International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 4, Issue 6, June 2016, PP 23-27 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) DOI: http://dx.doi.org/10.20431/2347-3142.0406005 www.arcjournals.org

The Lower and Upper Forcing Edge-to-vertex Geodetic Numbers of a Graph

S.Sujitha

Department of Mathematics Holy Cross College (Autonomous) Nagercoil, India.

Abstract: A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of S, denoted by $f_{ev}(S)$, is the cardinality of a minimum forcing subset of S. The lower forcing edge-to-vertex geodetic number of G, denoted by $f_{ev}(G)$, is $f_{ev}(G) = \min\{f_{ev}(S)\}$, where the minimum is taken over all minimum edge-to-vertex geodetic sets S in G. The upper forcing edge-to-vertex geodetic number of G, denoted by $f_{ev}^+(G)$, is $f_{ev}^+(G) = \max\{f_{ev}(S)\}$, where the maximum is taken over all minimum edge-to-vertex geodetic sets S in G. These concepts were studied in [3], [4] and [9]. In this paper, we extend the study of lower and upper forcing edge-to-vertex geodetic numbers of graphs whose minimum edge-to-vertex geodetic sets containing antipodal edges.

Keywords: *edge-to-vertex geodetic number, lower forcing edge-to-vertex geodetic number, upper forcing edge-to-vertex geodetic number.*

AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The *order* and *size* of *G* are denoted by *p* and *q* respectively. For basic definitions and terminologies we refer to [1]. For vertices *u* and *v* in a connected graph *G*, the *distance d* (*u*, *v*) is the length of a shortest u - v path in *G*. A u - v path of length *d* (*u*, *v*) is called a u - v geodesic. A vertex *x* is said to *lie* on a u - v geodesic if *x* is a vertex of a u - v geodesic.

A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining a pair of vertices of S. The geodetic number g(G) of G is the minimum cardinality of a geodetic set and any geodetic set of cardinality g(G) is called a geodetic basis or simply a g-set of G. A set $S \subseteq E(G)$ is called an *edge-to-vertex geodetic set* if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The *edge-to-vertex geodetic number* $g_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an *edge-to-vertex geodetic basis* of G or a $g_{ev}(G)$ -set of G. This concept is studied in [8].

For any edge *e* of a connected graph *G*, the *edge-to-edge eccentricity* $e_3(e)$ of *e* is $e_3(e) = max \{ d(e, f) : f \in E(G) \}$. The minimum eccentricity among the edges of *G* is the *edge-to-edge radius*, *rad G* and the maximum eccentricity among the edges of *G* is the *edge-to-edge diameter*, *diam G* of *G*. Two edges *e* and *f* are *antipodal* if *d* (*e*, *f*) = *diam G* or *d* (*G*). This concept was studied in [7]. A vertex *v* is an *extreme vertex* of a graph *G* if the subgraph induced by its neighbors is complete. An edge *e* of a graph *G* is called an *extreme edge* of *G* if one of its end is an extreme vertex of *G*.

A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle and it is denoted by W_p . In this paper, W_p denotes a wheel graph with p+1 vertices $(p \ge 3)$ which is formed by connecting a single vertex to all vertices of a cycle of length p. The wheel graph has diameter two if p > 3 and one if p = 3. The graph $C_4 \times K_2$ is often denoted by Q_3 and is called 3-cube. The triangular snake TS_n is obtained from the path P_n by replacing every edge of a path by a triangle C_3 . The square

of graph G denoted by G^2 is defined to be the graph with the same vertex set as G and in which two vertices u and v are joined by an edge in $G \Leftrightarrow 1 \le d(u,v) \le 2$. These concept were studied in [2],[5] and [6].

A subset $T \subseteq S$ is called a *forcing subset* for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a *minimum forcing subset* of S. The *forcing edge-to-vertex geodetic number* of S, denoted by $f_{ev}(S)$, is the cardinality of a minimum forcing subset of S. The lower forcing edge-to-vertex geodetic number of G, denoted by $f_{ev}(G)$, is $f_{ev}(G) = \min\{f_{ev}(S)\}$, where the minimum is taken over all minimum edge-to-vertex geodetic sets S in G. The *upper forcing edge-to-vertex geodetic number* of G, denoted by $f_{ev}^+(G) = \max\{f_{ev}(S)\}$, where the maximum is taken over all minimum edge-to-vertex geodetic sets S in G. These concepts were studied in [3],[4] and [9]. In this paper we study some more properties about the lower and upper forcing edge-to-vertex geodetic numbers in minimum edge-to-vertex geodetic sets of connected graphs.

Throughout the following G denotes a connected graph with at least three vertices. The following Theorems are used in the sequel.

Theorem 1.1.[9] For every connected graph $G, 0 \le f_{ev}^+(G) \le g_{ev}(G)$.

Theorem 1.2. [3] For every connected graph $G, 0 \le f_{ev}(G) \le g_{ev}(G)$.

Theorem 1.3. [3] Let *G* be a connected graph. Then

a) $f_{ev}(G) = 0$ if and only if G has a unique minimum edge-to-vertex geodetic set.

b) $f_{ev}(G) = 1$ if and only if G has at least two minimum edge-to-vertex geodetic sets, one

of which is a unique minimum edge-to-vertex geodetic set containing one of its elements, and

c) $f_{ev}(G) = g_{ev}(G)$ if and only if no minimum edge-to-vertex geodetic set of G is the unique

minimum edge-to-vertex geodetic set containing any of its proper subsets.

Theorem 1.4. [9] Let G be a connected graph. Then

- a) $f_{ev}^+(G) = 0$ if and only if G has a unique minimum edge-to-vertex geodetic set.
- b) $f^{+}_{ev}(G) = 1$ if and only if *G* has at least two minimum edge-to-vertex geodetic sets, in which one element of each minimum edge-to-vertex geodetic set of *G* does not belong

to any other minimum edge-to-vertex geodetic set of G.

c) $f^{+}_{ev}(G) = g_{ev}(G)$ if and only if there exists at least one minimum edge-to-vertex geodetic set of *G* which does not contain any proper forcing subsets.

2. THE LOWER AND UPPER FORCING EDGE-TO-VERTEX GEODETIC NUMBERS OF A GRAPH

The following Lemma gives the bound for the lower and upper forcing edge-to-vertex geodetic numbers of a graph. It is the extension of the results proved in [3] and [9].

Lemma 2.1. For every connected graph G, $0 \le f_{ev}(G) \le f_{ev}^+(G) \le g_{ev}(G)$.

Proof. In [3] and [9], we proved the results $0 \le f_{ev}(G) \le g_{ev}(G)$ and $0 \le f_{ev}^+(G) \le g_{ev}(G)$. Therefore, to conclude the lemma we need to prove $f_{ev}(G) \le f_{ev}^+(G)$. By the definition of the lower and upper forcing edge-to-vertex geodetic number, we see that $f_{ev}^+(G)$ is the maximum of all forcing edge-to-vertex geodetic numbers of the minimum edge-to-vertex geodetic sets, and $f_{ev}(G)$ is the minimum of all forcing edge-to-vertex geodetic numbers of the minimum edge-to-vertex geodetic sets. Hence the inequality is obvious.

Example 2.2. The bounds in Lemma 2.1 are sharp. Consider the non-trivial tree G = T. Since the tree has a unique minimum edge-to-vertex geodetic set, and by Theorem 1.4(a) and Theorem 1.3(a), $f_{ev}(G) = 0$, $f_{ev}(G) = 0$ so that $0 = f_{ev}(G) = f_{ev}^+(G)$. Also, in [3] and [9], for an even cycle C_{2p} (p = 2,3...), $f_{ev}^+(G) = 1 = f_{ev}(G)$ and $g_{ev}(G) = 2$. Moreover, all the inequalities in Lemma 2.1 are strict.

For the wheel graph $G = W_{10}$, $f^{+}_{ev}(G) = 3$, $f_{ev}(G) = 2$ and $g_{ev}(G) = 4$. Hence $0 < f_{ev}(G) < f^{+}_{ev}(G) < g_{ev}(G)$.

In [3] and [9], we showed the result, $f_{ev}^+(G) = 0$ if and only if G has a unique minimum edge-to-vertex set and also, $f_{ev}(G) = 0$ if and only if G has a unique minimum edge-to-vertex set. The following lemma is an extension of that result.

Lemma 2.3. For a connected graph $G, f_{ev}(G) = 0$ if and only if $f_{ev}^+(G) = 0$.

Proof. The proof is obvious.

Theorem 2.4. For a 3-cube graph $G = Q_3$, a set $S \subseteq E(G)$ is a minimum edge-to-vertex geodetic set if and only if S consists of a pair of antipodal edges.

Proof. Let the vertices of Q_3 be v_1 , v_2 , v_3 , ..., v_8 . Without loss of generality, we take v_1 , v_2 , v_3 and v_4 are the vertices of the outer square and v_5 , v_6 , v_7 and v_8 are the vertices of the inner square of the 3-cube. Then the edges v_1v_5 and v_3v_7 are a pair of antipodal edges. Let $S = \{v_1v_5, v_3v_7\}$. Clearly, S is a minimum edge-to-vertex geodetic set of Q_3 . Conversely, let S be a minimum edge-to-vertex geodetic set of Q_3 . Then $g_{ev}(Q_3) = |S|$. Let S' be any set of pair of antipodal edges of Q_3 . Then as in the first part of this theorem, S' is a minimum edge-to-vertex geodetic set of Q_3 . Hence |S'| = |S|. Thus $S = \{uv, xy\}$. If uv and xy are not antipodal, then any vertex that is not on the uv - xy geodesic does not lie on the uv - xy geodesic. Thus S is not a minimum edge-to-vertex geodetic set, which is a contradiction.

Theorem 2.5. For a 3-cube graph $G = Q_3$, $f_{ev}(G) = f_{ev}^+(G) = 1$.

Proof. By Theorem 2.4, every minimum edge-to-vertex geodetic set of Q_3 consists of pair of antipodal edges. Hence Q_3 has two independent minimum edge-to-vertex geodetic sets and it is clear that each singleton set is the minimum forcing subset for exactly one minimum edge-to-vertex geodetic set of Q_3 . Hence it follows from Theorem 1.3 (a) and (b) that $f_{ev}(Q_3) = 1$. Also, from Theorem 1.4 (a) and (b) that $f^+_{ev}(Q_3) = 1$. Thus $f_{ev}(G) = f^+_{ev}(G) = 1$.

Theorem 2.6. Let *G* be a connected graph with at least two g_{ev} -sets. If every minimum edge-tovertex geodetic sets of *G* containing antipodal edges, then $f_{ev}(G) = 1 = f_{ev}^+(G)$. **Proof.** Let *G* be a connected graph. Suppose S_i , i = 1, 2, ... are a collection of minimum edge-to-vertex geodetic sets containing antipodal edges of *G*. Since each S_i contains antipodal edges, we observe that every minimum edge-to-vertex geodetic set is independent of others. Therefore, each singleton set is the minimum forcing subset for exactly one minimum edge-to-vertex geodetic set of *G*. Hence, by Theorem 1.3 (*a*) and (*b*), we get $f_{ev}(G) = 1$. Also, from Theorem 1.4 (*a*) and (*b*), $f_{ev}^+(S_i) = 1$ for all i = 1, 2, ... So that $f_{ev}^+(G) = 1$. Thus $f_{ev}(G) = 1 = f_{ev}^+(G)$.

The following theorem is the interpretation of the previous theorem.

Theorem 2.7. Let *G* be a connected graph with at least two g_{ev} -sets. If pairwise intersection of distinct minimum edge-to-vertex geodetic sets of *G* is empty, then $f_{ev}(G) = 1$ and $f_{ev}^+(G) = 1$.

Proof. Given that *G* has at least two minimum g_{ev} -sets and for every minimum edge-to-vertex geodetic set S_i , i = 1, 2, ... such that $S_i \cap S_j = \emptyset$. Therefore S_i has an edge uv such that $uv \notin S_j$ for every minimum edge-to-vertex geodetic S_j different from S_i . Hence we obtain $f_{ev}(G) = 1$. Since this is true for all minimum edge-to-vertex geodetic sets, we get $f_{ev}^+(G) = 1$.

The following table shows that the lower and upper forcing edge-to-vertex geodetic numbers of some wheel graphs.

Table 1

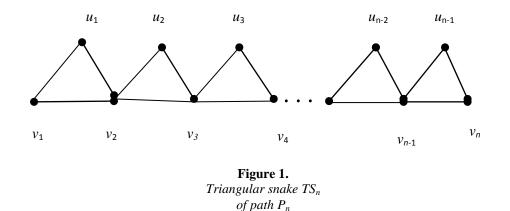
Graph	$f_{ev}(G)$	$f^+_{ev}(G)$
W_3	1	1
W_4	2	2
W_5	1	1
W_6	1	1
W_7	2	3
W_8	2	2
W_9	1	1
W_{10}	2	3

Corollary 2.8. For a wheel graph, $f_{ev}^+(W_{3p}) = f_{ev}(W_{3p}) = 1$ if p > 1

Proof. Let the vertices of W_{3p} (p > 1) be $\{v_1, v_2, v_3, ..., v_{3p+1}\}$. Note that the minimum edge-to-vertex geodetic sets of W_{3p} are $S_1 = \{v_1v_2, v_4v_5, ..., v_{3p-2}v_{3p-1}\}$, $S_2 = \{v_2v_3, v_5v_6, ..., v_{3p-1}v_{3p}\}$, $S_3 = \{v_3v_4, v_6v_7, ..., v_{3p}v_1\}$. It is clear that $S_1 \cap S_2 = S_2 \cap S_3 = S_1 \cap S_3 = \emptyset$. That is, pair wise intersection of minimum edge-to-vertex geodetic sets of W_{3p} is empty. Hence by theorem 2.7, we have $f_{ev}(W_{3p}) = 1$. Since this is true for all minimum edge-to-vertex geodetic sets of W_{3p} , we get $f_{ev}^+(W_{3p}) = 1$.

Theorem 2.9. For a triangular snake, $G = TS_n$ of path $P_n(n > 2)$, $f_{ev}(G) = f_{ev}^+(G) = 1$.

Proof. Let $G = TS_n$ be a triangular snake obtained from the path P_n . Consider the vertices of TS_n are $\{v_1, v_2, v_3, ..., v_n, u_1, u_2, u_3, ..., u_{n-1}\}$. The graph $G = TS_n$ is shown in Figure 1.We can easily observe that $S_1 = \{u_1v_1, u_2v_3, u_3v_4, ..., u_{n-1}v_n\}$ and $S_2 = \{u_1v_1, u_2v_2, u_3v_3, ..., u_{n-2}v_{n-2}, u_{n-1}v_n\}$ are the only two minimum g_{ev} -sets of G, and some singleton sets are minimum forcing subsets for exactly one minimum g_{ev} -set of G. Hence, by Theorem 1.3 (a) and (b), we get $f_{ev}(G) = 1$. Also, by Theorem 1.4 (a) and (b), $f_{ev}^+(G) = 1$ for all i = 1, 2. So that $f_{ev}^+(G) = 1$. Thus $f_{ev}(G) = 1 = f_{ev}^+(G)$.



Theorem 2.10. For a square path $G = p_n^2$, $f_{ev}(G) = f_{ev}^+(G) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd} \end{cases}$.

Proof.

Let the vertices of the square path p_n^2 be $\{v_1, v_2, v_3, ..., v_n\}$. The graph $G = p_n^2$ is shown in Figure 2.

Case (i): *n* even & *n* > 2.

It is clear from the vertices of the square path p_n^2 , $S = \{v_1v_2, v_{n-1}v_n\}$ is a unique minimum edgeto-vertex geodetic set of *G*. Since a square path, $1 \le d(u,v) \le 2$ for all u,v in *G*, we have every vertices of p_n^2 is either incident or lies on a geodesic joining of v_1v_2 and $v_{n-1}v_n$. Hence, by Theorem 1.3 (*a*), f_{ev} (*G*) = 0. Also, by Theorem 1.4 (*a*), $f_{ev}^+(G) = 0$. Thus $f_{ev}(G) = 0 = f_{ev}^+(G)$.

Case (ii): *n* odd & *n* > 3.

Since *G* has more than one minimum edge-to-vertex geodetic sets, and by Theorem 1.3 (a) $f_{ev}(G) \neq 0$ and by theorem 1.4(a) $f_{ev}^+(G) \neq 0$. It is clear that, the sets $S_1 = \{v_1v_2, v_{n-2}, v_{n-1}, v_{n-1}v_n\}$, $S_2 = \{v_1v_2, v_{n-2}v_{n-1}, v_{n-2}v_n\}$, $S_3 = \{v_1v_3, v_2v_3, v_{n-1}v_n\}$, $S_4 = \{v_1v_2, v_2v_3, v_{n-1}v_n\}$, $S_5 = \{v_1v_2, v_{n-2}v_n, v_{n-1}v_n\}$, $S_6 = \{v_1v_2, v_1v_3, v_{n-1}v_n\}$ are the only minimum edge-to-vertex geodetic sets of p_n^2 . It is easily verified that, each singleton set is a subset of more than one minimum edge-to-vertex geodetic sets $S_i(1 \leq i \leq 6)$ and hence $f_{ev}(G) \neq 1$. Since S_3 is the unique minimum edge-to-vertex geodetic set containing $T = \{v_1v_3, v_2v_3\}$, it follows that $f_{ev}(S_3) = 2$. Hence $f_{ev}(G) = 2$. But it is easily verified that the every two element subsets of S_i are not contained in more than one minimum edge-to-vertex geodetic set $S_i(1 \leq i \leq 6)$ so that $f_{ev}(S_i) = 2$ for all $(1 \leq i \leq 6)$ and hence $f_{ev}^+(G) = 2$.



Figure 2. *Square path* p_n^2

3. CONCLUSION

In this paper we considered the lower and upper forcing edge-to-vertex geodetic numbers of some graphs. One can go for the general result on $f_{ev}(G)$ and $f_{ev}^+(G)$, for every pair a, b of integers with $0 \le a \le b \le c$, there exists a connected graph G such that $f_{ev}(G) = a$, $f_{ev}^+(G) = b$ and $g_{ev}(G) = c$.

ACKNOWLEDGEMENT

The author of this article is supported by the University Grants Commission, New Delhi, through the minor research project for teachers (UGC XII- Plan) (F.NO:4-4/2014-15(MRP-SEM/UGC-SERO))

REFERENCES

- [1] Buckley F., Harary F., *Distance in Graphs*, Addition- Wesley, Redwood City, CA, 1990.
- [2] Fu-Hsing Wang, Yue-li Wang, Jou-Ming Ghang, The lower and upper forcing geodetic numbers of block-cactus graphs, *European Journal of Operational Research*, 175(2006) 238-245.
- [3] John J., Vijayan A. and Sujitha S., The forcing edge-to-vertex geodetic number of a graph, *International Journal of Pure and Applied Mathematics* (accepted).
- [4] John J., Vijayan A. and Sujitha S., The forcing edge covering number of a graph, *Journal of Discrete Mathematical Sciences & Cryptography* Vol.14 (2011), No.3, pp.249 259.
- [5] Palani K., Nagarajan A., Forcing (G,D)-number of a Graph, *International J.Math. Combin.* Vol.3 (2011), 82-87.
- [6] Rathod N.B., Kanan K.K. i, Some path related 4-cordial graphs, *International Journal of Mathematics and Soft Computing*, Vol.5, No.2 (2015), 21 27.
- [7] Santhakumaran A.P., Center of graph with respect to edges, *Scientia*, 19(2010) 13-23.
- [8] Santhakumaran A.P. and John J., On the Edge-to-Vertex Geodetic Number of a Graph, *Miskolc Mathematical Notes*, 13(1)(2012) 107–119.
- [9] Sujitha S., The upper forcing edge-to-vertex geodetic number of a graph, *International Journal of Mathematics and Soft Computing*, Vol.6, No.1 (2016), 29-38.