q-1\})$. A graph which satisfies this labeling condition is called k-super Lehmer-3 mean graph.

Keywords: Lehmer-3 mean graph, Super Lehmer-3 mean graph ,k-Super Lehmer-3 mean graph, Path, Comb, Kite, Crown.

1. INTRODUCTION

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are denoted by V(G) and E(G) respectively. For standerd terminology and notations we follow Harrary[1]. S Somasundaram & S.S Sandhya introduced the concept of Harmonic Mean Labeling of Graphs in [2] and its basic results was proved in [3] and [4].We will provide a brief summary of other informations which are necessary for our present investigation.

Definition 1.1

A graph G=(V,E) with P vertices and q edges is called **Lehmer** -3 mean graph. If it is possible to label vertices x CV with distinct labels f(x) from 1,2,3,.....q+1 in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, then the edge labels are distinct. In this case "f" is called Lehmer -3 mean labeling of G.

Definition 1.2

Let $f:V(G) \rightarrow \{1,2,...,p+q\}$ be an injective function .For a vertex labeling "f" the induced edge labeling f(e=uv) is defined by $f(e) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, then f is called Super Lehmer -3 mean labeling ,if {f (V(G))} $\cup \{f(e)/e \in E(G)\} = \{1,2,3,...,p+q\}$, A graph which admits Super Lehmer -3 Mean labeling is called **Super Lehmer -3 Mean graph**

Definition 1.3

Let $f:V(G) \rightarrow \{1,2,3,\ldots,k+p+q-1\}$ be an injunctive function, for a vertex labeling the induced edge labeling f(e=uv) is defined by $f(e) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, then f is called k-super Lehmer-3 mean labeling if $(f(V(G) \cup \{f(e):e \in E(G)\} = \{k,k+1,k+2,\ldots,k+p+q-1\})$. A graph which satisfies this labeling condition is called k-super Lehmer-3 mean graph.

2. MAIN RESULTS

Theorem 2.1

Any path is a k- Super Lehmer-3 mean graph.

Proof :-

Let P_n be a path of n vertices u_1, u_2, \ldots, u_n .

We define a function f:V(G) \rightarrow {k,k+1,k+2,...,k+p+q-1} by

 $f(u_i)=k+(2i-2)$; i=1,2,3,...,n

The edges are labeled with

 $f(u_iu_{i+1}) = k + (2i-1); 1 \le i \le n-1,$

Then we get distinct edge labels in which both $f(V(G) \cup E(G))$ gives the values from $\{k,k+1,k+2,\ldots,k+p+q-1\}$. Thus any path forms a k-super Lehmer 3 mean graph.

Example 2.2

Let us check with k=20 upto 5 vertices we get.

Theorem 2.3

Any $(P_n O K_1)$ is a k-Super Lehmer-3 mean graph.

Proof :-

Let P_n be a path with n vertices K_1 be a pendant vertices from each vertex of the path P_n . let the vertices of P_n be u_1, u_2, \ldots, u_n and that of the pendant vertices be v_1, v_2, \ldots, v_n .

We define a function f:V(G) \rightarrow {k,k+1,k+2,...,k+p+q-1} by

$$f(u_i)=k+(4i-4)$$
; $1 \le i \le n$

 $f(v_i)=k+(4i-2)$; $1 \le i \le n$.

The edge labelings are

 $f(u_iu_{i+1})=k+(4i-3)$; $1\le i\le n-1$,

 $f(u_iv_i)=k+(4i-1) \quad ; 1\leq i\leq n-1.$

Thus the union of vertices of G and edges of G together equals $\{k,k+1,k+2,\ldots,k+p+q-1\}$ which are all distinct and hence forms a k-Super Lehmer-3 mean graph.

Example 2.4

12-Super Lehmer-3 mean labeling pattern on $(P_4 \odot K_1)$ is given below.

Theorem 2.5

Any graph obtained by attaching C₃ to an end vertex of P_n is a k-Super Lehmer-3 mean graph.

Proof :-

Let G be a graph obtained by attaching C_3 to an end vertex of P_n . let the vertices of P_n be u_1, u_2, \dots, u_n and the vertices of the cycle C_3 be u_nvw .

Define a function f:V(G) \rightarrow {k,k+1,k+2,....,k+p+q-1} by

 $f(u_i)=k+(2i-2)$; $1 \le i \le n$, f(v)=k+2n and

1()-K 211 und

f(w) = k + (2n+3)

Thus the edges obtained are all distinct. Also $f(V(G) \cup E(G)) = \{k, k+1, k+2, \dots, k+p+q-1\}$. Hence this graph G admits a k- Super Lehmer-3 mean graph.

Example 2.6

We obtain a graph by giving the value of k=100 we get.

Theorem 2.7

nP_m is a k-Super Lehmer-3 mean graph.

Proof:-

Let n be the number of graphs and m be the number of vertices of each path. Let u_{ij} , $1 \le i \le n$, $1 \le j \le m$ be the vertices of nP_m . The edge set is $E = \{u_{ij}u_{ij+1}/1 \le i \le n, 1 \le j \le m-1\}$.

Let us define a function f; $V(nP_m) \rightarrow \{k, k+1, k+2, \dots, k+p+q-1\}$ by

 $f(u_{ij})=k+(2m-1)(i-1)+(2j-2)$

Then the edge labels are all distinct such that $(f(V(G) \cup E(G)) = \{k, k+1, k+2, \dots, k+p+q-1\}$ which is a k-Super Lehmer-3 mean graph.

Example 2.8

50 -Super Lehmer-3 mean labeling of 4P₅ graph is shown below.

Theorem 2.9

 $P_n(P_mOk_1)$ is a k-Super Lehmer-3 mean graph.

Proof:-

Let G be a graph obtained from the union of two graphs P_n and P_mOk_1 consider the vertices of P_n as u_1, u_2, \ldots, u_n and the vertices of the comb P_mOk_1 be v_1, w_1 where $1 \le l \le m$.

We define a function f:V(G) \rightarrow {k,k+1,k+2,....,k+p+q-1} by

 $f(u_i) = k + (2i-2)$; $1 \le i \le n$

 $f(v_1)=k+(2n-2)+(2j-1)$; j=1,3,5,....2m-1

 $f(w_1)=k+(2n-2)+(2j-1)$; j=2,4,6,...,2m where $1 \le l \le m$

Then the edge labels are all distinct such that $(f(V(G) \cup E(G)) = \{k,k+1,k+2,\ldots,k+p+q-1\}$. Thus $P_n(P_mOk_1)$ is a k-Super Lehmer-3 mean graph.

Example 2.10

A 25-Super Lehmer-3 mean labeling of P₄(P₆Ok₁) is

Theorem 2.11

 P_n union graph obtained by attaching C_3 to an end vertex of P_m is a k-Super Lehmer-3 mean graph .

Proof :-

Let G be a graph with vertices be $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_m, w, x$ respectively.

A function defined by f:V(G) \rightarrow {k,k+1,k+2,...,k+p+q-1} by

 $\begin{array}{ll} f(u_i) = k + (2i - 2) & ; \ 1 \leq i \leq n \\ f(v_j) = k + (2n - 2) + (2j - 1) & ; \ 1 \leq j \leq m \\ f(w) = k + (2n - 2) + (2m + 1) \\ f(x) = k + (2n - 2) + (2m + 4) \end{array}$

Thus the edge labels obtained are all distinct so that $(f(V(G) \cup E(G)) = \{k,k+1,k+2,...,k+p+q-1\}$. Hence P_n union graph obtained by attaching C_3 to an end vertex of P_m is a k-Super Lehmer-3 mean graph.

Example 2.12

100 -Super Lehmer-3 mean labeling is

Theorem 2.13

The union of comb and a graph obtained by attaching C_3 to an end vertex of P_m is a k-Super Lehmer-3 mean graph.

Proof:-

Let G be the union of graphs. Let its vertices be $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n, w_1, w_2, \dots, w_m, x, y$ respectively.

Let us define a function f:V(G) \rightarrow {k,k+1,k+2,....,k+p+q-1} by

 $\begin{array}{ll} f(u_i) = k + (4i - 4) & ; \ 1 \leq i \leq n \\ f(v_i) = k + (4i - 2) & ; \ 1 \leq i \leq n \\ f(w_j) = k + (4n - 2) + (2j - 1) & ; \ 1 \leq j \leq m \\ f(x) = k + (4n - 2) + (2m + 1) \\ f(y) = k + (4n - 2) + (2m + 4) \end{array}$

The edge labels are all different and $(f(V(G) \cup E(G)) = \{k, k+1, k+2, \dots, k+p+q-1\}$. Thus G forms a k-Super Lehmer-3 mean graph.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Example 2.14

1000-Super Lehmer-3 mean labeling of G is given below.

Theorem 2.15

 $nP_m \cup (P_1 \odot k_1)$ is a k- Super Lehmer-3 mean graph.

Proof:-

Let G be a graph of nP_m , P_1Ok_1 union graphs. Let the vertices be u_{ij} where $1 \le i \le n$, $1 \le j \le m$, v_p, w_p where $1 \le p \le l$.

We define a function f:V(G) \rightarrow {k,k+1,k+2,...,k+p+q-1} by

 $f(u_{ij})=k+(2m-1)(i-1)+(2j-2)$

 $f(v_p)=k+(2m-1)(n-1)+(2m-2)+(2s-1)$; s=1,3,5,7,...2l-1

 $f(w_p)=k+(2m-1)(n-1)+(2m-2)+(2s-1)$; s=2,4,6,8,.....2l and $1 \le p \le l$

Then the edge labels are all distinct. Thus $(f(V(G) \cup E(G)) = \{k, k+1, k+2, \dots, k+p+q-1\}$ and hence $nP_m \cup (P_1 \odot k_1)$ is a k-Super Lehmer-3 mean graph.

Example 2.16

72 -Super Lehmer-3 mean labeling of G is given below.

Figure-8

Remark 2.17

 $nP_m \cup kite$ is a k-Super Lehmer-3 mean graph.

REFERENCES

- [1] Harary.F 1988 Graph theory, Narosa Publication House reading, New Delhi
- [2] S Somasundaram and R Ponraj and S S Sandhya 'Harmonic mean labeling of graphs' communicated to journal of combinatorial mathematics and combinatorial computing.
- [3] S.Somasundaram S.S.Sandhya and T.S.Pavithra, 'Lehmer-3 Mean Labeling of Disconnected Graphs' Asia Pacific Journal of Research Sciences'' Vol:1,Issue XL June 2016
- [4] S.Somasundaram S.S.Sandhya and T.S.Pavithra, 'Super Lehmer-3 Mean Labeling' Journal of mathematics research vol:8,no-5 october 2016

Citation: S. Somasundaram et al., "k- Super Lehmer-3 Mean Graphs ", International Journal of Scientific and Innovative Mathematical Research, vol. 5, no. 5, p. 7, 2017., http://dx.doi.org/10.20431/2347-3142.0505001

Copyright: © 2017 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.