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1. INTRODUCTION 

In recent years the mathematical modeling of infectious diseases is well described in the 

litterature. Diseases that are transmitted directly from person to person are modelled by using 

the SEIR system. 

Tuberculosis (TB) is an infection disease caused by Mycobacterium tuberculosis, which is 

transmitted from an infected person to a susceptible person in airborne particles, called droplet 

nuclei. These are 1 to 5 microns in diameter. These infectious droplet  nuclei are tiny  water  

droplets  with  the  bacteria  that  are released when persons who have pulmo- nary or laryngeal  

tuberculosis  cough, sneeze, laugh, shout  etc. These tiny droplet nuclei remain suspended in the 

air for up to several hours.  Tuberculosis bacteria however are transmitted through the air, not by 

surface contact.  This means touching cannot spread the infection unless it is breathed in. 

Transmission occurs when a person inhales droplet nuclei containing tuberculosis bacteria.  These 

droplet nuclei travels via mouth or nasal passages and move into the upper respiratory tract.  

Thereafter they reach the bronchi and ultimately to the lungs and the alveoli. According to the 

World Health Organization (WHO),  the epidemiology of tuberculosis  varies around  the world, 

the hightest  rates  are observed in Sub-saharan  Africa, India  , Indonesia  and  China  and  are , 

in part,  due to interactions with HIV. 

In this paper we formulate and analyze dynamical and stochastic model in section1 to 3. The rest 

of the paper is organized as follows.In section 4, we derive an equivalent sto- chastic model for 

tuberculosis model and in section 5 computational simulations are per- formed. 

2. THE MODEL 

In this  section we present the  system  of differential  equations  of tuberculosis  which described  

the  considered  model of tuberculosis.  We consider a given finite human po- pulation of N 

people, which we divide into three categories: susceptible, exposed and infected. 

                                                   (1) 
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Λ is the recruitment into the population ; β , the probability  that  a susceptible individual will be 

infected by infectious ; µ is the probability that  an individual in the population  died from reasons 

not related  to the desease ; d is the probability  that  an infectious individual dies because of the 

desease.An individual leaves his region to another  for a new treatment with the  probability  δ, 

thus  this  individual  goes missing of model. To  account for treat- ment , we define r1E as the 

fraction of population  receiving effective chemosprophyilaxis and r2 as the rate  of effective per 

capita  therapy.  We assume that  chemosprophylaxis  of latently  infected individuals  E reduces 

their  reactivation rate  r1 and that  the  initiation of therapeutics immediatly  removes individuals 

from active status  I and places them into state  E, the time before latently  infected individuals  

who does not received effective che- moprophylaxis  become infectious is assumed to satisfy an 

exponential  distribution, with time 
1

𝑘

 . Thus, individuals leave the class E to I at rate k(1 − r1). 

Also, after receiving a theurapeutic treatment, individuals leave the class I to E at rate r2 I. By 

adding the System (1), the equation for total population is given by 

𝑁 =Λ − 𝜇𝑁 − (𝑑 + 𝛿)I 

If there is no desease in the population  

                                                    N=
Λ

𝜇
                                                                                    (2) 

The following result show that the solutions for model (1) are bounded and, hence, lie in a 

compact set and are continuable for all positive time. 

 

Lemma 1: the plane S+E+I≤
Λ

𝜇
 is an invariant manifold of model (3), which is attracting in 

the first octant. 

Proof: Summing up the three equations, we have N(t)=S(t)+E(t)+I(t). It follows from 

 
(1) that: 

 
Hence, by integration, we check 

 
and Then :  

 

So the feasible region for system (1) : 

Δ =   𝑆, 𝐸, 𝐼 ∈ ℝ+
3 , 0 ≤ (𝑆 + 𝐸 + 𝐼) ≤

Λ

𝜇
  

is positively invariant.Therefore, for initial  starting  p o i n t  x 𝜖ℝ+
3 , the trajectory l i e s  i n      

T h e o r e m  1 :  

System (1) does not have nontrivial periodic orbits. 

Proof: From lemma 1, we can say that a limit cycle, if it exists, must lies in the region 

Consider system (1) for S > 0 and I > 0. Take a Dulac function 

D(S,I)=
𝛽

𝑆𝐼
 

We have 

 

Hence (1) does not have a limit cycle in (1). 

The conclusion follows. 
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t 

2.1 Equilibria and basic reproduction number 

System (1) has two equilibrium points: the desease equilibrium 𝐸1=(
Λ

𝜇
, 0,0) and the endemic 

equilibrium: 

 
satisfying the system : 

              (3) 

Proposition: The basic reproduction number is 

 

Proof: The basic reproduction R0 will be calculated by using the next generation matrix from 

Driessche and Woutmough, 2002 [8]. 

Let X=(E,I,S). system (1) can be written  as  
𝑑𝑋

𝑑𝑡
=ℱ − 𝜈, where  

 
The jacobian matrices of ℱ and 𝜈 at the desease free equilibrium 𝑋0 are respectively: 

Where 

 
 

 
 

 

Is the next generation matrizx of system (1) 

 

 
Hence, the basic reproduction number of system (1) is: 
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Theorem 2:  

If 𝑅0 <1, then the desease free equilibrium is globally asymptotically stable in 𝚫 

Proof: Let be the following Lyapounov function V:Δ → ℝ 

V(S,E,I)=I(t) 

We have  

𝑑𝑉

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
+k(1-𝑟1)𝐸 −  𝜇 + 𝑑 + 𝛿 + 𝑟2 𝐼 

 

Which gives us: 

 

 

 

 

Hence by LaSalle’s principle[7] the disease free equilibrium is globally asymptotically stable on  

Theorem 3: 

The endemic wquilibrium of the system is globally asymptotically stable on  

 

Proof: Let be the following Lyapounov function  

 

 

 

 

where W1 and W2 are positive constant to be chosen latter. We have:
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And we obtain this inequality: 

 

 
For 𝑊1  = 𝑊2 =1, and with the fact that  is small we deduce that: 

 

We also have: 

 

Hence  by LaSalle’s invariance principle [7], the endemic equilibrium is globally asymptoti-cally 

stable on Δ. 

3. STOCHASTIC MODEL 

The deterministic model and the dstochastic model have the same equilibria. Through this paper, let 

(Ω, 𝐹,  𝐹 𝑖>0 , 𝑃) be a complete espace with filtration satisfying the usual conditions (i.e. it is a right 

continuous and increasing while F0 contains all null sets). We define the differential operator L 

associated with 3-dimensional stochastic differential equation: 

    dx(t) = f (X (t))dt + 𝜙(X (t))dB(t)                                                   (4) 

Where𝜙 =  𝜙𝑖 , 𝑖 = 1, . ,3   is locally Lypchitz function.B is a three Brownian motion and 

 

If V(x,t) is a Lyapounov function, we define the action of L on V by: 

 

where 

 

with reference to Afanasev and al.[1], the following theorem holds. 

Theorem 4:  

Suppose that there exits a function  

and two real positive continuous  functions a and b, and a constant  K such that, for |x| < K 

satisfying the inequalities 

dV
dt
0
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a(|X |) ≤ V (t, X)≤b(|X|) 

(i) if LV (t, x) ≤ 0, then the trivial solution of (4) is stable in probability, 

(ii) if there exist a continuous function 𝜆:ℝ+
0 → ℝ+

0 , positive on ℝ+, such that 

LV≤ 𝜆  𝑥   

Then the trivial solution of (4) is asymptotically stable. 

Note that for stability definition, we refer to Afanas’ev and Al. 

 

Proposition 2: (9) 

 
Theorem 5: Assume that 𝜃 ≤ 𝜇, 𝛼2 ≤ 𝛼3  and (𝛼3  − 𝛼2)(k+𝑟1) ≤ 𝛼1𝜇 holds. Then for any  

 

𝑔1
2 = 𝜃1(𝑆 −

Λ

𝜇
)2 where     

Λ

𝜇
<𝜆 

 

Proof: Let u1 = (S - 
Λ

𝜇
 ) and u2  = E and u3  = I and consider the Lyapounov function 

𝑉1 =
1

2
𝛼1𝑢1

2 + 𝛼2𝑢2 + 𝛼3𝑢3                         (5) 

Where αi are real positive constants to be chosen in the course of the proof. 

 

 
One has now 

 

According to the preceding theorem 3, the proof is complete. 
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3.2 Stability of endemic equilibrium 

We assume that stochastic perturbations of variables around 𝐸2 =  𝑆∗, 𝐸∗, 𝐼∗  are of white noise 

type, which are proportional to the respective distance of S, E and I from 𝑆∗ , 𝐸∗ and 𝐼∗ . see  [12]. 

So system (1) transformed into: 

    (6) 

Where Bi (t)  i=1,2,3  is 3-dimensional Brownian motion and σi ≥ 0, i=1,2,3  represent the 

intensities  of Bi.. 

The system of stochastic differentiable equation in (5) can be centered at its interior endemic 

equilibrium by changes: 

𝑈1 = 𝑆 − 𝑆∗, 𝑈2 = 𝐸 − 𝐸∗, 𝑈3 = 𝐼 − 𝐼∗. 

The linearization around this endemic equilibrium take the form: 

 
Where u(t)=col(𝑢1 𝑡 , 𝑢2 𝑡 , 𝑢3 (𝑡)) and 

 

 
and f(u)=J(𝐸2)𝑢 𝑡 . Note that The endemic equilibrium  corresponds to the trivial solution of 

u(t)=0. 

Theorem 6: Assume that 𝜎1
2 ≤ 2 𝛽

𝐼∗

𝑁
+ 𝜇 , 𝜎3

2 ≤ 𝜇 + 𝑘 1 − 𝑟1  and 𝜎3
2 ≤ 2((𝜇 + 𝑑 + 𝛿+𝑟2)-

 𝛽
𝑆∗

𝑁
), for any locally Lipchitz function g such that 𝜙1

2 𝑆, 𝐸, 𝐼 = 𝜎1(𝑆 − 𝑆∗)2, 𝜙2
2 𝑆, 𝐸, 𝐼 =

𝜎2(𝐸 − 𝐸∗)2 and 𝜙3
2 𝑆, 𝐸, 𝐼 = 𝜎3(𝐼 − 𝐼∗)2 , then the endemic equilibrium is globally 

asymptotically stable. 

Proof: Let consider a Lyapounov function V(u)=
1

2
(𝜔1𝑢1

2+𝜔2𝑢2
2+𝜔3𝑢3

2) are , where (𝜔𝑖), i=1,.,3 

are real positiuve constants to be chosen in the course of the proof. 

One has: 

 

 
 

 
and  
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with 

 
 

Finally one obtains 

 
                                                                                                                          (7) 

If we choose in (7) 𝜔1 =p𝜔3 and in the fact that 𝑢𝑖
2  is locally Lipchitz function, we obtain 

the following inequality: 

 

By theorem (6) the proof is complete.          

4 COMPUTATION SOLUTION OF STOCHASTIC DIFFERENTIABLE EQUATION 

Now we take account of stochastic method of E.J.Allen and al.  for evaluating  the transition 

probability  density for the process which is the solution of one stochastic  differential  equation. 

To form the SDE model, we will calculate E(∆X ) and E((∆X ) (∆X )) The evolution of 

population  is according to the rates on the following table: 

Table1. Compartment changes in a small time period ∆ t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The mean of system is given by 

                                (8) 

and the comatrix is given by: 
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                                                                                                                                                               (9) 

It has been proved in that X(t)  is normally distributed. Then, 

 

 

 

                            (10) 

and the next step is to calculate  𝐺 in the form G=𝐻𝐻𝑇 . One will uses Allen and al. technique [3,4] 

based on the calculate of H=P𝐷1/2𝑃𝑇, if G is a symmetric positive definite  matrix. In our model G is 

a 3X7 matrix , not symmetric. Hence we will use the equivalent stochastic differential equation as 

follow: 

4.1 Equivalent SDE 

The system (5) will be changed into SDEs in the form : 

 

F(t,X(t)) is called the drift function or deterministic, G(t,X(t))=(𝜆𝑗 ,𝑖𝑃𝑗
1/2

) for i=1,..,m j=1,..d is called 

dispersion function or diffusion and dW(t) is the Brownian noise. 

Using the second modeling procedure of Allen and Al.[4] we get an equivalent to the preceding model 

as follow: 

                       (11) 

 
                                                                                                                                                             (12) 

                                                                                                                                                             (13) 

The system becomes: 

 
                                                                                                                                                             (14) 

4.2 Computational method and results 

In this section, computational results are given for the stochastic system. We use the Euler-

Maruyama method mentioned in Higham. 
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                                                                                                                                                             (15) 

The following parameters are taken from [5] :µ = 0.101, r1 = 0.01, δ = 0.16288,  

r2 = 0.81862,d =0.0022727 p = 0.1, S(0) =1000,  E(0) = 200 and I (0) = 100. 

 ηk are the gaussian random  variables N(0,1). 

The simulation results are depicted in following figures: 

Example 1: 

For β = 2,k = 0.005 we obtain  R0  = 0.27387 < 1 .and  the following figures 1 and 2 show 

that  the desease will become extinct. 

Table1. Mean and standard deviation for ODE epidemic model and SDE epidemic Model at t=516 

Models Variables (Xi )    E(X) σ(X) 

 

Ode 

S               1075 

E                337 

I                  2 

0 

0 

0 

 

SDE 

S                796 

E                 89 

I                  1 

80,36 

41,76 

8,95 

 

Fig.1. represents the solution of dynamical model with R0 < 1 
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Fig 2. represents the solution of stochastic model with 𝑅0 < 1 

Example 2: 

For β = 20, we have R0 = 2.7387 and on figures 3 and 4, the desease will persist.  

Table 2. Mean and standard deviation for ODE epidemic model and SDE epidemic model at t=516, for 

R0 = 2.7387 

Models Variables (Xi )    E(X) σ(X) 

 

Ode 

S                202 

E               1178 

I                 18 

0 

0 

 

SDE 

S                411 

E                534 

I                  5 

32,86 

61,59 

7,43 

 
Fig 3 represents the solution of stochastic model with 𝑅0 > 1 
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Fig 4. represents the solution of stochastic model with 𝑅0 > 1 

5  CONCLUSION 

In this paper, we have considered a stochastic model tuberculosis model. The sta- bility of the 

positive equilibium and the existence are investigated by Lyapounov  func- tions.Deterministic and 

equivalent stochastic  models are presented. Finally some numeri- cal simulations are also included 

to testify the validity of the theoretical results. It appear that deterministic and stochastic models 

have the same trend. 
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