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Abstract: Fuzzy regular open (closed) sets, fuzzy almost continuous and fuzzy weakly continuous maps on
fuzzy topological spaces have been studied in [1]. In the present paper we introduce the concepts of fuzzy (i, j)-
regular open (closed) sets, fuzzy (i, j)-almost continuous and fuzzy (i, j)-weakly continuous maps on fuzzy
bitopological spaces. Fuzzy (i, j)-semi regular and fuzzy (i, j)-regular spaces have also been studied.
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1. INTRODUCTION

Fuzzy topological spaces have been developed as an extension of the classical point-set topological
spaces. Zadeh in his historical paper [6] has introduced the concept of fuzzy sets. In 1968, Chang [2]
introduced the concept of fuzzy topological spaces. Azad [1] in 1981 has introduced and investigated
fuzzy regular open (closed) sets, fuzzy almost continuous and fuzzy weakly continuous maps in fuzzy
topological spaces.

Fuzzy bitopological spaces have been introduced by Kandil [4] in 1989. Fuzzy (i, j)-semi open
(closed) sets and fuzzy (i, j)-semi open (closed) maps in fuzzy bitopological spaces have been studied
in [5].

In the present paper we introduce fuzzy (i, j)-regular open (closed) sets in fuzzy bitopological spaces.
Significant results have been obtained. Further the concepts of fuzzy (i, j)-almost continuous maps
and fuzzy (i, j)-weakly continuous maps, fuzzy (i, j)-semi regular and fuzzy (i, j)-regular spaces have
also been introduced and studied in the present paper.

2. PRELIMINARIES

Let X be a nonempty set and let I stand for the closed unit interval [0, 1]. A fuzzy set A of X is a
mapping 4 : X — I, where for any x € X, A(x) denotes the degree of membership of element x in
fuzzy set 4. The null fuzzy set 0 and the whole fuzzy set 1 are the constant mappings from X to {0}
and {1} respectively. The complement, union and intersection of fuzzy sets are defined as follows:

Alx)= 1—A(x), xeX
U230x) = Sup{i(x): @ €A}, xE€X
N = Infid(x): @A), x€X
where / is any arbitrary index set.

Let f:X — ¥ beamapping and let A be a fuzzy set in X, then the image set (4] is a fuzzy
set in ¥ defined as
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Sup {A(x)}, if (f1}=0
FOG) = {==r200
0, otherwise
for each y € ¥. Further, if p is a fuzzy set of ¥, then f=2(u) is a fuzzy set of X defined as
FHw &) = p(fx)

foreach x € X,

A family T of fuzzy sets of X is called a fuzzy topology (see [2]) on X if it satisfies the
following conditions:

i) The null fuzzy set 0 and whole fuzzy set 1 belong to 7.
ii) Any union of members of Tisin T.
iii) Any finite intersection of members of T isin T.

The pair (X, 7) is called a fuzzy topological space. The members of T are called fuzzy open sets
and their complements are called fuzzy closed sets. For a fuzzy set 4 of X, the interior (Int 4) and the
closure (CI 4) of A are defined as

Intd=S5up{0: 0 =Adand 0 isafuzzyopensetinX}
ClA =Inf{C:C =AdandCisafuzzyclosedsetinX }

If X is a non-empty universal set, then a system (X, 7;,72) consisting of set X and two fuzzy
topologies 71 and T2 on X is called a fuzzy bitopological space (see [4]).

A fuzzy set A of (X,1y,72) is called fuzzy (i, j)-semi open set if there exists a fuzzy T; —open
set vsuchthatv =4 = 1; — Clv and 4 is called fuzzy (i, j)-semi closed set if there exists a fuzzy

T; —closed set it such that 7; —Int u = 4 = u (see [5]). In this definition and in the rest of this paper
wetakei, j=1,2 & i #j.
A fuzzy set 4 is a fuzzy (i, j)-semi open set iff 4 = 7; — Cl (r; — Int A1) and fuzzy (i, j)-semi

closed set iff T; — Int (1; — Cl 1) = A (see [5)).
3. Fuzzy (i, j)-REGULAR OPEN (CLOSED) SETS
Definition 3.1: A fuzzy set 4 of fuzzy bitopological space (X, 71,72) is called

i) Fuzzy (i, j)-regular open set if 7; — Int(r;— ClA) = 4.

i) Fuzzy (i, j)-regular closed set if T; — Cl(r; — Int i) = 4.

Remark 3.1: (a) Every fuzzy (i, j)-regular open set is a fuzzy 7;-open set, but converse need not be
true.

(b) Every fuzzy (i, j)-regular closed set is a fuzzy 7;-closed set, but converse need not be true.
We exemplify the remarks in the following:
Example 3.1: Let ¥ = {a, b} and let A, B, C, D be fuzzy sets on X defined as follows
A = {{a,0.7),(b,05)} B = {{a,05),(b, 04)}
€ = {{a0.3),(b,04)} D = {{a, 0.8),(b,0.6)}

Consider 7y = {0,4,5,1} and 7, = {0,C,D,1} as two fuzzy topologies on X. Then we find that
fuzzy set C is fuzzy (1, 2)-regular open set and it is a fuzzy Tz —open set. Similarly fuzzy set
E = {(a,0.7), (b, 0.6)} = C isafuzzy (1, 2)-regular closed set and it is a fuzzy T2 —closed set.
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We observe that fuzzy set D is a fuzzy T2-open set, but it is not a fuzzy (1, 2)-regular open set
becausety — CID = landt; —Intl = 1. Thust, — Int(t;y — CID) = D.

Theorem 3.1: A fuzzy set A of a fuzzy bitopological space (X, y,72) is a fuzzy (i, j)-regular open set
if and only if 4’ is a fuzzy (i, j)-regular closed set.

Proof: Let 4 be a fuzzy (i, j)-regular open set of X, so that 7; — Int (r; — CLA) = A. It implies that
A"=1; = Cl (1; — Int A"), which show that 4’ is a fuzzy (i, j)-regular closed set in X.

Conversely; let A" be a fuzzy (i, j)-regular closed set of fuzzy space X, so that
;= Cl(r; — IntA") = A" It implies T; — Int{z; — ClA) = A This proves that 4 is a fuzzy (i, j)-
regular open set.

Theorem 3.2: (a) The intersection of two fuzzy (i, j)-regular open sets is a fuzzy (i, j)-regular open
set.

(b) The union of two fuzzy (i, j)-regular closed sets is a fuzzy (i, j)-regular closed set.

Proof: (a) Let (X,7y,72) be a fuzzy bitopological space and let A and i be two fuzzy (i, j)- regular
open sets in it, so that

;—Int(r;— ClA) = A and 71— Int(r;— Clp) = p (3.2.1)
Thus 4 and  are fuzzy t;-open sets, hence 4 N i is also fuzzy t;-open set. We see that
—Int(Anuw =Anp=1,—Cl{(ANy)
Hence Anp=t;— Int(r;— CL(ANw) (3.2.2)
Further ANu =4, p. Thereforet; —Cl{Anu) =1, —Cl4, 7, —Cl .
Hence 7; — Int(r;—Cl(Anp)) =7;— Int(r;—Cl4), 7;— Int(1; — Clp)

In view of (3.2.1), we have - Int(r,—ClAnw)=anp (3.2.3)

Thus in view of (3.2.2) and (3.2.3), we have
T,—Int(r;—ClAnw)=2anpu

Therefore A N is fuzzy (i, j)-regular open set in X. Similarly we can prove (b).

Remark 3.2: Result (a) and (b) of Theorem 3.2 can be generalized to any finite number of fuzzy sets
/111-121 '"J":{'.'—:-

Theorem 3.3: In a fuzzy bitopological space (X, 71,72),

(a) The t;-closure of a fuzzy T; —open set is a fuzzy (i, j)-regular closed set.
(b) The 7; —interior of a fuzzy T; —closed set is a fuzzy (i, j)-regular open set.

Proof : We prove (a). Part (b) can be proved in a similar manner.
(a) Let A be a fuzzy ; —open set of (X,7;,72). Consider the set & = 7; — Cl 4. We show that
7; — Cl{r; —Int@) = 8. NowA =1; —ClAdand ; — Int A= 4, so that
T, —Int(; —ClA) =1, - ClA.
Hence 7, — Cl(t; —Int(5;—ClA)) =7, - Cl(r;— ClA) =1;— ClA
Thus T, —Cl(ty—Int(5;—ClA)) =7, - ClA (3.3.1)
Now we know 4 = 1; — CL A.
Thent; —IntA=1; —Int(r;— ClA) = A =1, —Int(r; - Cl A)
Therefore 7, —ClA=1;— Cl{t;— Int(5; — €L 1)) (3.3.2)
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The inequalities (3.3.1) and (3.3.2) imply that
7, —Cl(t; —Int(5;— ClA)) =1;—ClA

Thus 7; —closure of a fuzzy T; —open set is a fuzzy (i, j)-regular closed set.

4. Fuzzy (i, ) ~ALMOST CONTINUOUS MAPPING
Let (X, 74, 7o) and (X*, 1%, 72*)are two fuzzy bitopological spaces. We recall that a mapping
f:(X, 1y, 1) = (X%, %, 1,%)issaidtobea
(i) fuzzy (i, j)-continuous map if maps f : (X, ) = (X*, ©*)and f : (X, 72) = (X%, 2%) are
fuzzy continuous maps.
(ii) fuzzy (i, j)-semi continuous map if pre-image of every fuzzy t;* —open set in X* is a fuzzy
(i, J)-semi open set in X

Now we proceed to define a fuzzy (i, j)-almost continuous map from one bitopological space to
another bitopological space.

Definition 4.1: Amap f : (X, 71, T2) = (X*, 71%, 72%) is said to be a fuzzy (i, j)-almost continuous
map if £~1(1) is a fuzzy T;—open set in X for every fuzzy (i, j)-regular open set 4 in X*.

Example 4.1: Let X = {x,v}and X* = {a,b} and let 4, B, €, A*,B*,C* be the fuzzy sets defined
as follows :

A = {(x,06),(y,05)} B = {(x,03), (3 05)} € = {(x,05),(y,04)}

A* = {(a,0.6),(b,0.5)} B* = {(a,0.3), (b, 0.5)} C*= {(a,0.2), (b, 0.4)}

Consider 73 = {0,4,(,1} and 1t = {0,B,1} as two fuzzy topologies on X and
7" = {0,451} and 1* = {0,B%C*1} as two fuzzy topologies on X*  Let
f:(X, ©y, 12) = (X*, %, 12) be a map defined as f(x) = a and f(¥) = b. Then we see 0, 1
and B* are fuzzy (1, 2)-regular open sets in X*, Also f~1(0) =0, f~ (1) =1and f~1(B*) =B are
fuzzy T2-open sets in X. Hence f is a fuzzy (1, 2)-almost continuous map.

Similarly we observe that fuzzy sets 0, 1 and A* are the only fuzzy (2, 1)-regular open sets in
X* and their pre-images are fuzzy T1-open sets in X. Hence f is also a fuzzy (2, 1)-almost continuous
map. Thus f is a fuzzy (i, j)-almost continuous map.

Theorem 4.1: Let (X, 74, 72) and (X% 7% 72%) be two fuzzy bitopological spaces and let
f : X — X be a map, then following statements are equivalent :

(@) f is fuzzy (i, j)-almost continuous map.

(b) F~1(w) is fuzzy T;-closed set in X for each fuzzy (i, j)-regular closed set u in X*.

() f7HA) = 1; — Int[f~Hg;* — Int(r,* — CI A)}] for every fuzzy 7;*-open set A of X*.
(d) For each fuzzy t;*-closed set i of X*, 7; — CI[f " {1;* — Cl{z;* — Int A)}] = F~1{w).

Proof : We prove the theorem in following steps:

(1) (@)=(b) : Suppose that the map f : (X, 71, 72) = (X*, ©u*, 12*) is a fuzzy (i, j)-almost
continuous map. Let i be a fuzzy (i, j)-regular closed set in X*, then ' is fuzzy (i, j)-regular open set
in X*. Therefore £~1(u') is a fuzzy 7;-open set in X. Hence (f "1 (") = F (") = fHw)isa
fuzzy t;-closed set in X.

(11) (b)=(a) : Using (F (A" = F71(A") = F71(1), where 4 is a fuzzy (i, j)-regular open set in
X* it can be easily seen that (b)=(a).
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(1) (@=(c) : Let f: X — X~ be a fuzzy (i, j)-almost continuous map and let 4 be a fuzzy (i, j)-
regular open set in X*, so that f~1(1) is a fuzzy 7;—open set in X. Now A =7;*— ClA. Then
1, — IntA = 4 = 1;* — Int{r;* — CL 1). Hence

FYA) = £yt — Intlz; — CLA)) (4.1.1)
Since f is fuzzy (i, j)-almost continuous map, therefore f~1{z;* — Int(r;* — Cl A)} is a fuzzy 1; —

open set in X in view of Theorem 3.3(b). So that
1; — Int[fz;* — Int(r,* — CLA)}] = F " — Int{z;* — CL A)}

Hence we get f~1(4) = 1; — Int[f~*{7;* — Int{z;* — C1 A)}] in view of (4.1.1).
(1V) (c)=(a) : It can be proved easily.
(V) (b)=(d): Let 2 be a fuzzy 7;*-closed set in X*, so that 4 = ;¥ — Cl . Also 7;* — Int u = . Then
;= Cllr*—Intp) =7;* —Clp= p. Hence fr;*—Cl{r;* —Intp)} = f~1(w). Since f
satisfies the property that f~1{u) is fuzzy T; —closed set in X, for each fuzzy (i, j)-regular closed set x
in X*, we conclude that f~{z;*—Cl{z;*—Intp)} is a fuzzy 7; -closed set in X. Hence
T, — Cllf Yot — Qlry* — Int ] = f 1z —Cl(ry* — Int )} = F1(w).
(V) (d)=(b) : It can be proved easily.

This completes the proof of the Theorem.

Theorem 4.2: Ifamap f : (X, 7y, 7o) = (X*, 7%, ©2*) is a fuzzy (i, j)-continuous map, then it is a
fuzzy (i, j)-almost continuous map.

Proof: Let f:{X, 7y, 7o) = (X*, 7% 72°) be a fuzzy (i, j)-continuous map so that maps
(X, ry) = (X% 1y*) and f : (X, 7o) = (X*, 72%) are continuous. Now if 8 is fuzzy (i, j)-regular
open set in X, then & is a fuzzy t;* —open set in X*. Since f is a fuzzy (i, j)-continuous map,
therefore £~1(#) is T; —open set in X. Hence map f : X — X * is fuzzy (i, j)-almost continuous map.

Remark 4.1: The converse of Theorem 4.2 may not be true i.e. every fuzzy (i, j)-almost continuous
map is not necessarily a fuzzy (i, j)-continuous map.

Example 4.2: Considering Example 4.1, we see that f is a fuzzy (1, 2)-almost continuous map and

also a fuzzy (2, 1)-almost continuous map. But we observe that the mapping f : (X, 72) = (X%, 72*)

is not a continuous map because f~1{C*) & 15, where C* is a fuzzy T>"-open set in X* and thus the

map f : (X, 7y, 7o) = (X*, 7v*, 2% is not fuzzy (i, j)-continuous map.

Theorem 4.3: Fuzzy (i, j)-semi continuity and fuzzy (i, j)-almost continuity are independent notions.
Following two examples justify the statement of the theorem.

Example 4.3: Referring to Example 4.1, we see that f is a fuzzy (1, 2)-almost continuous map, but it
is not a fuzzy (1, 2)-semi continuous map because f~2(4*) = 4 is not a fuzzy (1, 2)-semi open set in
X, where A* is a fuzzy 71" —open set in X*.

Similarly f is not a fuzzy (2, 1)-semi continuous map because f~*(B*) = B is not a fuzzy (2,
1)-semi open set in X, B* being 72" —open set in X*.

Example 4.4: Let X = {x, ¥} and X¥* = {a, b} and let A, B, A%, B* be the fuzzy sets defined as follows

A = {(x,0.4),(,0.5)} B = {(x,02), (3 04)}
A* = {(a,0.6), (b, 0.5)} B* = {(a,0.3), (b, 0.5))
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Consider 73 = {0,4,1} and 71 = {0,B,1} as two fuzzy topologies on X and
71" ={0,4%1} and 1t ={0,B%1} be two fuzzy topologies on X*. Let
(X1, 12) = (X* 17, 72°) beamap defined as f(x) = a and f(¥) = b. We observe that map
fis a fuzzy (i, j)-semi continuous map, but it is not a fuzzy (i, j)-almost continuous map.

We see that the map f is a fuzzy (1, 2)-semi continuous map because F~1(0) =0,
FH1) =1 and F1(4*) = {(x,0.6),(b, 0.5)} are fuzzy (1, 2)-semi open sets in X for 71 —open
sets 0, 1 and A* in X*. Similarly we observe that the map f is a fuzzy (2, 1)-semi continuous map.

But we observe that f is not a fuzzy (2, 1)-almost continuous map because f~1(4*) is not a
fuzzy T4 —open set in X for fuzzy (2, 1)-regular open set A* in X*. Also f is not a fuzzy (1, 2)-almost
continuous map because £~1(B*) is not a fuzzy T2 —open set in X for fuzzy (1, 2)-regular open set 5B*
in X*. Thus the map f : (X, 71, 7o) = (X*, 7%, 72*)is not a fuzzy (i, j)-almost continuous map.

5. Fuzzy (i, j)-SEMI REGULAR & FUZZY (i, j)-REGULAR SPACES

Definition 5.1: Fuzzy (i, j)-semi regular space : A fuzzy bitopological space (X, 73, 72) is called a
fuzzy (i, j)-semi regular space if and only if the collection of all fuzzy (i, j)-regular open sets of X
forms a base for fuzzy topology 7; of X withi, j =1, 2.

Example 5.1: Let ¥ = {a,b}and let 4,B,C,D,E,F,G, H be fuzzy sets on X defined as follows:

A = {{a, 0.4), (b,0.7)} B = {(a,0.6),(b 0.3)}
€ = AUB = {(a,0.6),(b,0.7)} D = ANB = {{a04),(5,0.3)}
E = {(a,05),(b0.2)} F = {(a,03),(b,0.6)}
6 = EUF = {(a 0.5),(b,0.6)} H=ENF = {(g03),(50.2)}

Consider 7 = {0,4,B,C,D,1} and 72 = {0,E,F,G,H, 1} as two fuzzy topologies on X.
Since fuzzy sets 0, 1,E,F,G and H are the only fuzzy (1, 2)-regular open sets of X and we can write
each of fuzzy Tz —open sets as union of some of these six fuzzy (1, 2)-regular open sets. Hence fuzzy
bitopological space (X, 71, T2) is a fuzzy (1, 2)-semi regular space.

Similarly fuzzy sets 0, 1,4, B, C and D are the only fuzzy (2, 1)-regular open sets of X and we
can write each of fuzzy 73 -open sets as union of some of these six fuzzy (2, 1)-regular open sets,
which form a base for fuzzy topology 71 of X. Hence fuzzy bitopological space (X, 3, T2) is a fuzzy
(2, 1)-semi regular space.

Thus fuzzy bitopological space (X, 11, T2) is a fuzzy (i, j)-semi regular space.

Theorem 5.1: Let f: (X, 1y, 72) = (X% 7, 77) be a map from fuzzy bitopological space
(X, 71, T2) to a fuzzy (i, j)-semi regular space (X*, 7y, 73). Then the map f is fuzzy (i, j)-almost
continuous if and only if f is fuzzy (i, j)-continuous map.

Proof: We know (by Theorem 4.2) that any fuzzy (i, j)-continuous map from one fuzzy bitopological
space to another is a fuzzy (i, j)-almost continuous map. Therefore to prove the theorem, it is
sufficient to show that if (X*, z;, 73) is fuzzy (i, j)-semi regular space and map f is a fuzzy (i, j)-

almost continuous map, then it is a fuzzy (i, j)-continuous map. Suppose that (X*, 7, 75} is fuzzy (i,
j)-semi regular space and the map f : (X, 7y, T7) = (X*, 1, 73) is fuzzy (i, j)-almost continuous
map. Let 4 be a fuzzy 77 —open set in X*. Then 4 is the union of a collection of fuzzy (i, j)-regular
open sets {A.}aep in ¥, where A\ is an arbitrary index set. Thus A = lJ.4,. Since each 4 is fuzzy
(i, j)-regular open set, we have A, = 17;*—Int{z;* — ClA,), Ya € A,
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Therefore fF~1(A) = F~ (U, A, )=U,fF1(4,). Then

FHA) = Ugt; — fnt[f"l{’.r;-‘—fnt(’.ri*— ClA))] = Uty —Int[f~1(4,)] in view of Theorem
4.1(c). This implies f~(A) = 1; — Int[U, fHAe) = 1; — Int[f "1 (Updo)] = 1; — Int[FH(A)].

Thus f~4) = 1; — Int[f~(4)]. Therefore, we clearly have
;= Int[f~H ] = FHA) = ;- Int[f2(A)]

which shows that f~1(1) is a fuzzy 7; —open set in X. Thus when X* is a fuzzy (i, j)-semi regular
space and 4 is a fuzzy t; —open set in X*, then f~1(A) is a fuzzy 7; —open set in X for j = 1, 2.
Therefore £ is a fuzzy (i, j)-continuous map from (X, 71, 72) to (X%, 7;, 73).
Definition 5.2: Fuzzy (i, j)-regular space : A fuzzy bitopological space (X, 71, T2) is called a fuzzy
(i, j)-regular bitopological space if and only if each fuzzy T; —open set 4 is a union of fuzzy 7; —open
sets Ay of X suchthatt; —Cld, = 4.
Example 5.2: Let 4 and i be two fuzzy sets of X defined as follows
Alx) = x and w(x) =1-xVx eX
Consider fuzzy topologies 71 = {0, 4, 1} and 72 = {0, &, 1} on X. It is clear that 0, i and 1 are fuzzy
T, —open sets of X. Then we see that
0=0uU0, and 7, —Cl0=0=0
u=0uUpg, and () m—Cl0=0=p and
(i —Clu=A"=p
1=0uUpuUl, and () T—-ClO=0=1
(i) —Clp=4"=1 and
(i) —Cli=1=1
Thus conditions of a fuzzy (1, 2)-regular space are satisfied. Hence fuzzy bitopological space
(X,71, T2) is a fuzzy (1, 2)-regular space.

Similarly we observe that each fuzzy 7; —open sets 0, 4 and 1 are the union of fuzzy
T3 —open sets, which satisfy the condition of the definition. Therefore fuzzy bitopological space
(X,71, T2) is a fuzzy (2, 1)-regular space also. Hence (X, 1y, T2) is a fuzzy (i, j)-regular space.

Theorem 5.2: A fuzzy (i, j)-regular bitopological space is also a fuzzy (i, j)-semi regular
bitopological space.

Proof: Let (X, 71, T2) be a fuzzy (i, j)-regular bitopological space. Let 4 be a fuzzy T; —open set in
X. Suppose A is the union of family {i,}.es of fuzzy 7; —open sets A, such that
T; —ClAdy = 4, Y a €A, Abeing an arbitrary index set. Then A = U A5, a €A,

Now for each @ € A, wehave A, =1; — ClA, = A Then
T;—Intd, = A, = 1, —Intlt; —Cld,) = 1;,—IntA = 4
Thus Az = 7; — Int{r; — Cl4,) = A Hence Ugepda = Ugep 1; — Intlr; — ClA,) = A,
Itimplies 2 = Ugepde = Ugep 7 — Intlr; — ClLA,) = 4,
Thus A=Ugep 1, —Intlr,— C1,) (5.2.1)

Since we know that the fuzzy sets 7; — Int{r; — Cl A,) is a fuzzy (i, j)-regular open set in X.

Hence (5.2.1) indicates that 4 is a union of fuzzy (i, j)-regular open sets of X. Therefore X is a fuzzy
(i, j)-semi regular bitopological space.
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Remark 5.1: A fuzzy (i, j)-semi regular space is not necessarily a fuzzy (i, j)-regular space.
This is shown in the following example.

Example 5.3: Consider fuzzy bitopological space (X, 71, T2) of Example 5.1. It is a fuzzy (1, 2)-semi
regular space. We note that T2-open fuzzy set G is the union of fuzzy T2-open sets E and F, but

73— ClE=A"£G and 1w —CIF=B"£aG
Hence fuzzy (1, 2)-semi regular bitopological space (X, ty,72) is not a fuzzy (1, 2)-regular space

6. Fuzzy (i, J)-WEAKLY CONTINUOUS MAP
Definition 6.1: Let (X, 7y, 7o) and (X*, 74% 72%) be two fuzzy bitopological spaces. A map
F(X, 1y, 1) = (X% 7% 12°) is called fuzzy (i, j)-weakly continuous map if for each fuzzy T;-

open set A in X*
FFHA) = — Int {f~z,* — CLA)}

Example 6.1: Referring to Example 4.1, we see that fuzzy sets 0, 1, B*and C*are fuzzy 72* —open sets
in X*. We note that f~1(B*) = Band f~(C*) = {(x, 0.2),(y, 0.4)} = B. We observe that

1, —Int{f~1(z,” —Cl0) = 0,sothat F~1(0) =0 =1, — Int{f1(z,” — CL0)} @)
,—Int{f 1z —Cll)=1sothat f{)=1=1,—Int{f 1y —Cl1)} (b)
1, —Int{f~1(z;” —CIB*)} = B, sothat f~1(B*) =B =1,— Int{f(z; — CIB*)} ()
1, —Int {f~1(z* — C1C*)} = B, sothat fF~1(C*) =1, — Int {f1(z,* — C1 C*)} (d)

In view of (a), (b), (c), (d), we conclude that the mapping f is a fuzzy (1, 2)-weakly
continuous map.

Similarly we observe that the mapping f is a fuzzy (2, 1)-weakly continuous map.

Theorem 6.1: A fuzzy (i, j)-continuous map from one bitopological space to another is a fuzzy (i, j)-
weakly continuous map.

Proof: Let f : (X, 71, 72) = (X*, 4%, 72*) be a fuzzy (i, j)-continuous map. Let A be any z;* —open
set in X*, then f~1(1) is a fuzzy t; —open set in X. We know A =7;*— ClA. Therefore
FHA) = £~ Yz;*— €1 4). Since £~1(A) is T; —open set in X, we have

;= Int{f (D} =) = ; — Int{fHz,* - CLA)}
Therefore FHA) = 1 — Int{f~1(z* — CLA)}, vV AET*
This shows that f is a fuzzy (i, j)-weakly continuous map.

Remark 6.1: The converse of above Theorem 6.1 need not be true i.e. every fuzzy (i, j)-weakly
continuous map is not necessarily a fuzzy (i, j)-continuous map. We have the following :

Example 6.2: Considering Example 6.1 we have shown that the map f is a fuzzy (1, 2)-weakly

continuous and also a fuzzy (2, 1)-weakly continuous map, whereas in Examples 4.2, we observe that
the map f is not a fuzzy (i, j)-continuous map.

Theorem 6.2: A fuzzy (i, j)-almost continuous map is a fuzzy (i, j)-weakly continuous map.

Proof: Let f : (X, 7y, 7o) = (X* 4%, 72*) be a fuzzy (i, j)-almost continuous map. Let 4 be any
T;* —open set in X*. Then we have

FHA) = 1, — Int [f~g;* — Int(z; — CLA)}], (6.2.1)
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in view of Theorem 4.1(c). Further, we clearly have 7;* — Int{zr;* — Cl )} = 7;* — CL A. Therefore
e, — Int(ry* — C1 )} = £~1(z;" — CL ). Hence

T, — Int[f r; = Int(r,* — QLY = 1; — Int{f 1 (z;" = CLA)} (6.2.2)

Therefore in view of (6.2.1) & (6.2.2), we conclude that
FFAlA =g - Mmt{f~z*—-ClA)}, Vv ieg*

Thus f is a fuzzy (i, j)-weakly continuous map.

Remark 6.2: A fuzzy (i, j)-weakly continuous map may not be a fuzzy (i, j)-semi continuous map.

Example 6.3: It is clear from Examples 6.1 that f is a fuzzy (1, 2)-weakly continuous map (and fuzzy
(2, 1)-weakly continuous map), but in Example 4.3 we observe that the map f is not a fuzzy (1, 2)-
semi continuous map (and fuzzy (2, 1)-semi continuous map).

Remark 6.3: A fuzzy (i, j)-semi continuous map may not be a fuzzy (i, j)-weakly continuous map.

Example 6.4: Referring Example 4.4, we see that map f is a fuzzy (i, j)-semi continuous map. But it
is not a fuzzy (1, 2)-weakly continuous map because for any fuzzy 72 *-open set E* in X*, we observe
that 7, — Int {f~1(z;* — C1 B*)} = B and f~1(B*) = {(x,0.3),(y,0.5)}, sothat f~1(B*) = B.

Similarly f is not a fuzzy (2, 1)-weakly continuous map because for fuzzy 71*-open set A* in
X* we see that -y — Int{fr,*—ClA*)} =4 and F~1(4*) = {{(x,0.6),(y,0.5)} and hence
Fias) = A

Thus we have the following Theorem.

Theorem 6.3: In case of fuzzy bitopological spaces the notions of fuzzy (i, j)-weakly continuity and
fuzzy (i, j)-semi continuity are independent of each other.

Theorem 6.4: Let f: (X, 7y, 7o) = (X*, 7% 72%) be a mapping from a fuzzy bitopological space
(X,74,72) to a fuzzy (i, j)-regular bitopological space (X*, 71% 72*). Then f is a fuzzy (i, j)-weakly
continuous map if and only if f is fuzzy (i, j)-continuous map.

Proof: To prove the Theorem, in view of Theorem 6.1, it is sufficient to show that if mapping
fi(X,1,12) = (X%, 7v% 12%)is a fuzzy (i, j)-weakly continuous and if (X*, 1%, 72*) is a fuzzy (i,
j)-regular bitopological space, then map f is a fuzzy (i, j)-continuous map. Let 4 be a fuzzy 7;* - open

set in X*. Since X* is a fuzzy (i, j)-regular space, we have
A=UA4,, o € A, for some index set /A, (6.4.1)

and for each @ € /A, A isafuzzy ;" — open sets in X* such that 7;* — Cl A, = 4. (6.4.2)
Since f is a fuzzy (i, j)-weakly continuous map and 4 are fuzzy 7;* —open sets, we have

FUA) = 1;—Int{f Uzl — ClA)}, Ya €N (6.4.3)
Now in view of (6.4.1) we have f~1(1) = F~H(UA,) =U F1{1,).
Therefore f~1(1) =U 7; — Int{f =1z} — Cl 4,)], in view of (6.4.3).
This implies that £~ (4) =uU 7; — Int{f "1 (1)} =7, — Int {f (D},
Thus f~HA) = 1; — Int{f~1(A)}. Also we have t; —Int {fHA)} = fF~1(4).

Hence we conclude that f~1(A) = 7; — Int{f~1(A)}. Thus £~1(1) is a fuzzy 7; —open set of

X for fuzzy 7 —open set 4 in X*and this happens for each j = 1, 2. Therefore f is a fuzzy (i, j)-
continuous map.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page 97



M. Shrivastava & Jyoti Gupta

7. CONCLUSION

In [5], fuzzy (i, j)-semi open sets and fuzzy (i, j)-semi continuity in fuzzy bitopological spaces have
been studied. In the present paper, we introduced the concepts of fuzzy regular open (closed) sets and
studied fuzzy (i, j)-almost continuity and (i, j)-weakly continuity in fuzzy bitopological spaces. We
have also studied fuzzy (i, j)-semi regular and fuzzy (i, j)-regular spaces in fuzzy bitopological spaces.
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