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Abstract: Fuzzy regular open (closed) sets, fuzzy almost continuous and fuzzy weakly continuous maps on 
fuzzy topological spaces have been studied in [1]. In the present paper we introduce the concepts of fuzzy (i, j)-

regular open (closed) sets, fuzzy (i, j)-almost continuous and fuzzy (i, j)-weakly continuous maps on fuzzy 

bitopological spaces. Fuzzy (i, j)-semi regular and fuzzy (i, j)-regular spaces have also been studied. 
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1. INTRODUCTION 

Fuzzy topological spaces have been developed as an extension of the classical point-set topological 

spaces. Zadeh in his historical paper [6] has introduced the concept of fuzzy sets. In 1968, Chang [2] 

introduced the concept of fuzzy topological spaces. Azad [1] in 1981 has introduced and investigated 

fuzzy regular open (closed) sets, fuzzy almost continuous and fuzzy weakly continuous maps in fuzzy 
topological spaces. 

Fuzzy bitopological spaces have been introduced by Kandil [4] in 1989. Fuzzy (i, j)-semi open 

(closed) sets and fuzzy (i, j)-semi open (closed) maps in fuzzy bitopological spaces have been studied 
in [5]. 

In the present paper we introduce fuzzy (i, j)-regular open (closed) sets in fuzzy bitopological spaces. 

Significant results have been obtained. Further the concepts of fuzzy (i, j)-almost continuous maps 

and fuzzy (i, j)-weakly continuous maps, fuzzy (i, j)-semi regular and fuzzy (i, j)-regular spaces have 
also been introduced and studied in the present paper. 

2. PRELIMINARIES 

Let  be a nonempty set and let  stand for the closed unit interval [0, 1]. A fuzzy set  of  is a 

mapping , where for any , (x) denotes the degree of membership of element  in 

fuzzy set . The null fuzzy set  and the whole fuzzy set 1 are the constant mappings from  to {0} 

and {1} respectively. The complement, union and intersection of fuzzy sets are defined as follows: 

 

 

 

where  is any arbitrary index set. 

 Let  be a mapping and let  be a fuzzy set in , then the image set  is a fuzzy 

set in defined as 
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for each . Further, if  is a fuzzy set of , then  is a fuzzy set of  defined as 

 

for each  . 

A family  of fuzzy sets of  is called a fuzzy topology (see [2]) on  if it satisfies the 

following conditions: 

i) The null fuzzy set 0 and whole fuzzy set 1 belong to . 

ii) Any union of members of is in . 

iii) Any finite intersection of members of  is in . 

The pair  is called a fuzzy topological space. The members of are called fuzzy open sets 

and their complements are called fuzzy closed sets. For a fuzzy set  of , the interior ( ) and the 

closure ( ) of  are defined as 

 

 

 If  is a non-empty universal set, then a system  consisting of set  and two fuzzy 

topologies  and  on X is called a fuzzy bitopological space (see [4]). 

 A fuzzy set  of  is called fuzzy (i, j)-semi open set if there exists a fuzzy open 

set  such that  and  is called fuzzy (i, j)-semi closed set if there exists a fuzzy 

closed set  such that  (see [5]). In this definition and in the rest of this paper 

we take i, j = 1, 2 & i j. 

 A fuzzy set  is a fuzzy (i, j)-semi open set iff  and fuzzy (i, j)-semi 

closed set iff  (see [5]). 

3. FUZZY (i, j)-REGULAR OPEN (CLOSED) SETS 

Definition 3.1: A fuzzy set  of fuzzy bitopological space  is called 

i) Fuzzy (i, j)-regular open set if  . 

ii) Fuzzy (i, j)-regular closed set if  . 

Remark 3.1: (a) Every fuzzy (i, j)-regular open set is a fuzzy -open set, but converse need not be 

true. 

(b) Every fuzzy (i, j)-regular closed set is a fuzzy -closed set, but converse need not be true.  

We exemplify the remarks in the following: 

Example 3.1: Let  and let be fuzzy sets on  defined as follows 

   

   

Consider   and  as two fuzzy topologies on . Then we find that 

fuzzy set  is fuzzy (1, 2)-regular open set and it is a fuzzy open set. Similarly fuzzy set 

 is a fuzzy (1, 2)-regular closed set and it is a fuzzy closed set.  
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We observe that fuzzy set  is a fuzzy -open set, but it is not a fuzzy (1, 2)-regular open set 

because  and . Thus . 

Theorem 3.1: A fuzzy set  of a fuzzy bitopological space  is a fuzzy (i, j)-regular open set 

if and only if ’ is a fuzzy (i, j)-regular closed set. 

Proof: Let  be a fuzzy (i, j)-regular open set of , so that . It implies that 

, which show that ’ is a fuzzy (i, j)-regular closed set in .    

Conversely; let  be a fuzzy (i, j)-regular closed set of fuzzy space , so that 

. It implies . This proves that  is a fuzzy (i, j)-

regular open set. 

Theorem 3.2: (a) The intersection of two fuzzy (i, j)-regular open sets is a fuzzy (i, j)-regular open 

set.  

(b) The union of two fuzzy (i, j)-regular closed sets is a fuzzy (i, j)-regular closed set. 

Proof: (a) Let  be a fuzzy bitopological space and let  and  be two fuzzy (i, j)- regular 

open sets in it, so that  

     and                (3.2.1) 

Thus  and  are fuzzy -open sets, hence  is also fuzzy -open set. We see that  

 

Hence                         (3.2.2) 

Further  . Therefore . 

Hence  

In view of (3.2.1), we have             (3.2.3) 

Thus in view of (3.2.2) and (3.2.3), we have       

      

Therefore  is fuzzy (i, j)-regular open set in X. Similarly we can prove (b). 

Remark 3.2: Result (a) and (b) of Theorem 3.2 can be generalized to any finite number of fuzzy sets 

. 

Theorem 3.3: In a fuzzy bitopological space , 

(a) The -closure of a fuzzy open set is a fuzzy (i, j)-regular closed set. 

(b) The interior of a fuzzy closed set is a fuzzy (i, j)-regular open set.  

Proof : We prove (a). Part (b) can be proved in a similar manner. 

(a) Let  be a fuzzy open set of . Consider the set . We show that  

. Now  and , so that      

    .                             

Hence                    

Thus                       (3.3.1) 

Now we know .  

Then  

Therefore              (3.3.2) 
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The inequalities (3.3.1) and (3.3.2) imply that 

   

Thus closure of a fuzzy open set is a fuzzy (i, j)-regular closed set.  

4. FUZZY (i, j) –ALMOST CONTINUOUS MAPPING 

Let  and  are two fuzzy bitopological spaces. We recall that a mapping 

 is said to be a 

(i) fuzzy (i, j)-continuous map if maps  and  are 

fuzzy continuous maps. 

(ii) fuzzy (i, j)-semi continuous map if pre-image of every fuzzy open set in  is a fuzzy   

(i, j)-semi open set in . 

Now we proceed to define a fuzzy (i, j)-almost continuous map from one bitopological space to 

another bitopological space. 

Definition 4.1: A map  is said to be a fuzzy (i, j)-almost continuous 

map if  is a fuzzy –open set in X for every fuzzy (i, j)-regular open set  in . 

Example 4.1: Let  and  and let  be the fuzzy sets defined 

as follows :  

     

      

 Consider  and   as two fuzzy topologies on  and 

 and  as two fuzzy topologies on . Let 

  be a map defined as  and . Then we see 0, 1 

and  are fuzzy (1, 2)-regular open sets in . Also ,  and  are 

fuzzy -open sets in . Hence  is a fuzzy (1, 2)-almost continuous map. 

 Similarly we observe that fuzzy sets 0, 1 and  are the only fuzzy (2, 1)-regular open sets in 

 and their pre-images are fuzzy -open sets in . Hence  is also a fuzzy (2, 1)-almost continuous 

map. Thus  is a fuzzy (i, j)-almost continuous map. 

Theorem 4.1: Let  and  be two fuzzy bitopological spaces and let 

 be a map, then following statements are equivalent : 

(a)   is fuzzy (i, j)-almost continuous map. 

(b)  is fuzzy -closed set in X for each fuzzy (i, j)-regular closed set  in . 

(c)  for every fuzzy -open set  of  . 

(d) For each fuzzy -closed set  of , . 

Proof : We prove the theorem in following steps: 

(I) (a) (b) : Suppose that the map  is a fuzzy (i, j)-almost 

continuous map. Let  be a fuzzy (i, j)-regular closed set in , then  is fuzzy (i, j)-regular open set 

in . Therefore  is a fuzzy -open set in X. Hence  is a 

fuzzy -closed set in .  

(II) (b) (a) : Using , where  is a fuzzy (i, j)-regular open set in 

, it can be easily seen that (b) (a). 



(i, j)-Almost Continuity and (i, j)-Weakly Continuity in Fuzzy Bitopological Spaces 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 93 

(III) (a) (c) : Let  be a fuzzy (i, j)-almost continuous map and let  be a fuzzy (i, j)-

regular open set in , so that  is a fuzzy –open set in X. Now . Then 

. Hence  

        (4.1.1) 

Since  is fuzzy (i, j)-almost continuous map, therefore  is a fuzzy  –

open set in  in view of Theorem 3.3(b). So that 

   

Hence we get   in view of (4.1.1). 

(IV) (c) (a) : It can be proved easily. 

(V) (b) (d): Let  be a fuzzy -closed set in , so that . Also . Then 

. Hence . Since  

satisfies the property that  is fuzzy closed set in X, for each fuzzy (i, j)-regular closed set  

in , we conclude that  is a fuzzy  -closed set in . Hence 

. 

(VI) (d) (b) : It can be proved easily. 

This completes the proof of the Theorem. 

Theorem 4.2: If a map  is a fuzzy (i, j)-continuous map, then it is a 

fuzzy (i, j)-almost continuous map.  

Proof: Let  be a fuzzy (i, j)-continuous map so that maps 

 and  are continuous. Now if  is fuzzy (i, j)-regular 

open set in , then  is a fuzzy open set in . Since  is a fuzzy (i, j)-continuous map, 

therefore  is open set in . Hence map  is fuzzy (i, j)-almost continuous map. 

Remark 4.1: The converse of Theorem 4.2 may not be true i.e. every fuzzy (i, j)-almost continuous 

map is not necessarily a fuzzy (i, j)-continuous map.  

Example 4.2: Considering Example 4.1, we see that  is a fuzzy (1, 2)-almost continuous map and 

also a fuzzy (2, 1)-almost continuous map. But we observe that the mapping  

is not a continuous map because , where  is a fuzzy -open set in  and thus the 

map  is not fuzzy (i, j)-continuous map. 

Theorem 4.3: Fuzzy (i, j)-semi continuity and fuzzy (i, j)-almost continuity are independent notions. 

Following two examples justify the statement of the theorem. 

Example 4.3: Referring to Example 4.1, we see that  is a fuzzy (1, 2)-almost continuous map, but it 

is not a fuzzy (1, 2)-semi continuous map because  is not a fuzzy (1, 2)-semi open set in 

, where  is a fuzzy open set in . 

Similarly  is not a fuzzy (2, 1)-semi continuous map because  is not a fuzzy (2, 

1)-semi open set in ,  being open set in . 

Example 4.4: Let  and  and let  be the fuzzy sets defined as follows  
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 Consider  and   as two fuzzy topologies on  and 

 and  be two fuzzy topologies on . Let 

 be a map defined as  and . We observe that map 

 is a fuzzy (i, j)-semi continuous map, but it is not a fuzzy (i, j)-almost continuous map. 

 We see that the map  is a fuzzy (1, 2)-semi continuous map because , 

 and  are fuzzy (1, 2)-semi open sets in  for open 

sets 0, 1 and  in . Similarly we observe that the map  is a fuzzy (2, 1)-semi continuous map. 

But we observe that  is not a fuzzy (2, 1)-almost continuous map because  is not a 

fuzzy open set in  for fuzzy (2, 1)-regular open set  in . Also  is not a fuzzy (1, 2)-almost 

continuous map because  is not a fuzzy open set in  for fuzzy (1, 2)-regular open set  

in . Thus the map  is not a fuzzy (i, j)-almost continuous map. 

5. FUZZY (i, j)-SEMI REGULAR & FUZZY (i, j)-REGULAR SPACES 

Definition 5.1: Fuzzy (i, j)-semi regular space : A fuzzy bitopological space  is called a 

fuzzy (i, j)-semi regular space if and only if the collection of all fuzzy (i, j)-regular open sets of  

forms a base for fuzzy topology  of  with i, j = 1, 2. 

Example 5.1: Let  and let  be fuzzy sets on  defined as follows: 

      

    

      

    

 Consider  and   as two fuzzy topologies on . 

Since fuzzy sets  and  are the only fuzzy (1, 2)-regular open sets of  and we can write 

each of fuzzy open sets as union of some of these six fuzzy (1, 2)-regular open sets. Hence fuzzy 

bitopological space  is a fuzzy (1, 2)-semi regular space. 

 Similarly fuzzy sets  and  are the only fuzzy (2, 1)-regular open sets of  and we 

can write each of fuzzy  -open sets as union of some of these six fuzzy (2, 1)-regular open sets, 

which form a base for fuzzy topology  of . Hence fuzzy bitopological space  is a fuzzy 

(2, 1)-semi regular space. 

 Thus fuzzy bitopological space  is a fuzzy (i, j)-semi regular space. 

Theorem 5.1: Let  be a map from fuzzy bitopological space 

 to a fuzzy (i, j)-semi regular space . Then the map  is fuzzy (i, j)-almost 

continuous if and only if  is fuzzy (i, j)-continuous map. 

Proof: We know (by Theorem 4.2) that any fuzzy (i, j)-continuous map from one fuzzy bitopological 

space to another is a fuzzy (i, j)-almost continuous map. Therefore to prove the theorem, it is 

sufficient to show that if  is fuzzy (i, j)-semi regular space and map  is a fuzzy (i, j)-

almost continuous map, then it is a fuzzy (i, j)-continuous map. Suppose that  is fuzzy (i, 

j)-semi regular space and the map  is fuzzy (i, j)-almost continuous 

map. Let  be a fuzzy open set in . Then  is the union of a collection of fuzzy (i, j)-regular 

open sets   in ,  where  is an arbitrary index set. Thus . Since each  is fuzzy 

(i, j)-regular open set, we have  .  
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Therefore = . Then 

 =  in view of Theorem 

4.1(c). This implies  =  =  .  

Thus . Therefore, we clearly have  

 

which shows that  is a fuzzy open set in . Thus when  is a fuzzy (i, j)-semi regular 

space and  is a fuzzy open set in , then  is a fuzzy open set in  for j = 1, 2. 

Therefore  is a fuzzy (i, j)-continuous map from  to . 

Definition 5.2: Fuzzy (i, j)-regular space : A fuzzy bitopological space  is called a fuzzy 

(i, j)-regular bitopological space if and only if each fuzzy open set  is a union of fuzzy open 

sets  of  such that . 

Example 5.2: Let  and  be two fuzzy sets of  defined as follows  

    and   

Consider fuzzy topologies  = {0, , 1} and  = {0, , 1} on . It is clear that 0,  and 1 are fuzzy 

open sets of . Then we see that 

  , and           

  , and  (i)     and     

      (ii)      

  1 = 0  1,  and  (i)  ,          

      (ii) ,  and    

      (iii)  

Thus conditions of a fuzzy (1, 2)-regular space are satisfied. Hence fuzzy bitopological space 

 is a fuzzy (1, 2)-regular space. 

 Similarly we observe that each fuzzy open sets 0,  and 1 are the union of fuzzy 

open sets, which satisfy the condition of the definition. Therefore fuzzy bitopological space 

 is a fuzzy (2, 1)-regular space also. Hence  is a fuzzy (i, j)-regular space. 

Theorem 5.2: A fuzzy (i, j)-regular bitopological space is also a fuzzy (i, j)-semi regular 

bitopological space. 

Proof: Let  be a fuzzy (i, j)-regular bitopological space. Let  be a fuzzy open set in 

. Suppose  is the union of family  of fuzzy open sets  such that 

,   being an arbitrary index set. Then .               

Now for each  , we have . Then 

 

Thus . Hence . 

It implies .                      

Thus                 (5.2.1) 

Since we know that the fuzzy sets  is a fuzzy (i, j)-regular open set in . 

Hence (5.2.1) indicates that  is a union of fuzzy (i, j)-regular open sets of . Therefore  is a fuzzy 

(i, j)-semi regular bitopological space.  
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Remark 5.1: A fuzzy (i, j)-semi regular space is not necessarily a fuzzy (i, j)-regular space.   

This is shown in the following example. 

Example 5.3: Consider fuzzy bitopological space  of Example 5.1. It is a fuzzy (1, 2)-semi 

regular space. We note that -open fuzzy set  is the union of fuzzy -open sets  and , but  

    and   

Hence fuzzy (1, 2)-semi regular bitopological space  is not a fuzzy (1, 2)-regular space 

6. FUZZY (i, j)-WEAKLY CONTINUOUS MAP 

Definition 6.1: Let  and  be two fuzzy bitopological spaces. A map 

 is called fuzzy (i, j)-weakly continuous map if for each fuzzy -

open set  in  

 

Example 6.1: Referring to Example 4.1, we see that fuzzy sets and are fuzzy open sets 

in . We note that  and . We observe that  

, so that                  (a) 

, so that                   (b) 

, so that                  (c) 

, so that                  (d) 

In view of (a), (b), (c), (d), we conclude that the mapping  is a fuzzy (1, 2)-weakly 

continuous map. 

 Similarly we observe that the mapping  is a fuzzy (2, 1)-weakly continuous map. 

Theorem 6.1: A fuzzy (i, j)-continuous map from one bitopological space to another is a fuzzy (i, j)-

weakly continuous map. 

Proof: Let  be a fuzzy (i, j)-continuous map. Let  be any open 

set in , then  is a fuzzy open set in . We know . Therefore 

. Since  is open set in , we have 

   

Therefore  ,      

 This shows that  is a fuzzy (i, j)-weakly continuous map. 

Remark 6.1: The converse of above Theorem 6.1 need not be true i.e. every fuzzy (i, j)-weakly 
continuous map is not necessarily a fuzzy (i, j)-continuous map. We have the following : 

Example 6.2: Considering Example 6.1 we have shown that the map  is a fuzzy (1, 2)-weakly 

continuous and also a fuzzy (2, 1)-weakly continuous map, whereas in Examples 4.2, we observe that 

the map  is not a fuzzy (i, j)-continuous map. 

Theorem 6.2: A fuzzy (i, j)-almost continuous map is a fuzzy (i, j)-weakly continuous map. 

Proof: Let  be a fuzzy (i, j)-almost continuous map. Let  be any 

open set in . Then we have 

,                        (6.2.1) 
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in view of Theorem 4.1(c). Further, we clearly have . Therefore 

. Hence   

            (6.2.2) 

Therefore in view of (6.2.1) & (6.2.2), we conclude that 

,  

Thus  is a fuzzy (i, j)-weakly continuous map. 

Remark 6.2: A fuzzy (i, j)-weakly continuous map may not be a fuzzy (i, j)-semi continuous map. 

Example 6.3: It is clear from Examples 6.1 that  is a fuzzy (1, 2)-weakly continuous map (and fuzzy 

(2, 1)-weakly continuous map), but in Example 4.3 we observe that the map  is not a fuzzy (1, 2)-

semi continuous map (and fuzzy (2, 1)-semi continuous map). 

Remark 6.3: A fuzzy (i, j)-semi continuous map may not be a fuzzy (i, j)-weakly continuous map. 

Example 6.4: Referring Example 4.4, we see that map  is a fuzzy (i, j)-semi continuous map. But it 

is not a fuzzy (1, 2)-weakly continuous map because for any fuzzy -open set  in ,  we observe 

that  and ,  so that . 

 Similarly  is not a fuzzy (2, 1)-weakly continuous map because for fuzzy -open set  in 

, we see that  and  and hence 

. 

 Thus we have the following Theorem. 

Theorem 6.3: In case of fuzzy bitopological spaces the notions of fuzzy (i, j)-weakly continuity and 

fuzzy (i, j)-semi continuity are independent of each other. 

Theorem 6.4: Let  be a mapping from a fuzzy bitopological space 

 to a fuzzy (i, j)-regular bitopological space . Then  is a fuzzy (i, j)-weakly 

continuous map if and only if  is fuzzy (i, j)-continuous map. 

Proof: To prove the Theorem, in view of Theorem 6.1, it is sufficient to show that if mapping 

 is a fuzzy (i, j)-weakly continuous and if  is a fuzzy (i, 

j)-regular bitopological space, then map  is a fuzzy (i, j)-continuous map. Let  be a fuzzy  - open 

set in . Since  is a fuzzy (i, j)-regular space, we have    

 , for some index set ,                       (6.4.1) 

and for each ,   is a fuzzy  open sets in  such that .          (6.4.2) 

Since f is a fuzzy (i, j)-weakly continuous map and  are fuzzy open sets, we have 

,             (6.4.3) 

Now in view of (6.4.1) we have .  

Therefore , in view of (6.4.3).  

This implies that  .  

Thus . Also we have  . 

Hence we conclude that . Thus  is a fuzzy open set of 

 for fuzzy open set  in and this happens for each j = 1, 2. Therefore  is a fuzzy (i, j)-

continuous map. 
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7. CONCLUSION  

In [5], fuzzy (i, j)-semi open sets and fuzzy (i, j)-semi continuity in fuzzy bitopological spaces have 
been studied. In the present paper, we introduced the concepts of fuzzy regular open (closed) sets and 

studied fuzzy (i, j)-almost continuity and (i, j)-weakly continuity in fuzzy bitopological spaces. We 
have also studied fuzzy (i, j)-semi regular and fuzzy (i, j)-regular spaces in fuzzy bitopological spaces. 
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