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Abstract: In this study, it was formulated the boundary-value-problem (BVP), comprising partial differential 
equations (PDEs), of steady flow for plane, laminar jet of a micropolar fluid. A new similarity 
transformation/solution was derived which is valid not only for the Newtonian fluids but also for the micropolar 
fluids. Obviously, this transformation will be transformed the PDEs into the ordinary differential equations 
(ODEs). These ODEs were solved numerically by the finite difference method. The obtained results were 
compared with existing results [1, 12] for the Newtonian fluids. The comparison was favourable. As the 
aciculate particles in a micropolar fluid can rotate without translation, the micropolarity effects must have 
influence on fluid-speed, microrotation, stresses, couple stresses and discharge. This influence was highlighted 
in the present study. If viscosity coupling parameter K1 (being the measure of micropolarity) increases then 
microrotation, fluid-flux, stresses and couple stresses ( )3113  & mm

2211

 intensify in the vicinity of the jet along y-

direction. The fluid-flux, , for a fixed value of K1 and for the micropolar as well as Newtonian fluids. 

Moreover, the normal stresses are related mutually as 

xQ ∝
σσ −= . In addition, the stress and the couple stress 

tensors are non-symmetric but the couple stress tensor will be symmetric and skew-symmetric, respectively, if 
.0=γβ m  
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1. INTRODUCTION  
There is a type of fluids comprising aciculate rigid/semi-rigid particles which can rotate (without 
translation) about the axes passing through their centroids, are named as micropolar fluids. In 1966, 
Eringen [2] derived their governing and constitutive equations. These fluids sustain asymmetric stress 
tensor in addition to couple stress tensor (which occurs owing to the spinning of the colloids/aciculate 
particles). In addition, these fluids have six degree of freedom---three more than the Newtonian fluids. 
Micropolar fluids are exemplified by blood [3-4], polymers and polymeric suspension [5], rigid-rod 
epoxies [6], colloidal suspension and liquid crystals [7]. These fluids are being used on lab-on-a-chip 
[8-9] nowadays. These fluids have very healthy history and a lot of work has been done. We shall not 
survey the history here but we shall refer [2, 7, 10-11, 21-22] for the reader who has interest to know 
their history. 

On motivating the technoscientifical and industrial importance of micropolar fluids, we embarked the 
program to probe the micropolarity effects on the laminar plane jet.  

A laminar plane jet is analogous to the point/line source of fluid, that can emit fluid from a long but 
narrow slit and mixes with the surrounding fluid [12]. It gained great attention not only in the 
previous century like [1, 12] but also it is burning issue of the day in the current century [13-14].  It is 
due to fact that, it has tremendous and marvelous applications in industry and engineering. For 
example: in setting up the ink-jet printers [15-17], in cooling hot material like steel plates at ROT 
[13], in cooling of combustion engines and electronic microchips  [14], in evaporation of refrigerant-
oil mixture [18], in Erosion threshold of a liquid immersed granular bed [19] and much more in [20]. 

The plan of this paper is: Section 2 comprises mathematical formulation of the boundary value 
problem for under-consideration flow and similarity transformation; the computational procedure will 
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be presented in section 3 while section 4 contains brief review of the Bickley-Schlichting (BS) 
Solution for the Newtonian Fluids. The results (in graphical form) in addition to the discussion on it, 
are given in section 5 whereas conclusions are made briefly in section 6.  

2. MATHEMATICAL FORMULATION 
Consider a steady “The Plane Jet” flow [1] having width w, of viscous and incompressible micropolar 
fluid. Its governing equations, originally derived by [7], in dimensional form are 

0=′⋅∇′ V ,                                                                                       (1) 

( ) ( ) ( )VVBΦNV ′∇′⋅′=+∇′−′×∇′+′×∇′×∇′+− ρρχχμ ,                   (2) 

( ) ( ) ( ) ( ) ( )NVCNVNN ′∇′⋅′=+′−′×∇′+′×∇′×∇′−′⋅∇′∇′++ ojρρχγγβα 2 ,                        (3) 

with respect to the following constitutive equations [21-22]; 

 ( )[ ] ( ) NVVVV ′×+′×∇′×−′∇′+′∇′⎟
⎠
⎞

⎜
⎝
⎛ ++′⋅∇′=′ III T χχχμλσ

22
,                                      (4) 

( )TNN ′∇′+′∇′ γβ .                                                                                                   (5) Im N +′⋅∇′=′ α

Here r′∇′=I is the idempotent and superscript T stands for transpose. In addition,  V and ′ N′ , 
respectively are the dimensional fluid velocity and the microrotation of collides; ρ and jo are, 
respectively, the fluid density and the microinertia; Φ, B, and C are, respectively, the hydrostatic 
pressure, the body-force and the body-couple; and α, β and γ are three spin-gradient viscosity 
coefficients whereas μ and χ signify for the spin viscosity coefficients such that 02 + ≥χμ  where 

0≥χ [21]. 

As far as the plane jet is concerned, it is defined as earlier: it is a long narrow orifice/slit of fluid in a 
stationary fluid that ejects the fluid continuously, freely and steadily in two dimensional [1]. The (x, 
y)-coordinates system will be suitable such that the origin is lying on the orifice-centre whereas the x-
axis is taken along the axis of symmetry of the plane jet, as shown in figure 1. 
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Figure 1. The Schematic of the flow 

Moreover, this study was made under the following assumptions: 

• The flow is considered as two dimensional so the velocity and microrotation can be 
expressed as [ ]0),,(),,( yxvyxu ′′′′′′=′V  and [ ]),(,0,0 yxS ′′′=′N  respectively. 
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• The (emerging) jet spreads outward in the downstream direction on account of the 
effect of the friction. 

• The ambient fluid is not influenced by any external forces like the body-force and the 
body-couple. 

• The (hydrostatic) pressure is assumed to be constant and is independent of coordinate 
axes. Whence it can be concluded that the momentum along x-direction Mx will remain 

constant i.e. ∫ =constant  [12]. 
∞

∞−

′′= yduM x
2ρ

• The velocity (u’)-profile may be analogous to that of flow past a flat plate at zero 
incidence  [12]. 

• The velocity-component u ′will be function of wy /′  [12], where w denotes for the 
width of the jet.  

• The presumed Prandle boundary layer theory for a Newtonian fluid will be preserved 
for under consideration micropolar fluid. 

Equs. (1) – (3), in the light of above assumptions, will take the form as: 

0=
′∂
′∂

+
′∂
′∂

y
v

x
u

                                                                           (6) 

S
y
u

y
uv

x
uu m ′+

′∂
′∂

=
′∂
′∂′+

′∂
′∂′

ρ
χν 2

2

                                                                                      (7) 

S
y
S

y
u

y
Svjo ′−

′∂
′∂

=
′∂
′∂

+
′∂
′∂′ χγχρ 22

2

                                    (8) 

Where ρχμν /)( +=m . The boundary conditions will be 

,0   ,0 =
′∂
′∂

=
y
uv

w
u mν=′ ,                 at  0=′S 0=′y                                                                        (9) 

0→′u  and                                       as  0=′S ∞→′y                                                                     (10) 

by virtue of no-slip-no-spin and matching conditions. 

On applying the dimension analysis on above boundary value problem (6) - (8), we get 

SK
y
u

y
uv

x
uu 12

2

+
∂
∂

=
∂
∂

+
∂
∂

                                                                                                 (11) 
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⎝

⎛
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∂

+−
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=
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uSK
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SK

y
Sv 232
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2                                               (12) 

where ,   and   such that ),(),( 1 vuwvu m ′′= −ν ),(),( 1 yxwyx ′′= − SwS m ′= −12ν )/(1 χμχ +=K , 

oj)/(K 2 χμγ + K 3=  and . In addition, the dimensional stress ojKw /)( 1
2= ′σ  and couple stress 

tensors ′m are related with their corresponding dimensionless form as: ( ) ′+ − σχμ 22w= ρσ and 

( ) ′= − mwm m
13 γν .   
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Now, let us introduce similarity solution, in order to transform partial differential equations given in 
Eqs. (11) - (12) into ordinary differential equations, as: 

dy
ydfxu )(

= ,  and                                                                                         (13) )(yfv −= )(yxgS =

On using Eq. (13) into Eqs. (11) - (12), we yield 

01

2

2

2

3

3

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

dy
dgK

dy
df

dy
fdf

dy
fd

                                                                                              (14) 

02 2

2

32

2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

dy
fdgK

dy
dgf

dy
gdK                                                                                           (15) 

The boundary conditions will be deformed as: 

0   ,0  ,0 2

2

===
dy

fdgf  and 1=
dy
df

                    at  0=y                                                            (16a) 

0 →g  and 0→
dy
df

                                           as  ∞→y                                                           (16b) 

The boundary value problem (BVP) given above comprises coupled, non-linear ordinary differential 
equations and cannot be solved analytically. Therefore, it will be solved by the numerical scheme 
whose description is given in next section. 

3. COMPUTATIONAL PROCEDURE                                                                                                                                                      

             Eqs. (14) - (15) may be written as: 

01
2

2

2

=+−+ gK
dy
df

dy
d φφφ

                                                                                                           (17) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

dy
dgK

dy
dgf

dy
gdK φ232

2

2                                                     (18) 

where        
dy
df

=φ .                                                                                                                             (19) 

The central finite difference approximations are applied to the derivatives involved in Eqs. (17) - (18) 
to get a set of two finite difference equations. These are further solved by the Successive-Over-
Relaxation method [23] whereas Eq. (19) will be integrated by the Simpson’s rule [24]. 

4. BICKLEY-SCHLICHTING (BS) SOLUTION AND THE NEWTONIAN FLUIDS 

Before discussing the results, let us review and reproduce the existing solution for a Newtonian fluid, 
which was developed by Bickley-Schlichting [1, 12] and let us name it Bickley-Schlichting (BS) 
solution. 

If we put  in Eq. (3), we get the boundary layer equation for the Newtonian fluid 01 =K

 2

2

y
u

y
uv

x
uu

′∂
′∂

=
′∂
′∂′+

′∂
′∂′

ρ
μ

                                                                                                                 (20) 

Bickley-Schlichting (BS) developed the following similarity solution [1] and [12]: 
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ηd
dfxu 3/1

3
1 −=′                                                                                                                                   (21) 
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where .
3
1 3/2

2/1
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−

⎟⎟
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⎞
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⎝

⎛
=

ρ
μη  

On using (21) - (22) in Eq. (20), it can easily be found: 
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ηηη d
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                                                                                                            (23) 

This equation was solved analytically with subject to the aforementioned boundary conditions by 
Bickley-Schlichting as: [1, 12] 

[ )(tanh14543.0 2
3/12

ξ
μ
ρ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

x
ku ]                                                                                                (24) 

where yyxk
1

3/2
3/1

2

2

2752.0 α
μ
ρξ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −   such that .xMk =ρ  

5. RESULTS AND DISCUSSIONS 

All the calculation are carried out for fixed material constants , 

[21]. The couple stress parameter 

Pa.s 103 2−×=μ
-33 Kg.m 102.1 ×=ρ ],[ γγβ −∈  and viscosity coupling 

parameter  are used [21].  [ )1,01 ∈K

The effect of micropolarity is highlighted on laminar plane jet for physical parameters of fluid like 
fluid-speed, fluid-flux, fluid-stresses and fluid-couple stresses graphically in this section.  

The fluid-velocity has two non-zero components horizontal-fluid-speed u and transverse-fluid-speed 
v. These are displayed in figures 2 & 3; figure 2 depicts for variation of u at x=1 with y for three 
values of K1 namely K1=0 (for the Newtonian fluids), K1=0.01 and K1=0.005. It can be observed that, 
horizontal-fluid-speed u decreases with increasing y for the Newtonian as well as for the micropolar 
fluids. In addition as 0→u ∞→y , owing to the fact that the fluid is stationary far from the jet, 
which is in justification with boundary condition (10) for both the Newtonian and micropolar fluids. 
The distinguished feature of micropolar is that, the reverse flow exists if we increase K1 as u<0 for the 
micropolar case e.g. for K1=0.005 (as presented in figure 2), while u remains positive for the 
Newtonian fluids for all values of x and y. Consequently the boundary layer separation occurs in the 
vicinity of jet. An observation which is not displayed here is that boundary layer separation points 
grow as K1 increases. Moreover, figure 2 also shows the comparison of the present results for the 
Newtonian fluids (K1=0) with the existing results [1, 12]. Both the results compare well for moderate 
and high values of y but it differs slightly for low values of y. However, the decreasing trend of u with 
y of both the results is concurrent.  

Unlike the horizontal component of velocity, the transverse-fluid-speed v is independent of x, which is 
in accordance with the similarity solution given in (13). This transverse fluid speed v decreases as y 
increases for all x but for a Newtonian fluid and very low value of K1 as shown in figure 3. In 
addition, v increases in the vicinity of jet for high value of K1 near jet. However, the common feature 
for both the fluids (Newtonian as well as micropolar) v remains constant as ∞→y for all x and K1.  
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Figure 2. Variation of horizontal-speed/velocity u with y for present result K1=0 (solid curve); K1=0.01 (dotted 
curve); K1=0.05 (dotted-dashed curve); and comparison of the results with BS-solution Eq. (24) which is 
represented here by circle for the Newtonian fluids, when .511 .=α  

 
Figure 3. Variation of transverse-speed/velocity v with y for K1=0 (solid curve); K1=0.01 (dotted curve) and 
K1=0.02 (dotted-dashed curve) 

It is obvious to say that the microrotation S of the aciculate particles in a fluid is zero for the 
Newtonian fluid since this fluid property occurs in micropolar fluid merely. Therefore S is plotted 
versus y for non-zero values of { }05.0,02.0,007.01 ∈K

0→S

for a couple of values of  in 
figures 4 & 5. From these figures, it is observed that S depends upon x, y and K1. The dependency of S 
on y is significant in such a way that (i) S increases with increasing K1 for high value of about  
for all y but it is not so for low value of x; (ii) S also increases as y increases in the vicinity of jet along 
y-direction and it decreases as y increases such that  as 

{ }3.1,1.0∈x

≥x 1

∞→y which is in accordance with the 
fact given in (10), analogous to the fluid speed u. 
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Figure 4. Variation of Microrotation with y at x=0.1 for K1=0.007 (solid curve); K1=0.02 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 

S

 
Figure 5. Variation of Microrotation with y at x=1.3 for K1=0.007 (solid curve); K1=0.02 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 

S

Next, the fluid flux (or discharge) has a dominant role in analyzing fluid dynamics regarding the 

engineering perspective, it is defined as [12]: . In the present context, it will be deformed in 

a very simple form as: 

∫
∞

=
0

udyQ

                                                              (25) ( )∞= xfQ
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by virtue of (13). This Eq. (25) shows that xQ ∝  for a fixed value of K1 since  varies with K1. 
Furthermore Q increases as x increases (in downstream too) for both the fluids (Newtonian as well as 
micropolar) as shown in figure (6), which is in agreement with the existing result (for Newtonian 
fluid) [12]. 

(∞f )

 
Figure 6. Variation of discharge/fluid-flux Q with x for K1=0 (solid curve); K1=0.01 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 

( )2112  & σσ  as: In our case, Eq. (4) yields two non-zero shear stresses 

( ) SK
x
v

y
uK 1112 1 −

∂
∂

+
∂
∂

−=σ ,                                                                                                 (26) 

( ) SK
x
vK

y
u

1121 1 +
∂
∂

−+
∂
∂

=σ ,                                                                                                 (27) 

and two non-zero normal stresses ( 2211  & )σσ . The normal stresses are independent of x in addition 
to the fact that 2211 - σσ = . Whence, we can conclude that ( ) 0=ijtr σ , that implies zero effect of 
pressure, which is in accordance with the aforementioned assumption made in section 2. The variation 
of normal stress 11σ with y for different values of K1 is presented in figure 7. This figure indicates that 
(i) 11σ  decreases as y increases. It means that the magnitudes of normal stresses are dominant in the 
vicinity of jet; (ii) 11σ increases with increasing  K1 in the vicinity of jet, for the Newtonian as well as 
the micropolar fluids. Unlike 11σ the shear stress, 12σ increases as y increases for fixed x for a 
Newtonian fluid while it is not so for a micropolar fluid. For a micropolar fluid, 012 <σ  and 

12σ decreases initially near jet and then it increases until it converges to zero for far from the jet for all 
x, K1 and for both the fluids (Newtonian and micropolar), as shown in figure 8. The influence of the 
second non-zero component of shear stress 21σ is displayed in figure 9. It depicts that (i) 21σ increases 
with y for a fixed x for a Newtonian fluid; but (ii) 21σ increases as K1 increases for all y for a fixed x 
for the Newtonian as well as micropolar fluids; and (iii) 021 →σ  as 1 K∀and   x∀y ∞→  for the 
Newtonian as well as micropolar fluids. However 1221 σσ = for the Newtonian fluids. 
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Figure 7. Variation of normal stress 11σ with y for K1=0 (solid curve); K1=0.02 (dotted curve) and K1=0.05 
(dotted-dashed curve). 

 

 

Figure 8. Variation of shear stress 12σ with y at x=1 for K1=0 (solid curve); K1=0.02 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 68 



Abuzar A. Siddiqui 
 

 
Figure 9. Variation of shear stress 21σ with y at x=1 for K1=0 (solid curve); K1=0.02 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 
Finally, Eq. (5), for couple stress tensor, yields four non-zero components, which are related in our 
case as: 

23432

13431

mKm
mKm

=
=

                                                                                                                                      (28) 

where [ 1,14 −∈=
γ

]βK  [22].  

According to Eq. (28), the couple stress tensor will be symmetric and skew-symmetric, respectively, 
if .0=γβ m   

The effect of two non-zero components of shear stresses ( )2313  & mm

→m13

 are presented graphically here 
in figures 10 & 11. These figures indicate that increases as K1 increases at a fixed x for low value 
of y and after then it decreases for high value of y such that for all K1. Unlike 

, decreases if y increases for all K1 at a fixed x. Consistently, for all K1 
and x, analogous to aforementioned physical parameters of fluids.  

13m
∞→y as 0

→m  as 02313m 23m ∞→y

 
Figure 10. Variation of couple stress with y at x=1 for K1=0.007 (solid curve); K1=0.02 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 

13m
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Figure 11. Variation of couple stress with y at x=1 for K1=0.007 (solid curve); K1=0.02 (dotted curve) and 
K1=0.05 (dotted-dashed curve). 

23m

6. CONCLUSIONS 
In this study, it was formulated the boundary-value-problem (BVP), comprising partial differential 
equations (PDEs), of steady flow for plane, laminar jet of a micropolar fluid. A new similarity 
transformation/solution was derived which is valid not only for the Newtonian fluids but also for the 
micropolar fluids. Obviously, this transformation will be transformed the PDEs into the ordinary 
differential equations (ODEs). These ODEs were solved numerically by the finite difference method. 
The obtained results were compared with existing results [1, 12] for the Newtonian fluids. The 
comparison was favourable. As the aciculate particles in a micropolar fluid can rotate without 
translation, the micropolarity must have influence on fluid-physical-parameters (e.g. fluid-speed, 
internal stresses, couple stresses and discharge). This influence was highlighted in the present study. 
All the fluid-physical-parameters had significant influence on the viscosity coupling parameter K1. 
For example, if K1 increases, the microrotation, the fluid-flux, the stresses and the couple stresses 

 grows in the vicinity of the jet along y-direction.  It is not amazing to record the 
observation that all fluid-physical-parameters (FPPs) vanishes far from the jet ( ) owing to the 
stationary fluid far from the jet, which may justify our numerical results. In addition to the 
dependency of FPPs on K1, the horizontal fluid speed, shear stresses and microrotation depend upon x 
and y. In contrast, transverse fluid speed is independent of abscissa x and fluid flux is independent of  
ordinate  y such that fluid flux , for a fixed value of K1 and for the micropolar as well as the 
Newtonian fluids. Moreover, the normal stresses are related mutually as 

( 3113  & mm )
∞→y

22

xQ ∝

11 σσ −= ; whence we can 
conclude that ( )1,0∈ 0)( 1∀= Ktr ijσ . Last but not the least, for the micropolar fluids, the stress and 
the couple stress tensors are non-symmetric but the couple stress tensor will be symmetric and skew-
symmetric, respectively, if .0=γβ m  
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