Expansion Formula for the Multivariable A-Function Involving Generalized Legendre’s Associated Function

Yashwant Singh
Department of Mathematics, Governmentt College Kaladera, Jaipur(Rajasthan), India
dryasha23@yahoo.in

Satyaveer Singh
Department of Mathematics, Maharshi Dayanand Girls Science College, Jhunjhunu(Rajasthan), India
drsbhaira@gmail.com

Abstract: The authors have established a new expansion formula for multivariable A-function due to Gautam et. al. [3] in terms of products of the multivariable A-function and the generalized Legendre’s associated function due to Meulenbeld [4]. Some special cases are given in the last.

Keywords: Multivariable A-function, Generalized Legendre’s associated function, Multivariable H-function.

(2000 Mathematics subject classification: 33C99)

1. INTRODUCTION

Gautam and Goyal [3] defined and represented the multivariable A-function as follows:

$$A[z_1, \ldots, z_r] = A_{m,n,m',n';\ldots;m',n'}^{p,q;p',q';\ldots;p',q'}$$

$$= \frac{1}{(2\pi i)} \int_{L_i} \cdots \int_{L_i} \theta_i(s_i) \cdots \theta_r(s_r) \Phi(s_1, \ldots, s_r) z_1^{s_1} \cdots z_r^{s_r} ds_1 \cdots ds_r \quad (1.1)$$

Where $\omega = \sqrt{-1}$;

$$\theta_i(s_i) = \frac{\prod_{j=1}^{m} \Gamma(d_j^{(i)} - D_j^{(i)} s_i) \prod_{j=1}^{n} \Gamma(1 - c_j^{(i)} + C_j^{(i)} s_i)}{\prod_{j=m+1}^{q} \Gamma(1 - d_j^{(i)} + D_j^{(i)} s_i) \prod_{j=n+1}^{p} \Gamma(c_j^{(i)} - C_j^{(i)} s_i)}$$

$$\forall i \in \{1, \ldots, r\} \quad (1.2)$$

$$\Phi(s_1, \ldots, s_r) = \frac{\prod_{j=1}^{n} \Gamma(1 - a_j + \sum_{i=1}^{r} A_j^{(i)} s_i) \prod_{j=1}^{m} \Gamma(b_j - \sum_{i=1}^{r} B_j^{(i)} s_i)}{\prod_{j=m+1}^{q} \Gamma(a_j - \sum_{i=1}^{r} A_j^{(i)} s_i) \prod_{j=n+1}^{p} \Gamma(1 - b_j + \sum_{i=1}^{r} B_j^{(i)} s_i)}$$

Here $m, n, p, q, m', n', p', q'$ are non-negative integers and all $a_j, b_j, c_j^{(i)}, d_j^{(i)} s, A_j^{(i)} s, B_j^{(i)} s$ and $c_j^{(i)}, d_j^{(i)}$ are complex numbers.

The multiple integral defining the A-function of r-variables converges absolutely if
\begin{equation}
\left| \arg(\Omega_i) \right| \zeta_k^* < \frac{\pi}{2} \eta, \zeta_k^* = 0, \eta > 0
\end{equation}

$$\Omega_i = \prod_{j=1}^{p} \left\{ A_j^{(i)} \right\}^{\frac{\alpha_j}{\beta_j}} \prod_{j=1}^{q} \left\{ B_j^{(i)} \right\}^{\frac{\beta_j}{\alpha_j}} \prod_{j=1}^{n} \left\{ C_j^{(i)} \right\}^{-\gamma_j^{(i)}}, \forall i \in \{1, \ldots, r\}$$

$$\zeta_i^* = \int_m \left[\sum_{j=1}^{p} A_j^{(i)} - \sum_{j=1}^{q} B_j^{(i)} + \sum_{j=1}^{n} D_j^{(i)} - \sum_{j=1}^{n} C_j^{(i)} \right], \forall i \in \{1, \ldots, r\}$$

$$\eta_i = \operatorname{Re} \left[\sum_{j=1}^{n} A_j^{(i)} - \sum_{j=1}^{m} A_j^{(i)} + \sum_{j=1}^{n} B_j^{(i)} + \sum_{j=1}^{m} B_j^{(i)} + \sum_{j=1}^{n} D_j^{(i)} + \sum_{j=1}^{m} D_j^{(i)} + \sum_{j=1}^{n} C_j^{(i)} - \sum_{j=1}^{m} C_j^{(i)} \right], \forall i \in \{1, \ldots, r\}$$

If we take $A_j^{(i)}, B_j^{(i)}, C_j^{(i)}$ and $D_j^{(i)}$ as real and positive and $m = 0$, the A-function reduces to multivariable H-function of Srivastava and Panda [7]

In this paper we will evaluate an integral involving generalized associated Legendre’s function and the multivariable A-function due to Gautam [3] and apply it in deriving an expansion for the multivariable A-function in series of products of associated Legendre’s function and the multivariable A-function.

2. THE INTEGRAL

The integral to be evaluated is:

$$\int_{1}^{1-x} \frac{(1-x)^{\alpha_i} (1+x)^{\beta_i}}{\zeta_k^{(i)}} dx$$

$$\times A \left[(1-x)^{\alpha_i} (1+x)^{\beta_i}, \ldots, (1-x)^{\alpha_i} (1+x)^{\beta_i} \right] dx$$

$$= 2^{\alpha_i + \beta_i + 1} \sum_{r=0}^{\alpha_i + \beta_i + 1} \frac{(-1)^r (v-u+k+1)}{(1-u+k+1)} A_{m,n+2(m',n',\ldots; m',n')}^{(\alpha_i, \beta_i)}$$

$$\left[\begin{array}{c}
\frac{\hat{\alpha}_i (r, \ldots, \hat{\alpha}_i)}{\hat{\beta}_i (r, \ldots, \hat{\beta}_i)} \\
\frac{\hat{\alpha}_i (r, \ldots, \hat{\alpha}_i)}{\hat{\beta}_i (r, \ldots, \hat{\beta}_i)}
\end{array} \right]_{m,n}$$

$$\left(\begin{array}{c}
\frac{(-1)^{r+v} \beta_i}{\alpha_i} \\
\frac{(-1)^{r+v} \beta_i}{\alpha_i}
\end{array} \right)_{m,n}$$

$$\left(\begin{array}{c}
\frac{(-1)^{r+v} \beta_i}{\alpha_i} \\
\frac{(-1)^{r+v} \beta_i}{\alpha_i}
\end{array} \right)_{m,n}$$

(2.1)

The integral (2.1) is valid under the following set of conditions:

(i) $\alpha_i, \beta_i > 0; \forall i \in 1, 2, \ldots, r; k = \frac{u-v}{2}$ is a positive integer, k is an integer ≥ 0.

(ii) $\operatorname{Re} \left(\rho - u + \sum_{i=1}^{r} \alpha_i \frac{b_{i}^{(i)}}{\beta_{i}^{(i)}} \right) > -1; \operatorname{Re} \left(\sigma + v + \sum_{i=1}^{r} \beta_i \frac{b_{i}^{(i)}}{\beta_{i}^{(i)}} \right) > -1; (j = 1, 2, \ldots, m_i; i = 1, 2, \ldots, r)$

And the conditions given in (1.4) to (1.7) are also satisfied.

Proof: On expressing the multivariable A-function in the integrand as a multiple Mellin-Barnes type integral (1.1) and inverting the order of integrations, which is justified due to the absolute convergence of the integrals involved in the process, the value of the integral
Expansion Formula for the Multivariable A-Function Involving Generalized Legendre’s Associated Function

\[
= (2\pi w)^r \prod_{i=1}^{r} s_i(s_i) \sum_{i=1}^{r} \phi(s_i) z_i^{\tilde{s}_i}
\]

\[
\times \left\{ (1-x)^{\rho} (1+x)^{\sigma} \sum_{i=1}^{r} \sigma_{i}^{\frac{m-n}{2}} \sum_{i=1}^{r} \beta_{i}^{\frac{m-n}{2}} \right\}
\]

\[
P_{m,n}^{\mu,\nu}(x) dx \begin{bmatrix} d\xi_1 \ldots d\xi_r \end{bmatrix}
\]

On evaluating the x-integral with the help of the integral ([5], p. 343, eq. (38)):

\[
\int_{-1}^{1} (1-x)^{\rho} (1+x)^{\sigma} P_{m,n}^{\mu,\nu}(x) dx
\]

\[
= 2^{\rho+\sigma-\frac{m-n}{2}} \Gamma \left(\rho-\frac{m}{2}+1 \right) \Gamma \left(\sigma+\frac{n}{2}+1 \right)
\]

\[
\times \Gamma \left(1-m \right) \Gamma \left(\rho+\sigma-\frac{m-n}{2}+2 \right)
\]

\[
\times \beta_{\mu,\nu} \left(-k, n-m+k+1, \rho-\frac{m}{2}+1; 1-m, \rho-\sigma-\frac{m-n}{2}+2; 1 \right)
\]

Provided that $\text{Re} \left(\rho-\frac{m}{2} \right) > -1; \text{Re} \left(\sigma+\frac{n}{2} \right) > -1$ and interpreting the result with the help of (1.1), the integral (2.1) is established.

3. **Expansion Theorem**

Let the following conditions be established:

(i) $\beta_1, \ldots, \beta_r > 0; \alpha_1, \ldots, \alpha_r \geq 0 (or \beta_1, \ldots, \beta_r \geq 0; \alpha_1, \ldots, \alpha_r > 0)$;

(ii) $m^{(i)}, n^{(i)}, p^{(i)}, q^{(i)} (i = 1, \ldots, r)$ are non-negative integers where

\[
0 \leq m^{(i)} \leq q^{(i)}, 0 \leq n^{(i)} \leq p^{(i)}, q^k \geq 0, 0 \leq n \leq p \text{ and the conditions given by (1.4) to (1.7) are also satisfied.}
\]

(iii) $\text{Re}(u) > -1, \text{Re}(v) > -1, \text{Re} \left(\rho-u + \sum_{i=1}^{r} \alpha_{i} \frac{b^{(i)}_{j}}{\beta_{j}^{(i)}} \right) > -1$;

\[
\text{Re} \left(\sigma+v + \sum_{i=1}^{r} \beta_{i} \frac{b^{(i)}_{j}}{\beta_{j}^{(i)}} \right) > -1; (j = 1, 2, \ldots, m_i; i = 1, 2, \ldots, r).
\]

Then the following expansion formula holds:

\[
(1-x)^{\rho} (1+x)^{\sigma} A \left[(1-x)^{a_1} (1+x)^{b_1} z_1, \ldots, (1-x)^{a_r} (1+x)^{b_r} z_r \right]
\]

\[
= 2^{\rho+\sigma} \sum_{N=0}^{\infty} \sum_{\mu=0}^{N} \frac{(2N-u+v+1)\Gamma(N-u+1)\Gamma(1+v-u+N+\mu)(-N)_{N}}{N!\mu!\Gamma(1+v+N)\Gamma(1-u+\mu)}
\]
(3.1) Proof: Let

\[f(x) = (1-x)^{m+\frac{n}{2}} (1+x)^{n+\frac{m}{2}} A \left[(1-x)^{\alpha_1} (1+x)^{\beta_1}, \ldots, (1-x)^{\alpha_r} (1+x)^{\beta_r} \right] \]

\[= \sum_{N=0}^{\infty} C_N^\nu P_{N-u-v}^{\mu,v} (x) \]

Equation (3.2) is valid since \(f(x) \) is continuous and of bounded variation in the interval \((-1,1)\).

Now, multiplying both the sides of (3.2) by \(P_{N-u-v}^{\mu,v} (x) \) and integrating with respect to \(x \) from \(-1\) to \(1\); evaluating the L.H.S. with the help of (2.1) and on the R.H.S. interchanging the order of summation, using ([2], p. 176, eq. (75)) and then applying orthogonality property of the generalized Legendre’s associated functions ([5], p. 340, eq. (27)):

\[\int_{-1}^{1} P_{k}^{\mu,v} (x) P_{N-u-v}^{\mu,v} (x) dx \]

Provided that \(\text{Re}(\mu), 1, \text{Re}(\nu) < 1 \); we obtain

\[\mathcal{C}_k = \frac{2^{(\nu+\mu)} (2k-u+v+1) \Gamma(k-u+1) \mu! \Gamma(k-u+\mu)}{k! \Gamma(k+v+1)} \sum_{\mu=0}^{\infty} \left[(-k)_\mu \Gamma(k-u+v+\mu+1) \right. \]

\[= \frac{2^{(\nu+\mu)} (2k-u+v+1) \Gamma(k-u+1) \mu! \Gamma(k-u+\mu)}{k! \Gamma(k+v+1)} \sum_{\mu=0}^{\infty} \left[(-k)_\mu \Gamma(k-u+v+\mu+1) \right. \]

Now on substituting the values of \(\mathcal{C}_k \) in (3.2), the result follows.

4. SPECIAL CASES

If in (2.1), we put \(m = 0 \), the multivariable \(A \)-function occurring in the left-hand side of these formulae would reduce immediately to multivariable \(H \)-function due to Srivastava et. al. [7] and we get result given by Saxena and Ramawat [6]

\[(1-x)^{m+\frac{n}{2}} (1+x)^{n+\frac{m}{2}} H \left[(1-x)^{\alpha_1} (1+x)^{\beta_1}, \ldots, (1-x)^{\alpha_r} (1+x)^{\beta_r} \right] \]

\[= 2^{(\nu+\mu)} \sum_{N=0}^{\infty} \sum_{\mu=0}^{\infty} \frac{(2N-u+v+1) \Gamma(N-u+1) \Gamma(1+v-u+N+\mu)(-N)_\mu}{N! \mu! \Gamma(1+v+N) \Gamma(1-u+\mu)} \]

\[= 2^{(\nu+\mu)} \sum_{N=0}^{\infty} \sum_{\mu=0}^{\infty} \frac{(2N-u+v+1) \Gamma(N-u+1) \Gamma(1+v-u+N+\mu)(-N)_\mu}{N! \mu! \Gamma(1+v+N) \Gamma(1-u+\mu)} \]

\[P_{N-u-v}^{\mu,v} (x) H \]
Expansion Formula for the Multivariable A-Function Involving Generalized Legendre’s Associated Function

\[
\begin{bmatrix}
\begin{array}{c}
2^{\alpha_{1}}+r,
\vdots
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\beta_{1}, \ldots, \beta_{r} \end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \gamma, \lambda, \mu),
(\alpha_{1}, \alpha_{2}, \ldots, \lambda, \mu),
(\alpha_{1}, \lambda, \mu),
(\gamma, \lambda, \mu),
(\lambda, \mu),
(\mu),
\end{array}
\end{bmatrix}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\begin{array}{c}
(\lambda, \mu),
(\gamma, \lambda, \mu),
(\lambda, \mu),
(\mu),
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \gamma, \lambda),
(\alpha_{1}, \alpha_{2}, \ldots, \lambda, \mu),
(\alpha_{1}, \lambda, \mu),
(\gamma, \lambda, \mu),
(\lambda, \mu),
(\mu),
\end{array}
\end{bmatrix}
\end{bmatrix}
\]

Provided all the conditions given with (3.1) and the conditions ([7], p.252-253, eq. (c.4), (c.5) and (c.6)) are satisfied.

For $n = 0 = p, q = 0$, the multivariable H-function breaks up into a product of r H-function and consequently, (4.1) reduces to

\[
(1-x)^{\mu/2} (1+x)^{\nu/2} \prod_{i=1}^{r} \left\{ H_{\mu,\nu}^{\mu,\nu} \right\} = 2^{\rho+\sigma} \sum_{N=0}^{\infty} \frac{(2N-u+v+1)\Gamma(N-u+1)\Gamma(1+v-u+N+\mu)(-N)_{\mu}}{N!\Gamma(1+v+N)\Gamma(1-u+\mu)}
\]

\[
P_{x}^{u,v} \left(\frac{x}{N} \right) H_{\mu,\nu}^{\mu,\nu} \left[\begin{array}{c}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r},
\beta_{1}, \beta_{2}, \ldots, \beta_{r},
\end{array} \right]
\]

For $r = 1$, (4.2) gives rise to the result due to Anandani [1].

REFERENCES

