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1. INTRODUCTION
Let (X, d) be a metric space and let T be a self-mappings on X. If T is such that for all x,y in X
d(Tx,Ty) < Ad(x,y) (1.1)

where 0 < A < 1, then T is said to be a contraction mapping. If T satisfies (1.1) with A =1, then T is
called a non-expansive mapping. If T satisfies any conditions of type

d(Tx,Ty) < a1d(x,y) + a,d(x, Tx) + azd(y,Ty) + a,d(x,Ty) + asd(y, Tx) 1.2)

where a; (i = 1,2,3,4,5) are nonnegative real numbers such that a; + a, + a3 + a4 + as < 1, then
T is said to be a contractive type mapping. If T satisfies (1.2) with a; + a, + az + a4 + a5 = 1, then
T is said to be a non-expansive type mapping. Similar terminology is used for multi-valued mappings.

Fixed point theorems for contractive, non-expansive, contractive type and non-expansive type
mappings provide techniques for solving a variety of applied problems in mathematical and
engineering sciences. It is one of the reason that many authors have studied various classes of
contractive type or non-expansive type mappings. For Banach spaces the famous is Gregus’s Fixed
Point Theorem [10] for non-expansive type single-valued mappings, which satisfy (1.2) with a, =
as = 0,a, < 1. The class of mappings T satisfying the following non-expansive type condition:

d(Tx,Ty) < a(x, y)max {d(x, y),d(x,Tx),d(y, Ty), w}
+b(x, y)max{d(x,Tx),d(y,Ty) + c(x,y)[d(x, Ty) + d(y, Tx)] (1.3)

for all x,y € X, where a, b, ¢ are nonnegative real numbers such that b > 0,c >0and a+ b + 2¢c =
1, was introduced and investigated by Ciric [9]. Ciric proved that in a complete metric space such
mappings have a unique fixed point. Chandra et al [7] consider the following generalization of (1.3),
let T, f: X — X satisfying:

d(Tx,Ty) < a(x,y)d(fx, fy) + b(x, y)max{d(fx,Tx),d(fy, Ty)}

+c(x, [ d(fx, Ty) +d(fy, Tx)] (1.4)
where

a(x,y) =20, B =infyyexb(x,¥) >0, y =infyyexc(x,y) >0
with
supryex(aCe,y) + b(x,y) + 2c(x,y)) = 1.
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Jhade et al [12] studied the following non-expansive type condition for two self-maps T, f: X — X;
d(Tx,Ty) < a(x, y)d(fx, fy) + b(x, y)max{d(fx,Tx),d(fy, Ty)}
+ c(x, y)ymax{d(fx, fy), d(fx, Tx),d(fy, Ty)}

+ e(x, yymax{d(fx, fy), d(fx,Tx),d(fy,Ty) d(fx,Ty)} (1.5)
where

a(x,y),b(x,y),c(x,y),e(x,y) =0,

B = infyyex e(x,y) >0

y = infx_yex(l +b(x,y)+ e(x,y)) >0
with

supx_yex(a(x, y)+b(x,y) +clx,y) + 2e(x, y)) = 1.

In 1965, Zadeh [25] introduced the concept of a fuzzy set as a new way to represent vagueness in
everyday life. The study of fixed point theorems in fuzzy mathematics was investigated by Weiss
[24], Butnariu [5], Singh and Talwar [20], Mihet [14], Qiu et al. [16], and Beg and Abbas [2] and
many others. Heilpern [11] first used the concept of fuzzy mappings to prove the Banach contraction
principle for fuzzy (approximate quantity-valued) mappings on a complete metric linear spaces. The
result obtained by Heilpern [11] is a fuzzy analogue of the fixed point theorem for multi-valued
mappings of Nadler et al. [15]. Bose and Sahani [4], Vijayaraju and Marudai [21], improved the result
of Heilpern. In some earlier work, Watson and Rhoades [22], [23] proved several fixed point
theorems involving a very general contractive definition.

In this paper, we establish a common fixed point theorem for fuzzy maps satisfying non-expansive
type condition on complete linear metric space. Also, a common fixed point theorem for sequence of
fuzzy mappings satisfying non-expansive type condition.

2. PRELIMINARIES
In this paper, we shall generally follow the notations of Heilpern [11].

Definition 2.1 Let (X, d) be a complete linear metric space and F (X), the collection of all fuzzy sets
in X. A fuzzy set in X is a function with domain X and values in [0,1]. If A is a fuzzy set and x € X,
then the function value A(x) is called the grade of membership of x in A. The a-level set of A is
denoted by

Ay ={x: A(x) = a} ifa € (0,1]
Ay = {x: A(x) > 0},
where B stands for the (non-fuzzy) closure of a set B.

Definition 2.2 A fuzzy set A is said to be an approximate quantity if and only if A, is compact and
convex for each a € (0,1] and sup,ex A(x) = 1, when A is an approximate quantity and A(x,) =
1 for some x, € X, A is identified with an approximation of x,. From the collection F(X), a sub-
collection of all appropriate quantities is denoted as W (X).

Definition 2.3 The distance between two appropriate quantities is defined by the following scheme.
Let A, B € W(X) and a € [0,1],

Da (A, B) = infxeAa,yeBa d(x, y) ;
H, (A, B) = dist d(A,, B,) ;
H(A,B) = sup, D(A, B) ;

wherein the dist is in the sense of Hausdorff distance .The function D, is called an a-distance
(induced by d), H, a a- distance (induced by dist) and H a distance between A and B. Note that D, is
a non-decreasing function of «.
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Definition 2.4 Let A,B € W(X). Then A is said to be more accurate than B, denoted by A c B, iff
A(x) < B(x) for each x € X. The relation c induces a partial ordering on the family W(X).

Definition 2.5 Let Y be an arbitrary set and X be any metric space. F is called a fuzzy mapping if and
only if F is a mapping from the set Y into W(X). A fuzzy mapping F is a fuzzy subset of ¥ x X with
membership function F(y, x). The function value F(y, x) is the grade of membership of x in F(y).
Note that each fuzzy mapping is a set valued mapping. Let A € F(X),B € F(Y). Then he fuzzy set
F(A) in F(X) is defined by

F(A)(x) = supyex(F(y,x) ANA(y)),x € X
and the fuzzy set F~1(B) in F(Y) is defined by

F7X(B) (y) = supyex F(y,x) AB(x),y €Y
Lee [13] proved the following.

Lemma 2.6 Let (X,d) be a complete linear metric space, F is a fuzzy mapping from X into W(X)
and x, € X, then there exists an x; € X such that {x;} c F(x,).

The following two lemmas are due to Heilpern [11].

Lemma 2.7 Let x € X, Ae W(X) and {x} a fuzzy set with membership function equal to a
characteristic function of {x}. If {x} c A, then D, (x, A) = 0 for each « € [0,1].

Lemma 2.8 Let A, B€ W(X), a€[0,1] and D,(4, B) = infyea, yep, d(x,y), where A, =
{x: A(x) = a}, then

Da(x,4) < d(x,y) + Do (y, A)
for each x,y € X.

Lemma 2.9 Let H, (A, B) = distd(A,, By), where ’dist’ is the Hausdorff distance. If {x, c A}, then
D, (xy, B) < H, (A, B) for each B € W(X).

Rhoades [18] proved the following common fixed point theorem involving a very general contractive
condition, for fuzzy mappings on complete linear metric space. He proved the following theorem.

Theorem 2.10 Let (X, d) be a complete linear metric space and let F, G be fuzzy mappings from X
into W(X) satisfying

H(Fx,Gy) < Q(m(x,y)), forall x,y € X, (2.1)
where

Dg(x,Gy)+ Do (y.F x)}

m(x,y) = max {d(x, y), Do (x, Fx), Dy (y, Gy), >

and Q is a real-valued function defined on D, the closure of the range of d, satisfying the following
three conditions:

a) 0<Q(s)<s foreachs e D\{0}and Q(0) =0,

b) Q is non-decreasing on D, and

c) g(s) = s/s—Q(s) isnon-increasing on D\{0}.
Then there exists a point z in X such that {z} € Fz n Gz.

In [17] Rhoades, generalized the result of Theorem 2.10 for sequence of fuzzy mappings on complete
linear metric space. He proved the following theorem.

Theorem 2.11 Let g be a non-expansive self-mapping of a complete linear metric space (X, d) and
{F} be a sequence of fuzzy mappings from X into W (X). For each pair of fuzzy mappings F;, F; and

for any x € X, {u,} c F;(x), there exists a {v, } ¢ F;(y) for all y € X such that
D({ux},{vy}) < Q(m(x,y)), forall x,y € X, (2.2)

where
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m(x, J/) = max {(g(x), g(y)), d(g(x)’g(ux))’ d (g(y), g(vy))’ d(g(x)’g("y))*z' d(g(y),g(ux))}

and Q satisfying the conditions (a)-(c) of Theorem 2.10. Then there exists {z} c N;,F;(z)
3. MAIN RESULTS
Now, we give our first main result.

Theorem 3.1 Let (X, d) be a complete linear metric space. F and G are two fuzzy mappings from X
into W(X) satisfying:

H(Fx,Gy) < a(x,y)d(x,y) + b(x,y) max{Dq(x, Fx), Da(y, Gy)}
+ c(x, y)max{d(x,y), Do (x, Fx), Do (y, GY)}
+ e(x,y) max{d(x,y), Do (x, Fx), Do (y, Gy), Do (x, Gy)}
+ h(x,y) max{d(x,y), Do (x, Fx), Do (y, GY), Do (x, GY), Do (y, Fx)} 31)

where a(x,y), b(x,y), c(x,vy), e(x,y), h(x,y)are non-negative real functions from X x X into
[0, +oc) such that

B = infyyex(e(x,y) + h(x,y)) >0 (3.2)
y = infyyex(b(x,y) + e(x,y) + h(x,)) > 0 (33)

with
supyyex(ax,y) + b(x,y) + c(x,y) + 2e(x,y) + 2h(x,y)) = 1. (3.4)

Then there exists a point z in X, which is a common fixed point of F and G, i.e. {z} c Fz N Gz.

Proof. Pick x, in X, then by Lemma 2.6, we can choose x; € X such that {x,} ¢ Fx,. Choose x, € X
such that {x,} c Gx; and d(x4,x,) < H(Fxy, Gx;). Continuing the process, we obtain a sequence
{xn} such that {xn41} © Fx2p, {X2n42} © GX2paq SUCh that d(xzn 41, Xan42) < H(FX2p, GXapne1),
where n = 0,1,2, .... Applying (3.1) and using triangle inequality, we have

d(X2n+1, Xon+2) < H(FXpn, GXop 1)
< ad(Xzn, X2n+1) + b max{Dg (X2n, FX21), Do (X2n+1, GX2n+1)}
+ ¢ max{d(xzn, X2n+1), Da (X2n, FX21), Da(X2n+1, GX2n11)}
+ e max{d(x2n, X2n+1), Da (X2n, FX27), Do (X2 +1, GX2p41)
y Do (X200, GX2p41) }
+ h max{d(xzn, X2n+1), Da(X2n, FX2n), Do (X2n+1, GX2n+1)
y Do (%20, GX2n41), Do (%2041, FX2n)}
< ad(X2p, X2p+1) T b max{d(Xz2p, X2n+1), A(X2n+1, X2n+2)}
+ ¢ max{d(xzn, X2n+1), d(X2n, X2n+1), d(X2n+1, X2n+2) }
+ e max{d(xzn, X2n+1), d(X2n, X2n+1), d(X2n+1, X2n+2), A(X2n, X2n+2)}
+ hmax{d(X2n, X2n+1), d (X2, X2n+1), A(X2n+1, X2n+2), d(X2p, X2n+2)
,d(X2n+1 X2n+1)}
< ad(xzn, X2p+1) + (b + ¢) max{d(xzn, X2n+1), A(X2n+1, X2n+2)}
+(e + h) max{d(x2n, X2n+1), d(X2n+1, X2n+2)
,d(X2p, X2n41) + d(X2n41, Xan+2)}

where a, b, ¢, e and h are evaluated at (x5, X2741)-
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If for some n, d(X2p41, Xana2) > d(X2n, X2n41). The last inequality gives
A(X2n+1, X2n+2) < (@+ b + ¢+ 2e + 2h)d(xzp, X241)
a contradiction. Therefore, for all n, we have
d(Xzn+1, Xan+2) < d(Xop, X2n41)
Hence, for all positive integers n,
Ad(Xzn+1, X2n+2) < d(xo, 1) (3.5)
Again applying (3.1) and triangle inequality, we have
d(x,,x3) < H(Fxq,Gx3)
< ad(xq,x;3) + b max{Dy(x1, Fx1), Do (x2, Gx3)}
+ ¢ max{d(xy, x3), Dg (%1, Fx1), Do (x2, Gx5)}
+ e max{d(xy, X2), Do (%1, FX1), Do (x2, Gx3), Dg (%1, Gx2)}
+ h max{d(xy, x3), Do (x1, Fx1), Do (%2, GX2), Do (%1, GX2)
, Do (2, Fx1)}
< ad(xq,x;) + b max{d(xq,x5),d (x5, x3)}
+ ¢ max{d(xq1, x3), d(xq, x2), d (x5, x3)}
+ e max{d(xy, x2), d(x1, x2), d (x2, x3), d(x1, X3)}
+ h max{d(x,, xz), d(xy, x2), d(x2, x3), d(x1, x3), d(x2, X2)}
where a, b, ¢, e and h are evaluated at (x;, x,). Using (3.5), we have
d(xy,x3) < ad(xy, x1) + b max{d(xg, x1), d(xq, x1)}
+ ¢ max{d(xg, x1), d(xo, x1), d(xg, x1)}
+ e max{d(xy, x1), d(xg, x1), d(xg, X1), d (%1, x3)}
+ h max{d(xg, x1), d(xq, x1), d(xg, x1), d(x1, x3)}
=(a+b+c)d(xg,x1)
+ (e + h) max{d(xg, x1), d(x1, x3)} (3.6)
Applying (3.1) again, we have
d(xq,x3) < H(Fxo,Gx5)
< ad(xg, x5) + b max{Dq(xq, Fxq), Da(x2, Gx3)}
+ ¢ max{d(xg, X3), Dy (X0, FX0), Do (%2, GX4)}
+ e max{d(xy, x3), Dy (xg, FXo), Do (x5, GX3), Do (X0, GX2)}
+ h max{d(xg, x5), Dg (xq, Fxg), Dg(x2, GX3), Dg (X0, GX3), D (x4, Fxo)}
< ad(xg, x5) + b max{d(xq, x1), d(x3,x3)}
+ ¢ max{d(xo, x2), d(xo, x1), d(x2, x3)}
+ e max{d(xy, x3), d(xg, x1), d(x3, x3), d(xo, x3)}
+ h max{d(xy, x,), d(xq, x1), d (x4, x3), d(xq, X3), d(x2, X1)} (3.7)
where a, b, ¢, e and h are evaluated at (x,, x,). Since
d(xg,x5) < d(xg,x1) + d(xq,x3) < 2d(x0, x1)
d(x, x3) < d(xg,%1) + d(xy, x3)
< d(xg,x1) + d(xq, x2) + d(xy, x3)
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< 3d(xg, x1)
Using (3.5) and (3.7), we have
d(xq1,%3) < (2a+ b+ 2c +3e + 3h)d(xg, x1)
Implies that
d(x,%3) < 2—b—e—h)d(xg,x1)
Hence, from (3.7)
d(x4,x3) < ad(xg, x1) + bd(xg, x1) + cd(xg, x1)
+(e+h)(2—b—e—h)d(xg,xq)
=(a+b+c+(e+h)(2—b—e—h))d(x0,x1)
= (1 —(e+h)(b+e+ h))d(xo, xX1)
< (1 - py)d(xo,x1)
It is easy to show that

At 2n01) < (1~ py) Bl g, 1) (38)
where E] stands for the greatest integer not exceeding g Also, since gy > 0, from (3.8), we have
{x,}nen is a Cauchy sequence in X. Since X is complete, there is a point z € X such that

lim,, 40 X, = 2. (3.9
Since a € [0,1], then using Lemma 2.8 and Lemma 2.9, we have
D,(z,Fz) <d(z,Gx,) + D,(Gx,, Fz)
<d(z,Gx,) + H,(Fz,Gx,)
<d(z,Gx,) + H(Fz Gx,)
Taking limit as n — +oo, we get
D,(z,Fz) <lim,_ o D (Fz,Gx,) <lim,_ ., H(Fz,Gx,) (3.10)
Again from (3.1), we have
H(Fz,Gx,) < ad(z,x,) + b max{D,(z, Fz), Dy (xn, GXy)}
+ c max{d(z,x,), Dg(z,F2), Dy (xn, GXp)}
+ e max{d(z,x,,),Dy(z,F2), Dy (xy, GXr), Da (2, Gxp)}
+ hmax{d(z, x,), Dq (2, Fz), Do (x, Gxy), Doy(2, GXy), Do (%, FZ)}
< supyyex(a+b +c+e+ h)max{d(z x,), max{Dy(z, Fz), Dy (X, GXp)}
,max{d(z,x,), Dg (2, FZz), Dy (Xn, GXp)}
,max{d(z,x,), Dg (2, Fz), Dy (xn, GXyp), Da (2, Gxy)}
,max{d(z,x,), Dg (2, Fz), Dy (xXn, GXp), Do (2, GXxy), Do (X, F2)}
Letting limit as n — 400, we get
lim,, 1o H(Fz,Gx,) < supyyex(@a+b+c+e+h)D,(z,Fz) = Dy(z,Fz) (3.11)
Using (3.10) and (3.11), we have
D,(z,Fz) < D,(z, Fz)

a contradiction. Hence we must have D, (z, Fz) = 0. Since « is arbitrary number in [0,1]. It follows
that D(z, Fz) = 0, which implies that {z} c Fz. Similarly it can be shown that{z} c Gz. Hence
{z}c FznGz.
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Now, we prove a common fixed point theorem for sequence of fuzzy mappings of non-expansive
condition.

Theorem 3.2 Let g be a non-expansive self-mapping of a complete linear metric space (X, d) and
{F;} be a sequence of fuzzy mappings from X into W(X). For each pair of fuzzy mappings F;, F; and

for any x € X, {u,} c F;(x), there exists a {v,} ¢ F;(y) for all y € X such that
D({u.}.{vy}) < ad(g(x), g() + b max {d(g(x), g(uy)), d (g(y),g(vy))}
+cmax{(g(0, 93),d(9 (0, gw)).d (93, a(v,))}
+e max{(g(0), g»), d(g(0), gw)),d (90, 9(v,)) . d (9, 9(v,))}

+h max{(g(x), g(y)), d(g(x),g(ux)), d (g(y),g(vy)), d (g(x), g(vy))

,d(g(), 9(w))} (3.12)

where a,b,c,d,e are non-negative real number such that f=e+h>0 and
y=b+e+h>0 with a+b+c+2e+2h =1.Then there exists a point z in X, which is a
common fixed point of sequence of fuzzy mappings, i.e. {z} € N2, F;(2).

Proof. Choose x, € X, then by Lemma 2.6, we can choose x; € X such that {x,} ¢ F(x,). From the
hypothesis, there exists an x, € X such that {x,} ¢ F(x;). In general, choose x,,,; € X such that
{xn+1} = Fn+1(xn)-

Applying (3.12), we have
D({xn}, (xn 1)) < ad(g(xn-1), 9(x))

+b max{d(g(x,-1), 9(x)), d(g(xn), g (Xns1))}

+ c max{d(g(xn-1), 9(x)), d(g(xn-1), 9(xn)), d(g (%), g (xp41)) }

+e max{d(g(xa-1), 9(xn)), d(9(xn-1), 9 (x)), d(g(xn), g (¥n41))

'd(g(xn—l): g(xn+1))}
+hmax{d(g(xn_1), 9(x)), d(g(xn_1), 9(x)), d(g(xn), g (xns1))
,d(g(n-1), g(xn+1)),d(g(x1), g(x))}
Since g is a non-expansive self-mapping and D ({x,,}, {xn+1}) = d(x;,, Xn41), We get
d(xp, xn+1) = D{xn} {xn+1})

< ad(xp_1, %) + b max{d(x,_1, %), d(xp, X 1)}

+ c max{d(xn_1, xn), d(xp_1, %), d(Xp, X 1)}

+e max{d(xp—1, %), d(xp_1, %), d(xp, Xp41), A(Xp—1, Xp11)}

+h max{d(x,_1, X)), d(Xp_1, %), d(Xp, Xpp11), A(Kp—1, X 11), d (X, %) }
If d(x,_1,x,) < d(x,, x,41) for some n, then by using triangle inequality, the last inequality gives

d(xp, Xps1) < (a+b+c+2e+2h)d(x,, Xpe1)
a contradiction. Thus d(x,, x,+1) < d(x,_1, x,,). Hence, for all positive integers n,
d(xp, Xpe1) < d(xg, %1) (3.13)
Again applying (3.12) and using (3.13), we have
D({x3},{x3}) < ad(g(xl), g(xz)) +b max{d (g(xl), g(xz)): d(g(xz), g(xs))}
+ cmax{d(g(x1), g(x5)),d(g(x1), g(x2)),d(g(x2), g(x3))}
te max{d(g(xl), g(xz)): d(g (1), g(xz)): d(g (x2), g(’%))
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,d(g(xl),g(xg))}
+h max{d(g(xl), g(xz)): d(g(xﬂ: g(xz)): d(g(xz), g(xs))
,d(g(xﬂ,g(xs)): d(g(xz),g(xz))}

Since g is a non-expansive self-mapping and D ({x,}, {x3}) = d(x,, x3), we get

d(xz,x3) = D({x2}, {x3})

< ad(xq,x,) + (b + ¢) max{d(xq, x;), d(x,,x3)}
+(e + h) max{d(x, x,), d(x3,x3),d(xq, x3)} (3.14)

Again applying (3.12), we have

D({x,}, {x3}) < ad(g(xo), g(xz)) +b max{d(g(xo), g(xz)); d(g(xz); g(xs))}
+ ¢ max{d(g(xo), 9(x2)), d(g(xo), g(x2)), d(g (x2), g (x3))}
+e max{d(g(xo), g(xz)), d(g(xo),g(xz)), d(g(xz), g(xg))
) d(g(xo);g(xs))}
+h max{d(g(xo), g(xz)), d(g(xo), g(xz)); d(g (x2), 9(353))
,d(g(x0), 9(x3)),d(g(x2), g(x2))}

Since g is a non-expansive self-mapping and D ({x;}, {x3}) = d(x4, x3). By using (3.13) and triangle
inequality, we get

d(xz,x3) = D({x2}, {x3})

< ad(xy, x5) + (b + ¢) max{d(xy, x5), d(x5,x3)}

+(e + h) max{d(x,, x,), d (x5, x3), d(x, x3)}

< ad(xg, x5) + (b + ¢) max{d(xy, x5), d(x2, x3)}

+(e + h) max{d(x,, x,), d(xz, x3), d(xo, x3)}

< (2a+ b+ 2c+3e+3h)d(xy, x1)

=2—-b—e—h)d(xg,x;) (3.15)

Hence, from (3.14) and (3.15), we have
d(x4,x3) < ad(xg, x1) + bd(xg, x1) + cd(x, x1)

+(e+h)(2—b—e—h)d(xy,xq)
=(a+b+c+(e+h)(2—b—e—h))d(x0,x1)
= (1 —(e+h)y(b+e+ h))d(xo, X1)
< (1 - By)d(xo, x1)

It is easy to show that

At ns1) < (1 = B2l d e, ) (3.6)
where E] stands for the greatest integer not exceeding g Also, since gy > 0, from (3.16), we have
{xn}nen is a Cauchy sequence in X. Since X is complete, there is a point z € X such that

lim,, 400 X, = 2.

Let F,, be arbitrary member of {F;}. Since {x,} € E,,(x,_1), by Lemma 2.6, there exists a v, € X
such that {v,,} c E,,(2) for all n. Applying (3.12), we have

D({xn}, {vn}) < ad(g(x,-1), 9(2)) + b max{d(g(x,-1), 9(x,)),d(g(2), g(v))}
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+cmax{d(g(xn-1),9(2)),d(g(xn-1), g(x)), d(9(2), g(wa)) }
+e max{d(g(xn-1),9(2)), d(g(xn-1), 9 (xn)), d(9(2), g (v))
,d(g(n-1), g(w))

+hmax{d(g(x,-1), 9(2)), d(g(xn-1), 9(x)), d(g(2), g(v))
,d(g(xn-1), g(w)), d(g(2), g(xn))}

< ad(x,_41,2) + b max{d(x,_1,x,),d(z,v,)}

+ c max{d(x,_1,2),d(x,_1, %), d(z,1,,)}

+e maxd{d(xn-1,2), d(xp-1, %), d(2, 1), d(xp—1,vn)}

+ h max{d(x,-1,2), d(xXn-1, %), d(2,vs),, d(Xp-1, ), (2, %) }

If lim,_ .. v, # 2, then letting limit as n - 400, we have

d(z,v,) < (a+v+c+e+ hymax{d(z z)max{d(z, z),d(z,v,)}
,max{d(z,z),d(z, 2),d(z,v,)}
,maxd{d(z,z),d(z,z),d(z,v,),d(z,v,)}

,max{d(z,2),d(z 2),d(z,v,),,d(z,v,),d(z,2)}}

< d(z,v,)

a contradiction. Hence

lim, 40 vy = 2.

Since F,, be arbitrary, then

[1]
2]
[3]
[4]
[5]
"

[8]
9]

{z} c N2 F(2).
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