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1. INTRODUCTION 

It is known that a prime number called natural (positive integer) number (except 1) which is divisible 

only by 1 and itself. If the natural number (except for one) is not a prime, it is called a composite 

number. 

It is also known that the primes-twins are adjacent prime numbers, the distance between which is 

equal to 2. A pair of primes-twin, sometimes referred as the usual word "twins". For example, the 

numbers 11 and 13, 17 and 19 are also twins, but the following adjacent primes 23 and 29 are not 

twins etc . 

There is still a lot of open issues regarding primes. The most famous of them were marked by the 5th 

International Mathematicians Congress. One of the issues is about  proving the infinite number of 

twins. This problem, which has not been resolved for more than 2,000 years, now named as the 

second Landau problem. 

In 2013, the American mathematician YitangZhang from the University of New Hampshire proved 

that there are infinitely many pairs of prime numbers separated by a distance greater than 2, but less 

than 70 million. Thus, he proved that the number of pairs of prime numbers (𝑝𝑖 , 𝑝𝑖+1 = 𝑝𝑖 + 𝑛) is 

infinite, where 2 < 𝑛 ≤ 70 000 000. Later, James Maynard improved this result to 600. In 2014, a 

group of scientists under the direction of Terence Tao (Polymath Project), improved this result to 246 

[1]. 

The aim of this work is the proof of an infinite number of primes-twins. 

To solve this problem, we have proposed a new method, which allows to evaluate the infinity of 

primes-twins empirically [2]. Then, in work [3] we proposed a different analytical proof, which gives 

a correct result of the infinity of the twins. In present work, we aimed to make the proposed evidence 

infinity twins as possible "elementary" and more pronounced. We believe that the successful use of 

the fundamental works of world-famous scientists (Eratosthenes, Wilson, Dirichlet, Euler and others) 

has enabled us to do this. First, for convenience, we introduce the following notation. As it is known 

sequential multiplication of natural numbers is called factorial:  𝑖𝑛
𝑖=1 = 𝑛! Subsequently, consistent 

multiplications of prime numbers will be encountered often, so we use the following notation for such 

cases: 

2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ …∗ 𝑝𝑛 =  𝑝𝑖
𝑛
𝑖=1 = 𝑝𝑛 ! ′. 
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Here 𝑝𝑖  - a prime number with a serial number 𝑖.  The combination of symbols 𝑝𝑛 ! ′ means extremely 

consistent multiplication of prime numbers from 2 to 𝑝𝑛 . It will be called a special factorial (or 

primorial) of prime number𝒑𝒏. For example, 𝑝4! ′ - a special factorial of fourth prime number 

𝑝4 = 7 or 𝑝4! ′ = 7! ′ = 2 ∗ 3 ∗ 5 ∗ 7 = 210. 

2. MATRIX OF PRIME NUMBERS 

This paper will attempt to prove the infinite number of twins by using the  developed matrices of 

prime numbers, 

Representing the set of natural numbers (except number 1) in the form of a matrix family 𝐴𝑘  with 

elements of  𝑎(𝑘, 𝑖𝑘 , 𝑗𝑘), where 𝑖𝑘- serial number of rows, 𝑗𝑘- serial number of columns, k - serial 

number of matrix 𝐴𝑘 . 

𝑎(𝑘, 𝑖𝑘 , 𝑗𝑘) =  𝑖𝑘 + 1 + 𝑝𝑘 ! ′(𝑗𝑘 − 1) = 𝑙𝑘 + 𝐷𝑘(𝑗𝑘 − 1),            (1) 

where 𝑗𝑘 = 1, 2,… ,∞; 𝑖𝑘 = 1, 2,… , 𝑝𝑘 ! ′.  𝑙𝑘 = 𝑖𝑘 + 1  - the first number of plurality of numbers that 

are in 𝑖𝑘  row. Note, index k of the parameters 𝑖 and  𝑗denotes affiliation of these parameters to matrix 

𝐴𝑘 . 

It appears from the equation (1) that the sequence of numbers in any row of the matrix 𝐴𝑘 , is an 

arithmetic progression with first term which is equal to 𝑙𝑘 = 𝑖𝑘 + 1. The difference in this progression 

is  𝐷𝑘 = 𝑝𝑘 ! ′.   

Wherein the maximum number of rows of 𝐴𝑘  matrix must be equal to the special factorial 𝑝𝑘 ! ′, i.e. 

𝑖𝑘,𝑚𝑎𝑥 = 𝑝𝑘 ! ′ (figure 1). This means that a specific set of sequences of prime numbers: 𝑝1, 𝑝2, 𝑝3, … 

, 𝑝𝑘   (note, 𝑝𝑘  is the last prime number, which corresponds to this matrix) has to comply with each 

matrix with the serial number k. The number of columns can be arbitrarily large, up to infinity. 

As it is known, one number is not a prime number, otherwise all the numbers that are multiples of the 

unit would be a composite number. Number 1 is also not a composite number, since it is not divided 

into different numbers. That is why the number 1 in all matrices separately located in the upper left 

corner (Figure 1).  For clarity reasons only four matrices 𝐴1, 𝐴2, 𝐴3 and 𝐴4  are shown in Figure 1. 

The number of rows of other matrices exceeds the paper size, so they are not shown in Figure 1. 

Lemma 1. 

Any integer Z> 1 occupies only one specific place in the matrix 𝑨𝒌. Moreover, the serial numbers 

𝒋𝒌 and 𝒊𝒌  respectively column and row, in which a given number is, are determined in a unique 

way: 

𝒋𝒌 = 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 (
𝒁−𝟐

𝒑𝒌!′
) + 𝟏(2 - 1) 

𝒊𝒌 = 𝒓𝒌 + 𝟏(2 - 2) 

where 𝒓𝒌 - residue obtained by dividing the (𝒁 − 𝟐) on 𝒑𝒌! ′, i.e.: 

 𝒁 − 𝟐 = 𝒓𝒌(𝒎𝒐𝒅  𝒑𝒌! ′)(2 -3) 

Proof of lemma 1. 

Imagine𝐴𝑘  matrix in the form of a plurality of cells which are arranged in all rows and columns of the 

given matrix (Figure 1). To each cell, in which only one number can be located, must comply with 

certain couple "coordinate" (𝑖𝑘and𝑗𝑘).  

If assume that the number 𝑍 occurs twice in the matrix 𝐴𝑘 . I.e. 

𝑍 = 𝑎(𝑘, 𝑖𝑘 , 𝑗𝑘) = 𝑎(𝑘, 𝑛𝑘 ,𝑚𝑘) 

where  𝑛𝑘 , 𝑚𝑘  – serial numbers of rows and columns, in which the number 𝑍 occurs the second time. 

Then, from equation (1) follows, that 

 𝑖𝑘 + 1 + 𝑝𝑘 ! ′(𝑗𝑘 − 1) =  𝑛𝑘 + 1 + 𝑝𝑘 ! ′(𝑚𝑘 − 1) 

or                                     𝑖𝑘 − 𝑛𝑘 = 𝑝𝑘 ! ′(𝑚𝑘 − 𝑗𝑘). 

Since 𝑖𝑘 ≤ 𝑝𝑘 ! ′ and   𝑛𝑘 ≤ 𝑝𝑘 ! ′, it leads to the deduction that 𝑖𝑘 − 𝑛𝑘 < 𝑝𝑘 ! ′. Therefore, 

the last equality holds only when 

𝑖𝑘 = 𝑛𝑘   и  𝑗𝑘 = 𝑚𝑘  

It follows that any number in any matrix 𝐴𝑘  is presented in a unique way. 
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Now we define the exact cell in the matrix 𝐴𝑘  which occupies the given number.  

From (1) it follows that if the value of considered number Z satisfies the inequality (𝑛 −
1)𝑝𝑘!′+2≤𝑍<𝑛𝑝𝑘!′+2, then it is the column with the serial number 𝑗𝑘=𝑛. Therefore, the serial 

number of the column, in which the considered number 𝑍 should be placed  must be equal to 𝑗𝑘 =

𝑖𝑛𝑡𝑒𝑔𝑒𝑟(
𝑍−2

𝑝𝑘 !′
) + 1 . 

On the other hand from (1)  we also find that the serial number of search row must be 1 ≤ 𝑖𝑘 ≤
𝑖𝑘,𝑚𝑎𝑥 = 𝑝𝑘 ! ′. From (1) it follows that 𝑖𝑘 = 𝑙𝑘 − 1.  Therefore, the serial number of the column, in 

which the given number 𝑍 is located, determined by the equation 𝑖𝑘 = 𝑟𝑘 + 1,  where 𝑟𝑘  - the 

remainder, obtained from dividing  (𝑍 − 2) on 𝑝𝑘 ! ′,  i.e.: 

 𝑍 − 2 = 𝑟𝑘(𝑚𝑜𝑑  𝑝𝑘 ! ′) 

Lemma 1 is proved. 

Column numbers Column numbers

1 2 3 4 5 6 … 1 2 3 4 …

1 1

1 2 4 6 8 10 12 … 1 2 212 422 632 …

2 3 5 7 9 11 13 … 2 3 213 423 633 …

Matrix  A 1 3 4 214 424 634 …

Column numbers 4 5 215 425 635 …

1 2 3 4 5 6 … 5 6 216 426 636 …

1 6 7 217 427 637 …

1 2 8 14 20 26 32 … 7 8 218 428 638 …

2 3 9 15 21 27 33 … 8 9 219 429 639 …

3 4 10 16 22 28 34 … 9 10 220 430 640 …

4 5 11 17 23 29 35 … 10 11 221 431 641 …

5 6 12 18 24 30 36 … 11 12 222 432 642 …

6 7 13 19 25 31 37 … 12 13 223 433 643 …

Matrix  A 2 r 13 14 224 434 644 …

Column numbers o 14 15 225 435 645 …

1 2 3 4 5 6 … w 15 16 226 436 646 …

1 16 17 227 437 647 …

1 2 32 62 92 122 152 … n 17 18 228 438 648 …

2 3 33 63 93 123 153 … u 18 19 229 439 649 …

3 4 34 64 94 124 154 … m 19 20 230 440 650 …

4 5 35 65 95 125 155 … b 20 21 231 441 651 …

5 6 36 66 96 126 156 … e 21 22 232 442 652 …

6 7 37 67 97 127 157 … r 22 23 233 443 653 …

r 7 8 38 68 98 128 158 … 23 24 234 444 654 …

o 8 9 39 69 99 129 159 … 24 25 235 445 655 …

w 9 10 40 70 100 130 160 … 25 26 236 446 656 …

10 11 41 71 101 131 161 … 26 27 237 447 657 …

n 11 12 42 72 102 132 162 … 27 28 238 448 658 …

u 12 13 43 73 103 133 163 … 28 29 239 449 659 …

m 13 14 44 74 104 134 164 … 29 30 240 450 660 …

b 14 15 45 75 105 135 165 … 30 31 241 451 661 …

e 15 16 46 76 106 136 166 … 31 32 242 452 662 …

r 16 17 47 77 107 137 167 … 32 33 243 453 663 …

17 18 48 78 108 138 168 … 33 34 244 454 664 …

18 19 49 79 109 139 169 … 34 35 245 455 665 …

19 20 50 80 110 140 170 … 35 36 246 456 666 …

20 21 51 81 111 141 171 … 36 37 247 457 667 …

21 22 52 82 112 142 172 … 37 38 248 458 668 …

22 23 53 83 113 143 173 … 38 39 249 459 669 …

23 24 54 84 114 144 174 … 39 40 250 460 670 …

24 25 55 85 115 145 175 … 40 41 251 461 671 …

25 26 56 86 116 146 176 … 41 42 252 462 672 …

26 27 57 87 117 147 177 … … … … … … …

27 28 58 88 118 148 178 … 207 208 418 628 838 …

28 29 59 89 119 149 179 … 208 209 419 629 839 …

29 30 60 90 120 150 180 … 209 210 420 630 840 …

30 31 61 91 121 151 181 … 210 211 421 631 841 …

Matrix  A 3 Matrix  A 4  

Fig.1. Matrix of prime numbers
1
 

                                                           
1
The number of rows of matrix  𝐴4 exceeds the paper size, so here its fragment is shown. For this reason, other 

matrices are not shown in this figure. 



Baibekov S. N. & Durmagambetov А.А. 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 9 

Now the comparison of matrices 𝐴𝑘  and  𝐴𝑘+1 is considered. 

From (1) it follows that each matrix of the matrices family  𝐴𝑘 ,  where  𝑘 = 1, 2, 3, … , ∞,   differs 

from each other primarily by the number of rows and by the difference of arithmetic progression. For 

example, if the matrix is considered 𝐴𝑘+1, then 𝑖𝑘+1,𝑚𝑎𝑥 = 𝑝𝑘+1! ′. The number of columns in the 

case 𝐴𝑘  matrix can be arbitrarily large, up to infinity. 

At the same time, an arbitrarily chosen number whether can occupy the same place in the matrices 𝐴𝑘  

and  𝐴𝑘+1 will be determined? 

Lemma 2. 

If the randomly selected number takes the place, located in the first column of the matrix  𝑨𝒌, it 

occupies the same place in the matrix 𝑨𝒌+𝟏, but in other cases it is in the matrices 𝑨𝒌 and  𝑨𝒌+𝟏   

takes different places. 

Proof of lemma 2. 

Consider the number 𝑍 = 𝑎 𝑘, 𝑖𝑘 , 𝑗𝑘  from the matrix 𝐴𝑘   and also consider the this number 𝑍 from 

the matrix  𝐴𝑘+1, i.e. 𝑍 = 𝑎 𝑘 + 1, 𝑖𝑘+1 , 𝑗𝑘+1 . Then 

𝑍 = 𝑎 𝑘 + 1, 𝑖𝑘+1 , 𝑗𝑘+1 = 𝑎 𝑘, 𝑖𝑘 , 𝑗𝑘  

or 

𝑎 𝑘, 𝑖𝑘 , 𝑗𝑘 = (𝑖𝑘 + 1) + 𝑝𝑘 ! ′(𝑗𝑘 − 1)                         (3 − 1) 

𝑎 𝑘 + 1, 𝑖𝑘+1 , 𝑗𝑘+1 = (𝑖𝑘+1 + 1) + 𝑝𝑘+1! ′(𝑗𝑘+1 − 1)            (3 − 2) 

Suppose that this number takes the same place in the matrices 𝐴𝑘and𝐴𝑘+1, i.e. runs equality: 

𝑖𝑘 = 𝑖𝑘+1    и       𝑗𝑘 =  𝑗𝑘+1                                        (4) 

From (3-1) and (3-2) we get: 

𝑝𝑘 ! ′(𝑗𝑘 − 1) = 𝑝𝑘+1! ′(𝑗𝑘+1 − 1) 

From (4) we get that the last equality is possible when performed equality 𝑗𝑘 =  𝑗𝑘+1 = 1. I.e., if the 

arbitrarily selected number takes place, located in the first column of the matrix 𝐴𝑘 , it occupies the 

same place in the matrix 𝐴𝑘+1. 

At the same time, as shown above, 𝑖𝑘 ≤ 𝑝𝑘 ! ′. In other cases, it is in the matrices  𝐴𝑘and𝐴𝑘+1occupies 

a different place.  

From Fig. 1 clearly shows that the number  2-7, who were in first column 𝐴2, occupy exactly the same 

place in the matrix 𝐴3. The number  2-31, who were in first column 𝐴3, occupy exactly the same 

place in 𝐴4 matrix.  

Lemma 2 is proved. 

Now consider the set of numbers that are in one arbitrary row of the matrix 𝐴𝑘 . Suppose that the serial 

number of this row is denoted by 𝑛, i.e. 𝒊𝒌 = 𝒏. At the same time 1 ≤ 𝑛 ≤ 𝑝𝑘 ! ′. Define where each 

number of given row can be located in case of matrix 𝐴𝑘+1. 

Lemma 3. 

The set of numbers located in one selected row of the matrix 𝑨𝒌, are redistributed by 𝒑𝒌+𝟏 rows of 

the matrix 𝑨𝒌+𝟏. The sequence of numbers contained in each of these 𝒑𝒌+𝟏 rows, is an arithmetic 

progression with a constant 𝑫𝒌+𝟏 = 𝒑𝒌+𝟏! ′. 

Proof of lemma 3. 

Consider one arbitrary row of 𝐴𝑘  matrix. Suppose that 𝑛 - the serial number of given row (1 ≤ 𝑛 ≤
𝑝𝑘 ! ′). From (1) it follows that the sequence of numbers,which are located in any row of the matrix 𝐴𝑘 , 
is an arithmetic progression, which for  this case takes the form: 

𝑎(𝑘, 𝑖𝑘 , 𝑗𝑘) = 𝑎(𝑘, 𝑛, 𝑗𝑘) = (𝑛 + 1) + 𝑝𝑘 ! ′(𝑗𝑘 − 1),                (5) 

where𝑗𝑘 = 1, 2,… ,∞; 𝑖𝑘 = 𝑛, 1 ≤ 𝑛 ≤ 𝑝𝑘 ! ′.  



Proof of an Infinite Number of Primes-Twins 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 10 

Define, where each number of progression (5) can be located in the matrix 𝐴𝑘+1. Initially, from 

progression (5) select the first 𝑝𝑘+1 numbers, serial numbers which in the case of the matrix 𝐴𝑘are 

equal to 𝑗𝑘 = 1, 2, 3,… , 𝑝𝑘+1. Then from (3) and (5) for case of the matrix 𝐴𝑘+1 we find that 

𝑗𝑘+1 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(
(𝑛 − 1) + 𝑝𝑘 ! ′(𝑗𝑘 − 1)

𝑝𝑘+1! ′
) + 1 = 1,           (6 − 1) 

where 1 ≤ 𝑗𝑘 ≤ 𝑝𝑘+1. I.е. from (6-1) it follows that these numbers should be located in the first 

column of matrix 𝐴𝑘+1.  

On the other hand, from Lemma 1 follows that any number in any matrix is presented in a unique 

way. This means that the considered above number is, as already indicated above, in one (first) 

column of matrix 𝐴𝑘+1, which must be located in different rows. I.e. the numbers in the case of the 

matrix 𝐴𝑘+1should be reallocated for its  𝑝𝑘+1 rows. 

Serial numbers of these rows are determined from (2) and (5): 

𝑖𝑘+1 = 𝑟𝑘+1 + 1,                                              (6 − 2) 

where 𝑟𝑘+1- residue, obtained by dividing the (𝑛 − 1) + 𝑝𝑘 ! ′(𝑗𝑘 − 1) on 𝑝𝑘+1! ′:  

[(𝑛 − 1) + 𝑝𝑘 !′ (𝑗𝑘 − 1)] = 𝑟𝑘+1(𝑚𝑜𝑑 𝑝𝑘+1!′),     𝑗𝑘 = 1, 2,… , 𝑝𝑘+1    (6 − 3) 

From (6-2) and (6-3), we find that in this case the sequence numbers of rows,  on which the 

considered numbers are redistributed, should not exceed 𝑝𝑘+1! ′,  т.е. 𝑖𝑘+1 = 𝑟𝑘+1 + 1 ≤ 𝑝𝑘+1! ′. 

Now from progression (5) consider 𝑝𝑘+1 numbers, which follow after the considered above 𝑝𝑘+1  

numbers. Serial numbers of these numbers in case of matrix 𝐴𝑘  equal to  𝑗𝑘 = 𝑝𝑘+1 + 1, 𝑝𝑘+1 +
2, 𝑝𝑘+1 +  3,… , 2𝑝𝑘+1. Then from (2) and (5) for the case of the matrix 𝐴𝑘+1  we find that 

𝑗𝑘+1 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(
(𝑛 − 1) + 𝑝𝑘 ! ′(𝑗𝑘 − 1)

𝑝𝑘+1! ′
) + 1 = 2,                       

where 𝑝𝑘+1 < 𝑗𝑘 ≤ 2𝑝𝑘+1. I.e. from this equation follows that the number should be located in the 

second column of the matrix 𝐴𝑘+1. On the other hand, these numbers, as follows from Lemma 1, 

should be redistributed by 𝑝𝑘+1 rows of the matrix 𝐴𝑘+1. If we substitute the appropriate values 𝑗𝑘  in 

(2), we get the same serial numbers of rows, which are obtained under condition  1 ≤ 𝑗𝑘 ≤ 𝑝𝑘+1. 

Similarly, we find that all numbers of progression (5), which satisfy the condition  𝑚𝑝𝑘+1 < 𝑗𝑘 ≤
(𝑚 + 1)𝑝𝑘+1,  must be located in the same column of the matrix 𝐴𝑘+1. Serial number of this column 

is equal to m + 1. In this case, as in the previous, these numbers must be located indifferent 𝑝𝑘+1 rows 

of the matrix 𝐴𝑘+1. Thus, the  serial numbers of these rows will be exactly the same as in the case of 

(6-2). 

As a result, it will be found that the set of numbers of progression (5), i.e. a set of numbers, located in 

one selected row of the matrix 𝐴𝑘   redistributed by 𝑝𝑘+1 rows of the matrix 𝐴𝑘+1. Serial numbers of 

these rows are equal 𝑖𝑘+1 = 𝑛 + 𝑝𝑘 ! (𝑚𝑘+1 − 1), where𝑚𝑘+1 = 1, 2, 3, … , 𝑝𝑘+1 . 

The sequence of numbers in each of these rows is an arithmetic progression with a constant equal to 

𝐷𝑘+1 = 𝑝𝑘+1! ′. The value of the first term of an arithmetic progression, located in a separate row of 

these 𝑝𝑘+1 rows of the matrix 𝐴𝑘+1 is equal to (𝑛 + 1) + 𝑝𝑘 ! ′(𝑚𝑘+1 − 1), where  𝑚𝑘+1 =
1, 2,… , 𝑝𝑘+1. 

Consequently, for these rows will be obtained next: 

𝑎(𝑘 + 1, 𝑖𝑘+1 , 𝑗𝑘+1) = [(𝑛 + 1) + 𝑝𝑘 !′ (𝑚𝑘+1 − 1)] + 𝑝𝑘+1! ′(𝑗𝑘+1 − 1),     (7) 

where 𝑚𝑘+1 = 1, 2,… , 𝑝𝑘+1. Here, at each value 𝑚𝑘+1  the parameter𝑗𝑘+1 has the value from 1 to 

infinity, i.e.𝑗𝑘+1 = 1, 2, … ,∞. 

In fact, Figure 1 clearly shows that the numbers located in the same rows, for example in the second 

row of the matrix 𝐴2 redistributed by five rows (for the 2-nd, 8-th, 14-th, 20-th and 26-th) of matrix 

𝐴3. 

Lemma 3 is proved. 
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Lemma 4. 

The set of numbers located in all the rows of the matrix𝑨𝒌 are redistributed by𝒑𝒌+𝟏! ′  rows of the 

matrix𝑨𝒌+𝟏. 

Lemma proof 4. 

The proof of the lemma is obvious, as the matrix𝐴𝑘  has all 𝑝𝑘 ! ′ rows, i.e. 𝑖𝑘,𝑚𝑎𝑥 = 𝑝𝑘 ! ′. On the other 

hand, from Lemma 3 it follows that the set of numbers located in one selected row of the 

matrix𝐴𝑘𝑎𝑟𝑒redistributed by 𝑝𝑘+1 rows of the matrix 𝐴𝑘+1. 

Consequently, all numbers of this matrix should be reallocated for 𝑝𝑘 ! ′𝑝𝑘+1 = 𝑝𝑘+1! ′  rows of the 

matrix𝐴𝑘+1, i.e. total number of rows of the matrix𝐴𝑘+1must be equal to 𝑖𝑘+1,𝑚𝑎𝑥 = 𝑝𝑘+1! ′. 

Lemma 4 is proved. 

It follows that the set of numbers that are in each row of the matrix 𝐴𝑘  forms an arithmetic 

progression with a constant 𝐷𝑘 = 𝑝𝑘 ! ′. 

From Dirichlet's theorem for primes in arithmetic progression [4], it follows that if the first term and 

the difference in progression are not relatively prime, then in this progression will not be any prime 

number or will be only one prime number. Moreover this prime number is the first term of an 

arithmetic progression. From Dirichlet's theorem also it follows that if the first term and the difference 

arithmetic progression are relatively prime, then this progression has an infinite set of primes and 

composite numbers. 

Therefore, in the case of matrix 𝐴𝑘set of prime numbers must be located in rows, the first term and 

the difference arithmetic progressions of which individually are relatively prime. If𝐷𝑘 > 2, then it is 

obvious that the twin-primes may not be located in the same row. Twins can be found in two adjacent 

rows, the first term and the difference arithmetic progression of which are relatively prime, and on the 

other hand the difference between the serial numbers of the two adjacent rows should be equal to 2. A 

pair of such adjacent rows is called a couple of rows-twin or rows -twin. For two numbers arranged in 

different rows, but in the one column of the pairs of twins-rows the equality always takes 

place |𝑎(𝑘, 𝑖, 𝑗) − 𝑎(𝑘, 𝑖 ± 2, 𝑗)| = 2. A pair of such primes are twins. For example, from Figure 1 it 

is seen that the number (5 and 7), (29 and 31), (41 and 43) and others are twins  

If the row has the set of prime and composite numbers, but it is located on the same row at a distance 

of more than 2, then this row is called single row. Therefore, in single rows cannot be prime numbers-

twins. 

The aim of this work is to determine the total number of primes-twins. Therefore, in the future will be 

focusing on the pairs of rows-twins. 

3. AN INFINITE AMOUNT OF PRIME NUMBERS-TWINS 

As mentioned above, all twin prime are mainly in the pair of rows-twins. If in this case at some point, 

for example, when considering 𝐴𝑘  matrix disappear all pairs of rows-twins (i.e. they for some reason 

have become conventional or single rows), it is obvious that in the following matrices they will not 

be. In this case, it means that the number of twins should be limited. 

Consider the number of rows of 𝐴𝑘  matrix on which the prime numbers are distributed. In Figure 1 all 

the rows in which there are only composite numbers (or with only one prime number), for clarity 

repainted by dark color. Consequently, in each unpainted row there is an infinite set of prime and 

composite numbers. 

Theorem 1. The number of unpainted rows of 𝑨𝒌 matrix, on which primes are distributed, is 

determined by the Euler function 𝝋(𝑫𝒌), where 𝑫𝒌 = 𝒑𝒌! ′-  constant arithmetic progressions of 

numbers that are in each of these rows. 

The proof of theorem 1. 

By definition the Euler 𝜑(𝐷𝑘) function determines the number of positive integers 𝑙𝑘 , not exceeding 

𝐷𝑘  and which are relatively prime
2
with 𝐷𝑘 , i.e. 1 ≤ 𝑙𝑘 ≤ 𝐷𝑘  and  (𝐷𝑘 , 𝑙𝑘) ≡ 1. 

                                                           
2
 For our arithmetic progressions the condition (2 ≤ 𝑙 ≤ 𝐷 + 1) performing, follows from (1) and fig 1. If the 
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On the other hand, from Dirichlet's theorem it follows that if the first term and the difference 

arithmetic progression are relatively prime, then in this progression there are infinitely many primes. 

Consequently, the number of rows of the matrix 𝐴𝑘 , on which distributed an infinite number of prime 

numbers equal to the value of Euler's function 𝜑(𝐷𝑘): 

𝑛𝑘 = 𝜑(𝐷𝑘) = 𝜑(𝑝𝑘 ! ′) = (𝑝1 − 1)(𝑝2 − 1)… (𝑝𝑘 − 1) = (𝑝𝑘 − 1)! ′. 

Theorem 1 is proved. 

Theorem 2. 

Prime numbers, which are in one unpainted row of the matrix 𝑨𝒌−𝟏, are redistributed by  

𝒑𝒌 − 𝟏 unpainted rows of 𝑨𝒌 matrix. 

The proof of theorem 1. 

From Theorem 1 it follows that in the case of the matrix 𝐴𝑘−1 prime numbers are redistributed by 

φ𝜑(𝐷𝑘−1) = 𝜑(𝑝𝑘−1! ′) = (𝑝𝑘−1 − 1)! ′ rows. In the case of matrix 𝐴𝑘  redistribution of primes occur 

at 𝜑(𝐷𝑘) = 𝜑(𝑝𝑘 ! ′) = (𝑝𝑘 − 1)! ′ rows. Consequently, if we consider the set of prime numbers that 

are in one of the unpainted rows of 𝐴𝑘−1 matrix, then their reallocation in the case of matrix 𝐴𝑘  

occurs by uncolored rows, the number of which is equal to 

𝜑(𝐷𝑘)

𝜑(𝐷𝑘−1)
=

(𝑝𝑘 − 1)! ′

(𝑝𝑘−1 − 1)! ′
= 𝑝𝑘 − 1 

Theorem 2 is proved. 

Now consider that all prime numbers taking part in the redistribution mentioned in Theorems 1 and 2. 

Corollary of Theorem 2. 

Consider matrices 𝐴𝑘 . Members of the progressions that are in the rows of this matrix defined by 

expression: 

𝑎(𝑘, 𝑖𝑘 , 𝑗𝑘) = (𝑖𝑘 + 1) + 𝑝𝑘 ! ′(𝑗𝑘 − 1), 

where 𝑖𝑘 = 1, 2,… , 𝑝𝑘 ! ′  and 𝑗𝑘 = 1, 2,… ,∞. 

From this equation follows that if the first term (𝑖𝑘 + 1) and the difference (𝑝𝑘 ! ′) of the progression 

located in one of these 𝑝𝑘 ! ′ rows, are not mutually prime,   then, according to the corollaries of 

Dirichlet's theorem, there are no prime numbers in this row or only one prime number. I.e. the 

condition must be fulfilled: 

((𝑖𝑘 + 1), 𝑝𝑘 ! ′) ≢ 1                                                   (8) 

This condition occurs when 𝑖𝑘 + 1  takes the value of the set of composite numbers, which do not 

exceed 𝑝𝑘 ! ′, and in particular the value of the following 𝑘 prime numbers: 

(𝑖𝑘 + 1) = 𝑝1 ,  𝑝2 , 𝑝3 , … , 𝑝𝑘  

This means that in the case of the matrix 𝐴𝑘 , the following primes 𝑝1 , 𝑝2 , 𝑝3 , … , 𝑝𝑘  will not 

participate in the redistribution of the set of primes by its (𝑝𝑘 − 1)! ′ uncolored rows. Similarly, if we 

consider the matrix 𝐴𝑘+1, then the following primes 𝑝1 , 𝑝2 , 𝑝3 , … , 𝑝𝑘and 𝑝𝑘+1 will not participate in 

the redistribution of primes by its ((𝑝𝑘+1 − 1)! ′ rows. I.e. in this case the number of prime numbers 

not participating in redistributions will be 1 more. If we consider the matrix 𝐴𝑘−1, then the number of 

primes not participating in the redistribution will be 𝑘 − 1, i.e. By 1 less than in the case of matrix 𝐴𝑘 . 

This happens in any matrix. 

                                                                                                                                                                                     
number 1 is transferred to the matrix 𝐴𝑘 , then all the members of the last row shift to the first row and the 

penultimate row becomes the last row. Then the condition is 1 ≤ 𝑙 ≤ 𝐷 fulfilled automatically. Therefore, all 

the conclusions obtained for the conditions 1 ≤ 𝑙 ≤ 𝐷 are applicable and are used for our cases. We notice that 

in this case the first number of this last rows will be equal 𝑙 = 𝐷 = 𝑝𝑘 ! ′. Thus it is a row of composite numbers, 

 that is the colored row. 
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Theorem 3. 

The number of pairs of twins-rows in the matrix 𝑨𝒌 increases monotonically with the growth of the 

serial number 𝒌 of the matrix, and in each row of any pair of twins-rows there are an infinite 

number of primes. 

Proof of the theorem 3.  

Suppose that there are 𝑚𝑘−1 pairs of twin rows in this matrix 𝐴𝑘−1. It follows from Lemma 3 that all 

the numbers in one of these pairs, in the case of the matrix 𝐴𝑘 , are redistributed by its 𝑝𝑘  pairs of 

rows. 

Now consider the first row of the selected pair of twins-rows of the matrix 𝐴𝑘−1. It follows from 

Theorem 2 that all prime numbers in this row are redistributed over the 𝑝𝑘 − 1 rows of the matrix 𝐴𝑘 . 

This means that from the analyzed 𝑝𝑘  pairs of rows of the matrix 𝐴𝑘 , one pair ceases to be a pair of 

twins-rows. 

If we consider the redistribution of prime numbers in the second row of the pair of twins-rows of the 

matrix 𝐴𝑘−1, we similarly get that in this case one more pair from 𝑝𝑘  pairs of rows of the matrix 

𝐴𝑘ceases to be a pair of twins-rows. 

As a result, we obtain that all primes in an arbitrary pair of twin rows of matrix 𝐴𝑘−1, in the case of 

matrix 𝐴𝑘 , are redistributed by its 𝑝𝑘 − 2  pairs of twins-rows. Note that the first number and the 

difference of the progression, consisting of the numbers located in each of these rows, are relatively 

prime. 

From the above, we also note that as a result from the analyzed 𝑝𝑘  pairs of rows of the matrix 𝐴𝑘 , two 

pairs of rows cease to be a pair of twins-rows, i.e. in the matrix present 2 ordinary rows and 1 pair of 2 

single rows. 

If we take into account that there are 𝑚𝑘−1 pairs of twins-rows in the matrix 𝐴𝑘−1, then the total 

number of pairs of twin-rows in the matrix 𝐴𝑘   will be: 

𝑚𝑘 = 𝑚𝑘−1(𝑝𝑘 − 2)                                          (9 − 1) 

Moreover, in the matrix 𝐴𝑘 , the number of pairs of single rows generated from these 𝑚𝑘−1 pairs of 

twins-rows of the matrix 𝐴𝑘−1will be equal to 

𝑚𝑘
′ = 𝑚𝑘−1                                                   (9 − 2) 

As shown above, there is only one pair of twins-rows in the matrix 𝐴2. With this in mind, it can be 

established that 𝑚𝑘  the number of pairs of twins-rows in the matrix 𝐴𝑘   is determined by the 

following expression: 

𝑚𝑘 = (𝑝2 − 2)(𝑝3 − 2) ∗ …∗ (𝑝𝑘 − 2) = (𝑝𝑘 − 2)!′ , where 𝑘 ≥ 2      (9 − 3) 

It follows from (9) that as the serial number 𝑘 of the matrix 𝐴𝑘  increases, the number of pairs of 

twins-rows in it grows monotonically. On the other hand, the sequence of numbers in each row of 𝑚𝑘  

pairs of twins-rows is an arithmetic progression. Moreover, as shown above, the first term and the 

difference of each of these progressions are mutually simple (prime). In view of this, it follows from 

the Dirichlet theorem that every row of any pair of twins-rows has an infinite number of primes. 

Theorem 3 is proved. 

It follows from (9) that lim𝑘→∞𝑚𝑘 = ∞, i.e., at 𝑘 → ∞ the number of pairs of twins-rows of the 

matrix 𝐴𝑘  tends to infinity. If we assume that in each pair of twin rows of 𝐴𝑘  matrix there is at least 

one pair of primes-twins, then one can say unequivocally that the number of twins is infinite. And this 

is possible when the prime numbers in each row of any pair of twin rows of the matrix 𝐴𝑘  are located 

more closely and densely than in the case of the matrix 𝐴𝑘−1. 

In this case, from an infinite set of prime numbers located in each of the two rows of any pair of 

twins-rows, at least 2 prime numbers will necessarily be in the same column and thus they will be 

twins. 

Is it so? Let us analyze this with the help of the following theorems. 

First we consider the set of prime and composite numbers contained in the matrix 𝐴𝑘  and not 
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exceeding 𝑥 such that 𝑥 ≫ 𝐷𝑘 = 𝑝𝑘 ! ′.  This means that in the future we will consider fragments of 

matrices 𝐴𝑘 . In this case, to each matrix 𝐴𝑘  will correspond its fragment  𝐵𝑘 , consisting of  𝑖𝑘,𝑚𝑎𝑥   

rows and 𝑗𝑘,𝑚𝑎𝑥  columns: 

𝑖𝑘,𝑚𝑎𝑥 = 𝐷𝑘 = 𝑝𝑘 ! ′ 

𝑗𝑘,𝑚𝑎𝑥 =
𝑥

𝐷𝑘
=

𝑥

𝑝𝑘 ! ′
= 𝑚𝑘 ≫ 1 

It follows that if 𝑚𝑘  is an integer, then the considered fragment 𝐵𝑘  is a two-dimensional full-scale 

matrix. And if 𝑚𝑘  is not an integer, then the last column of the considered fragment 𝐵𝑘  will be short, 

than its other columns. Therefore, in the sequel, 𝑥 will be chosen so that 𝑚𝑘  is always an integer. 

Note that if all considered numbers do not exceed 𝑥, then as the serial of considered fragment of the 

matrix increases, the number of its rows increases monotonically to 𝑖𝑘,𝑚𝑎𝑥 =𝐷𝑘 = 𝑝𝑘 ! ′, and the 

number of columns decreases monotonically to 𝑗𝑘,𝑚𝑎𝑥 =
𝑥

𝑝𝑘 !′
= 𝑚𝑘 . I. e. fragments of matrices 

𝐵1,𝐵2,…, 𝐵𝑘  differ from each other, first of all, by the number of rows and columns. 

In this case we have the following lemma. 

Lemma 5. 

If the arbitrary number Z, not exceeding x, 𝒁 ∈ 𝑩𝒌, then𝒁 ∈ 𝑩𝒏, where 𝒏 = 𝟎, 𝟏, 𝟐,… , 𝒌. 

Proof of the lemma 5. 

Let Z be a arbitrary  number not exceeding x. 

We imagine a fragment of random matrix 𝐵𝑘  as plurality of cells arranged in all rows and columns of 

the matrix (figure 1). Only one number can be located in every cell, and the cell must correspond to a 

certain pair of coordinates (𝑖𝑘  and𝑗𝑘). Then the total number of cells, i.e. the total quantity of numbers 

in consideration fragment, is equal  

𝑖𝑘,𝑚𝑎𝑥 ∗ 𝑗𝑘,𝑚𝑎𝑥 = 𝐷𝑘 ∗ 𝑚𝑘 = 𝑝𝑘 ! ′ ∗
𝑥

𝑝𝑘 ! ′
= 𝑥 

Therefore, total quantity of numbers that contained in a fragment of the matrix 𝐵𝑘 , independent of its 

sequence number 𝑘.This means that the quantity of prime and composite numbers, the total quantity is 

𝑥,  is not dependent on the ordinal number of the matrix fragment 𝐵𝑘 , where they located. 

Explanation: not one of these composite number, depending on the ordinal number of the matrix 

doesn't become a prime number, and conversely. The number in itself is a prime number, and not 

depending on anything, as a composite number. This means, if a number of Z is not more than 𝑥,  then 

it must be in all fragments of the matrix𝐵𝑛 , where 𝑛 = 0, 1, 2, … , 𝑘. From lemma 1 followed that the 

number in the current fragment have the only place. Its coordinates are defined by using the equality 

(2).  

Lemma 5 is proved. 

Now we consider the new parameters. Let 𝜋𝑘 , 𝑛𝑘  and 𝑁𝑘  is a quantity of prime, composite and all the 

numbers existing in one of the uncolored rows fragments of the matrix𝐵𝑘  and not exceeding  𝑥 such 

that 𝑥 ≫ 𝐷𝑘 = 𝑝𝑘 ! ′. Let 𝜋0, 𝑛0и𝑁0 is a quantity of prime, composite and all the numbers containing 

in an arithmetic progression, consisting of a natural numbers from 1 to 𝑥. 

Define the ratio 
𝜈𝑘

𝜈0
, where 𝜈0 =

𝜋0

𝑛0
 and 𝜈𝑘 =

𝜋𝑘

𝑛𝑘
 - are parameters that show the number of prime 

numbers per one composite number. 

Theorem 4. 

For prime numbers that are in any uncolored rows fragments of the matrix 𝑩𝒌, hold true the 

following formulas:  

𝝅𝒌 =
𝝅𝟎 − 𝒌

𝝋(𝒑𝒌! ′)
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𝐥𝐧 𝝂𝒌 = 𝐥𝐧𝝂𝟎 +  
𝟏

𝒑𝒊

𝒌

𝒊=𝟏

+  
𝟏

𝒎 ∗ 𝒑𝒊
𝒎

∞

𝒎=𝟐

𝒌

𝒊=𝟏

 + 𝒐(𝟏) 

Proof of the theorem 4. 

Now, consider fragments of the matrix 𝐵𝑘−1 and 𝐵𝑘 . From theorem 1 followed that prime numbers, 

which were distributed on 𝜑(𝐷𝑘−1)  rows of the fragment 𝐵𝑘−1, in case the fragment 𝐵𝑘 , redistributed 

on its 𝜑(𝐷𝑘)   rows. From conclusion of the Theorem 2 and Lemma 5 we find that this redistribution 

takes place without the participation of one prime 𝑝𝑘 . For this reason have the space the following 

equality: 

𝜋1𝜑(𝐷1) = 𝜋0𝜑(𝐷0) − 1 

𝜋2𝜑(𝐷2)  = 𝜋1𝜑(𝐷1) − 1 = 𝜋0𝜑(𝐷0) − 2 

𝜋3𝜑(𝐷3) = 𝜋2𝜑(𝐷2) − 1 = 𝜋0𝜑(𝐷0) − 3 

……………………………………………….. 

𝜋𝑘𝜑(𝐷𝑘) = 𝜋𝑘−1𝜑(𝐷𝑘−1) − 1 = 𝜋0𝜑(𝐷0) − 𝑘 

Where 𝜋0 – is  the quantity of prime numbers containing in an arithmetic progression, consisting of a 

natural numbers from 1 to 𝑥.  We know that 𝜑(𝐷0) = 𝜑(1) = 1. 

From the last equality follows that 

𝜋𝑘 =
𝜋0 − 𝑘

𝜑(𝑝𝑘 ! ′)
                                                       (10) 

where k – is the ordinal number of the matrix. 

We define 𝑁. All numbers in the case of matrix fragment 𝐵𝑘−1 containing in its 𝑝𝑘−1! ′ rows, evenly 

redistributed by 𝑝𝑘 ! ′ rows of the matrix fragment𝐵𝑘 , follows from Lemma 4. Therefore, all numbers 

in an arithmetic progression consisting of natural numbers from 1 to 𝑥,  redistributed by 𝑝𝑘 ! ′ rows of 

the matrix fragment 𝐵𝑘 , i.e.: 

𝑁𝑘𝑝𝑘 ! ′ = 𝑁0 

where𝑁0 - is the number of all (prime and composite) numbers, that contained in an arithmetic 

progression consisting of a natural numbers from 1 to x, i.e. 𝑁0 = 𝑥 

We obtain from the last equality: 

𝑁𝑘 =
𝑁0

𝑝𝑘 !′
=

𝑥

𝑝𝑘 !′
.                                                  (11) 

The quantity of composite numbers not exceeding 𝑥  and containing in a separate row of the selected 

uncolored fragment 𝐵𝑘  of matrix determined, we define from (10), (11) 

𝑛𝑘 = 𝑁𝑘 − 𝜋𝑘 =
𝑥

𝑝𝑘 !′
(1 − 𝜀1),                                 (12 − 1) 

𝜀1 =
(𝜋0 − 𝑘)𝑝𝑘 ! ′

𝑥𝜑(𝑝𝑘 ! ′
                                                  (12 − 2) 

where 𝜀1- is a small quantity 

We define the ratio of prime numbers to the composite number, containing in uncolored rows of the 

matrix fragment 𝐵𝑘  from (10), (12): 

𝜈𝑘 =
𝜋𝑘
𝑛𝑘

=
𝜋0(1 −

𝑘

𝜋0
)𝑝𝑘 !′

𝑥𝜑(𝑝𝑘 ! ′)(1 − 𝜀1)
=

𝜋0𝑝𝑘 !′

𝑥𝜑(𝑝𝑘 ! ′)
(1 + 𝜀1)(1 − 𝜀2),       (13 − 1) 

𝜀2 =
𝑘

𝜋0
 – 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦                               (13 − 2) 

Similarly for the matrix fragment 𝐵𝑘  get:  
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𝜈𝑘−1 =
𝜋𝑘−1

𝑛𝑘−1
=

𝜋0𝑝𝑘−1!′

𝑥𝜑(𝑝𝑘−1! ′)
(1 + 𝜀1)(1 − 𝜀2

′ ),                   (14 − 1) 

𝜀2
′ =

𝑘 − 1

𝜋0
 – 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦                           (14 − 2) 

If consider sequence of natural numbers in the range from 1 to 𝑥,  then 𝑥 = 𝑛0 + 𝜋0, therefore from 

(13) follows, that: 

𝜈𝑘 = 𝜈0

𝑝𝑘 !′

𝜑(𝑝𝑘 ! ′)
(1 + 𝜀1)(1 − 𝜀2)(1 − 𝜀3),                   (15 − 1) 

𝜀3 =
𝜋0

𝑛0
− is a small quantity                            (15 − 2) 

or 

𝜈𝑘 = 𝜈0

𝑝𝑘 !′

(𝑝𝑘 − 1)! ′
(1 + 𝜀1)(1 − 𝜀2)(1 − 𝜀3),                        (16) 

If using (12-2), (13-2) and (15-2), then multiplication (1 + 𝜀1)(1 − 𝜀2)(1 − 𝜀3) is a limited quantity. 

From (13-1), (14-1) and  (15-1) followed, that a prime numbers in any row uncolored fragment of the 

matrix 𝐵𝑘  placed more closely than in the case of the previous fragments of the matrix𝐵𝑘−1.  From 

(15) also followed that if the ordinal number k  of a fragment of the matrix 𝐵𝑘  increases, then the ratio 
𝜈𝑘

𝜈0
 grows continuously in any of its uncolored row. 

Choose x indeed very large, let be 𝑥 → ∞. Then this 𝑘 also can be very large, let be 𝑘 → ∞. Then 

after simple transformation from (16) get that: 

ln 𝜈𝑘 = ln 𝜈0 +   
1

𝑝𝑖

𝑘

𝑖=1

+  
1

𝑚 ∗ 𝑝𝑖
𝑚

∞

𝑚=2

𝑘

𝑖=1

 + 𝑜(1) 

An infinite sum consisting of reciprocals primes diverges, as shown by Euler. Here it is:  
1

𝑝𝑖

∞
𝑖=1 = ∞.  

Therefore, if ordinal number of a fragment of the matrix 𝐵𝑘  increases, then the parameter 𝜈𝑘  and  
𝜈𝑘

𝜈0
  

growing constantly. 

Theorem 4 is proved. 

It should be noted that the execution of theorem 4, in particular (16), perhaps then when in any 

unpainted rows of fragment 𝐵𝑘  the primes placed more tightly than in case of previous fragments 𝐵𝑖 , 
where 𝑖 < 𝑘. This means that in each pair of rows of twins will undoubtedly twins. 

Now consider the problem, posed before this work.  

Theorem 5.  

The hypothesis of an infinite quantity of prime twins is true. 

Proof of the theorem 5. 

We consider a couple of rows of the twins in a fragment of the matrix 𝐵𝑘  when k is large. Let, this 

pair of rows contains a lot of prime and composite numbers, not exceeding 𝑥. 

Assume, there is no pair of twins in this pair of rows. Two prime of different rows can’t contains in 

one column of the pair of twin rows. It is possible when  
𝜈𝑘

𝜈0
< 1. 

This conclusion contradicts to Theorem 4, in particular (16). Therefore, there are twins in each pair of 

twin rows. 

If ordinal number of a fragment of the matrix 𝐴𝑘 increases, then the quantity of pair of rows-twins 

growing constantly. This dependence (conclusion) follows from theorem 3: 
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lim
𝑘→∞

𝑚𝑘 = lim
𝑘→∞

(𝑝𝑘 − 2)!′ = ∞ 

So, there are twins in each of these pairs of rows-twins. This means that the number of twins 

infinitely.  

Theorem 5 is proved. 

4. CONCLUSION  

In this paper, to study the properties of prime twin numbers, the notion of a matrix of primes is 

introduced. Then in the paper we prove a number of lemmas and theorems with the help of which and 

the Dirichlet and Euler theorems are proposed to prove the infinity of the number of prime twins. 
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