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1. INTRODUCTION 

In 1942, K. Menger [5] introduced the notion of probabilistic metric space (briefly, PM-space) as a 

generalization of metric space. Such a probabilistic generalization of metric spaces appears to be well 

adapted for the investigation of physical quantities and physiological thresholds. It is also of 

fundamental importance in probabilistic functional analysis. The development of fixed point theory in 

PM-spaces was due to Schweizer and Sklar [8]. Sehgal and Bharucha-Reid [9] obtained a 

generalization of Banach Contraction Principle on a complete Menger space which is a milestone in 

developing fixed-point theory in Menger space. 

Recently, Jungck and Rhoades [4] termed a pair of self maps to be coincidentally commuting or 

equivalently weakly compatible if they commute at their coincidence points. Sessa [10] initiated the 

tradition of improving commutativity in fixed-point theorems by introducing the notion of weak 

commuting maps in metric spaces.  Jungck [3] soon enlarged this concept to compatible maps. The 

notion of compatible mapping in a Menger space has been introduced by Mishra [6].   

Recently, in 2013, Jain et. al. [2] proved a common fixed point theorem using the concept of semi-

compatibility and occasionally weak compatibility in Menger space.  

In this paper a fixed point theorem for six self maps has been proved using the concept of 

occasionally weak compatibility and compatibility of type () which generalizes the result of Pant 

et.al. [7]. We also cited an example. 

2.  PRELIMINARIES  

Definition 2.1.[6]  A mapping F : R R+ is called a  distribution if it is non-decreasing left 

continuous with  

 inf { F (t) | t  R } = 0    and    sup { F (t) | t   R} = 1. 

 We shall denote by L the set of all distribution functions while H will always denote the 

specific distribution function defined by  

  
0 , t 0

H(t) .
1 , t 0


 


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Definition 2.2. [6] A mapping t :[0, 1] × [0, 1]  [0, 1] is called a t-norm  if  it  satisfies the following 

conditions : 

(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)   t(a, b) =  t(b, a) ; 

(t-3)   t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 

Definition 2.3. [6] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a 

non-empty set X and a function F : X × X  L, where L is the collection of all distribution functions 

and the value of F at (u, v)  X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the 

following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, for all u,v,w  X and x, y > 0.  

Definition 2.4. [6] A Menger space is a triplet (X, F, t) where (X, F) is a  PM-space and t is a t-norm 

such that the inequality 

(PM-5) Fu,w (x + y)  t {Fu, v (x), Fv, w(y) }, for all u, v, w X, x, y  0. 

Definition 2.5. [6] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and 

converges to a point x in X if and only if for each  > 0 and  > 0, there is an integer M(, ) such that   

   Fxn, x () > 1 -   for all n  M(, ).   

 Further the sequence {xn} is said to be Cauchy sequence if for  

 > 0 and   > 0, there is an integer M(, ) such that  

   Fxn, xm
() > 1-   for all m, n  M(, ).  

 A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges 

to a point in X. 

 A complete metric space can be treated as a complete Menger space in the following way : 

Proposition 2.1. [2] If (X, d) is a metric space then the metric d induces mappings  

F : X × X  L,  defined by Fp,q(x) = H(x - d(p, q)), p, q X, where  

  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

   Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a,b) = min {a, b}. Then  (X, F, t) is a 

Menger space.  It is complete if (X, d) is complete. 

 The space (X, F, t) so obtained is called the  induced Menger space. 

Definition 2.6. [2] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible 

if they commute at their coincidence points i.e. Ax = Sx   for x X  implies  ASx = SAx. 

Definition 2.7. [6] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if  

FASxn, SAxn
(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for 

some u in X, as n . 



Fixed Points in Menger Space for Compatible Mappings of Type () 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 22 

Definition 2.8. [1] Self maps S and T of a Menger space (X, F, t) are said to be compatible of type () 

if FSSxn, TTXn 
(x)  1 for all  x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for 

some u in X, as n . 

Definition 2.9. [7] Self maps S and T of a Menger space (X, F, t) are said to be semi-compatible if 

FSTxn, Tu (x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some 

u in X, as n . 

Definition 2.10. [2] Self maps A and S of a Menger space (X, F, t) are said to be occasionally 

weakly compatible (owc) if and only if there is a point x in X which is coincidence point of A 

and S at which A and S commute. 

Now, we give an example of pair of self maps (I, L) which are compatible of type (P) but not-

semi-compatible. 

Example 2.1. Let (X, d) be a metric space where X = [0, 1] and (X, F, t) be the induced Menger space 

with  Fx,y = 
t

t d(x, y)
 for all t > 0. 

 Define self maps I and L as follows : 

 I(x) = x  for all x X   and  

1
x, if 0 x

2
L(x)

1
1, if x 1.

2


 

 
  


    

Taking  n

1 1
x

2 n
   ,  we get  Ixn =  xn = 

1 1

2 n
    and Lxn = 

1 1

2 n
 . 

Thus,  Lxn  
1

2
   as n  and  Ixn  

1

2
 , as n . 

Hence,  x =  
1

2
  

Since Lxn = 
1 1

2 n
  

Therefore, IIxn = 
1 1

I
2 n

 
 

 
  =  

1 1

2 n
  

and      LLxn = 
1 1

L
2 n

 
 

 
  = 

1 1

2 n
 . 

Consider   1 1 1 1
n n 2 n 2 n

IIx ,LLx ,
n n
lim F (t) lim F (t)

 
 

 = 1 for t > 0. 

Therefore, by definition, (I, L) is compatible mapping of type (). 

Now,  1 1
n 2 n

ILx ,Lx ,1
n n
lim F (t) lim F (t)


 

  < 1  for t > 0. 

Therefore, (I, L) is not semi-compatible mapping. Thus the pair  (I, L) of self maps is compatible of 

type () but not semi-compatible.  

Remark 2.2. In view of above example, it follows that the concept of compatible maps of type () is 

more general than that of semi-compatible maps.   
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Example 2.2. Let (X, d) be a metric space where X R
+
 and (X, F, t) be the induced Menger space 

with  Fx,y = 
t

t d(x, y)
 for all t > 0, x,  y X. 

Define self maps S and T as follows : 

  2

2
, if x 0

S(x) x

1, if x 0




 
 

   and  

2
, if x 0

T(x) x

1, if x 0.




 
 

    

Taking xn = n,  we get   

n nSSx ,TTx
n
lim F (t) 1



 
for t > 0. 

Hence, the pair (S, T) is not compatible of type (). 

Also, 0 and 1 are coincidence points of S and T but (S, T) commute only at point 0. 

Thus, the pair (S, T) is occasionally weakly compatible.   

Remark 2.1.  In view of example 2.2, the concept of occasionally weakly compatible is more general 

than that of compatibility of type () and weak compatibility.  

Lemma 2.1. [11] Let {xn} be a sequence in a Menger space (X, F, t) with continuous t-norms t and 

t(a, a) a. If there exists a constant k(0, 1) such that Fxn,xn+1
(kt) Fxn-1, xn

(t) for all t 0 and  

n = 1, 2, 3, ..., then {xn} is a Cauchy sequence in X.  

Lemma 2.3. [11] Let (X, F , t) be a Menger space. If there exists a constant k (0, 1) such that  

 Fx, y(kt) Fx, y(t) for all x, y X and t > 0, then x = y.  

A class of implicit relation.  Let be the set of all real continuous functions  

: (R+)4 R, non-decreasing in the first argument with the property : 

a. For u, v 0,  (u, v, v, u) 0  or  (u,v,u,v)0 implies that u v. 

b. (u, u, 1, 1) 0 implies that u 1. 

Example 2.3. Define  (t1,t2,t3,t4) = 18t1 - 16t2 + 8t3 - 10t4.  Then . 

3. MAIN RESULT 

Theorem 3.1. Let A, B, L, M, S and T be self mappings on a complete Menger space  (X, F, t) with  

t(a, a)  a,  for some a  [0, 1], satisfying : 

(3.1.1) L(X)   ST(X),  M(X)   AB(X); 

(3.1.2) ST(X) and AB(X) are complete subspace of X; 

(3.1.3) either AB or L is continuous;  

(3.1.4)  (L, AB) is compatible maps of type () and  (M, ST)  is occasionally weak compatible; 

(3.1.5) for some , there exists k (0, 1) such that for all x, y X and t > 0,  

 (FLx, My(kt), FABx, STy(t), FLx, ABx(t), FMy, STy(kt))  0 

then  A, B, L, M, S and T have a unique common fixed point in X.   

Proof. Let x0  X.  From condition (3.1.1)    x1, x2  X  such that   
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  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

 Lx2n = STx2n+1 = y2n      and      Mx2n+1 = ABx2n+2 = y2n+1     

        for n = 0, 1, 2, ... .  

Step 1.  Putting  x = x2n and  y = x2n+1  in (3.1.5), we get 

 (FLx2n, Mx2n+1
(kt), FABx2n, STx2n+1

(t), FLx2n, ABx2n
(t), FMx2n+1, STx2n+1

(kt))  0. 

Letting n , we get 

 (Fy2n, y2n+1
(kt), Fy2n-1, y2n

(t), Fy2n, y2n-1
(t), Fy2n+1, y2n

(kt))  0. 

Using (a), we get 

 Fy2n, y2n+1
(kt)  Fy2n-1, y2n

(t). 

Therefore, for all n even or odd, we have 

 Fyn, yn+1
(kt)  Fyn-1, yn

(t). 

 Therefore, by lemma  2.1, {yn} is a Cauchy sequence in X, which is complete.  

 Hence {yn}  z X.  Also its subsequences converges as follows : 

 {Lx2n}   z,   {ABx2n}     z,    {Mx2n+1}    z  and {STx2n+1}    z.  

Case I.   When AB is continuous. 

 As AB is continuous, (AB)2x2n   ABz  and  (AB)Lx2n   ABz. 

 As (L, AB) is compatible pair of  type (), so     

LLx2n   (AB)(AB)x2n  and so LABx2n ABz 

Step 2.  Putting  x = ABx2n  and  y = x2n+1  in (3.1.5), we get 

(FLABx2n, Mx2n+1
(kt), FABABx2n, STx2n+1

(t), FLABx2n, ABABx2n
(t), FMx2n+1, STx2n+1

(kt))  0 

Letting n , we get 

 (FABz, z(kt), FABz, z(t), FABz, ABz(t), Fz, z(kt))  0 

 (FABz, z(kt), FABz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FABz, z(kt), FABz, z(t), 1, 1)  0. 

Using (b), we get 

 FABz, z(t) = 1, for all t > 0, 

i.e. ABz = z. 

Step 3.  Putting  x = z  and y = x2n+1  in (3.1.5), we get 

 (FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 
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Letting n , we get 

 (FLz, z(kt), FABz, z(t), FLz, ABz(t), Fz, z(kt))  0 

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

As is non-decreasing in the first argument, we have   

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

Using (a), we get 

 Fz, Lz(kt) = 1, for all t > 0,  

i.e.  z = Lz. 

Thus, we have z = Lz = ABz.   

Step 4.  Putting  x = Bz   and  y = x2n+1  in (3.1.5), we get 

 (FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n
(kt))  0. 

Letting n , we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 (FBz, z(kt), FBz, z(t), 1,  1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1,  1)  0. 

Using (b), we have 

 FBz, z(t) = 1,  for all t > 0, 

i.e. z = Bz. 

Since z = ABz, we also have 

 z = Az. 

Therefore, z = Az = Bz = Lz. 

Step 5.   As L(X) ST(X),  there exists v   X such that  

   z = Lz = STv.     

 Putting x = x2n    and  y = v  in (3.1.5),  we get 

 (FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  
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Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is occasionally weakly compatible, we have 

  STMv = MSTv.        Thus,  STz = Mz. 

Step 6.    Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t) 1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step 7.    Putting x = x2n   and  y = Tz  in (3.1.5) and using Step 5,  we get 

 (FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(t), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Tz(t)  1, for all t > 0. 

Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz . 

Hence    

  Az = Bz = Lz = Mz = Tz  = Sz  = z. 

 Hence, the six self maps have a common fixed point in this case.  

Case II.    When L is continuous 

 As L is continuous, L2x2n   Lz    and    L(AB)x2n   Lz. 

 As (L, AB) is compatible map of type (), so    
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  LLx2n  (AB) (AB)x2n  and LABx2n ABz 

 By uniqueness of limit in Menger space, we have  

  Lz = ABz. 

Step 8.   Putting x = z and y = x2n+1  in (3.1.5),  we get 

 (FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FLz, z(kt), FLz, z(t), FLz, Lz(t), Fz, z(kt))  0 

 (FLz, z(kt), FLz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FLz, z(t), FLz, z(t), 1, 1)  0. 

Using (b), we have 

 Fz, Lz(t)  1, for all t > 0. 

Thus, Fz, Lz(t) =1 

 z = Lz. 

Therefore,  

 z = Lz = ABz. 

Step 9.  Putting x = Bz and y = x2n+1  in (3.1.5),  we get 

 (FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 (FBz, z(kt), FBz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1, 1)  0. 

Using (b), we have 

 FBz, z(t)  1, for all t > 0. 

Thus, FBz, z(t) =1 

 z = Bz. 

Since z  = ABz, we also have  z = Az. 

Therefore,  z = Az = Bz = Lz. 

Step 10.   As L(X) ST(X),  there exists v   X such that  

   z = Lz = STv.     

 Putting x = x2n    and  y = v  in (3.1.5),  we get 
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 (FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  

Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is occasionally weakly compatible, we have 

  STMv = MSTv.         

Thus,  STz = Mz. 

Step 11.    Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t)  1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step 12. Putting x = x2n   and  y = Tz  in (3.1.5) and using Step 5,  we get 

 (FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Tz(t)  1, for all t > 0. 
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Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz . 

Hence   Az = Bz = Lz = Mz = Tz  = Sz  = z. 

Hence, the six self maps have a common fixed point in this case also. 

Uniqueness.  Let w be another common fixed point  of A, B, L, M, S and T;  then   

w = Aw =  Bw = Lw = Mw = Sw = Tw. 

 Putting x = z   and    y = w   in   (3.1.5), we get 

 (FLz, Mw(kt), FABz, STw(t), FLz, ABz(t), FMw, STw(kt))  0 

 (Fz, w(kt), Fz, w(t), Fz, z(t), Fw, w(kt))  0 

 (Fz, w(kt), Fz, w(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, w(t), Fz, w(t), 1, 1)  0. 

Using (b), we have 

 Fz, w(t)  1, for all t > 0. 

Thus,  Fz, w(t) = 1,  

i.e.,  z = w. 

 Therefore, z is a unique common fixed point of A, B, L, M, S & T. 

 This completes the proof. 

Remark 3.1. The above theorem is a generalization of the result of Pant et. al. [7] in the sense that the 

conditions of semi-compatibility and weak compatibility have been replaced by compatibility of type 

() and occasionally weakly compatible. 

On taking B = T = I (the identity map) on X in theorem 3.1, we get the following corollary.  

Corollary 3.1. Let A, L, M, and S be self mappings on a complete Menger space  

(X, F, t) with  t(a, a)  a,  for some a  [0, 1], satisfying : 

(3.1.1) L(X)   S (X),  M(X)   A (X); 

(3.1.2) S (X) and A (X) are complete subspace of X; 

(3.1.3) either A or L is continuous;  

(3.1.4)  (L, A) is compatible maps of type () and  (M, S)  is occasionally weak compatible; 

(3.1.5) for some , there exists k (0, 1) such that for all  

x, y X and t > 0,  

 (FLx, My(kt), FAx, Sy(t), FLx, Ax(t), FMy, Sy(kt))  0 

then  A, B, L, M, S and T have a unique common fixed point in X. 
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