Some results in co-Noetherian BL-algebras

Zhan Huai Ji

School of Marine Science and Technology, Northwestern Polytechnical University, 710072, Xi'an, P.R.China; College of Science, Xi'an University of Science and Technology, 710054, Xi'an, P.R.China

Biao Long Meng

College of Science, Xi'an University of Science and Technology, 710054, Xi'an, P.R.China

mengbl_100@139.com

jizhanhuai88@163.com

Abstract: In this paper, we investigate further properties of co-Noetherian BL-algebras. We introduce a special case of BL-algebras and give some characterizations for pBL-algebras. Finally, we study co-Noetherian BL-algebras by prime ideals.

Keywords: BL-algebra, co-Noetherian BL-algebra, ideal, prime ideal

1. INTRODUCTION

The notion of BL-algebra was initiated by Hájek ([2]) in order to provide an algebraic proof of the completeness theorem of Basic Logic (**BL**, in short). Soon after, Cignoli et al.([1]) proved that Hájek's logic really is the logic of continuous *t*-norms as conjectured by Hájek. At the same time started a systematic study of BL-algebras, and in particular, filters theory (see [3], [4], [7], [10], [11]). Using the model of rings, Motamed ([6]) introduced the notion of Northerian BL-algebras and gave some of its equivalent definitions. Since filters and ideals are not dual concepts in BL-algebras, Meng ([5]) systematically studied properties of ideals and introduced co-Noetherian BL-algebras based on ideals theory in BL-algebras.

The structure of the paper is as follows: In section 2, we recall some definitions and facts about BL-algebras that we use in the sequel. In the section 3, we investigate further properties of co-Noetherian BL-algebras. This part of paper contains providing the sufficient conditions for a quotient BL-algebra to be co-Noetherian. We introduce a special kinds of BL-algebras named pBL-algebra , and give some characterizations for pBL-algebra. After that, we characterize co-Noetherian BL-algebras by prime ideals.

2. PRELIMINARIES

Let us recall some definitions and results on *BL*-algebras.

Definition 2.1([2]). An algebra $(A; \land, \lor, *, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) is called a *BL*-algebra if it satisfies the following conditions:

(BL1) $(A; \land, \lor, 0, 1)$ is a bounded lattice,

(BL2) (A;*,1) is a commutative monoid,

(BL3) $x * y \le z$ if and only if $x \le y \rightarrow z$ (residuation),

(BL4) $x \wedge y = x^*(x \rightarrow y)$, thus $x^*(x \rightarrow y) = y^*(y \rightarrow x)$ (divisibility),

(BL5) $(x \rightarrow y) \lor (y \rightarrow x) = 1$ (prelinearity).

Definition 2.2([9]). Let A, B be two *BL*-algebras. A map $h: A \rightarrow B$, defined on A, is called a *BL*-homomorphism if, for all $x, y \in A$,

$$h(x * y) = h(x) * h(y), h(x \rightarrow y) = h(x) \rightarrow h(y)$$
 and $h(0_A) = 0_B$.

If $h: A \rightarrow B$ is a *BL*-homomorphism then, for all $x, y \in A$,

$$h(x \wedge y) = h(x) \wedge h(y), \quad h(x \vee y) = h(x) \vee h(y),$$

$$h(x^{-}) = h(x)^{-}$$
, $h(1_{A}) = 1_{B}$ and if $x \le y$ then $h(x) \le h(y)$.

Definition 2.3([2]). Let A be a *BL*-algebra. A nonempty subset $I \subseteq A$ is called an ideal of A, if the following conditions are satisfied:

(1)
$$0 \in I$$
,

(2) if $x, (x^- \rightarrow y^-)^- \in I$ then $y \in I$.

A proper ideal *P* of *A* is called a prime ideal if, for all $x, y \in A$, $x \land y \in P$ implies $x \in P$ or $y \in P$.

Through the paper, the set of all ideals of a *BL*-algebra *A* is denoted by I(A) and all prime ideals of *A* by PI(A).

Proposition 2.4([5]). Let *I* be an ideal of a *BL*-algebra *A* and $a \in A$, then

$$(I \cup \{a\}] = \{x \in A : ((a^{-})^{n} \to x^{-})^{-} \in I, \exists n \in N\}.$$

An ideal of A is called a finitely generated ideal, if there exist $a_1, a_2, ..., a_k \in A$ such that

$$I = (a_1, a_2, ..., a_k]$$

Obviously, if $I, J \in I(A)$ are finitely generated ideals, $I \cap J$ is a finitely generated ideal.

Proposition 2.5([5]). Let A be a *BL*-algebra. Then for any $a_1, a_2, ..., a_k \in A(k \in N)$

$$((a_1] \cup (a_2] \cup \dots \cup (a_k]] = ((a_1^{-} * a_2^{-} * \dots * a_k^{-})^{-}].$$

Definition 2.6([5]). A *BL*-algebra A is said to be co-Noetherian with respect to ideals if every ideal of A is finitely generated;

We say that A satisfying the ascending chain condition with respect to ideals if for every ascending sequence $I_1 \subseteq I_2 \subseteq \dots$ of ideals of A, there is $n \in N$ such that $I_n = I_k$ for $k \ge n$;

A is said to satisfy the maximal condition with respect to ideals if every nonempty set of I(A) has a maximal element.

Theorem 2.7([5]). Let A be a BL-algebra. Then the following conditions are equivalent:

(i) A is co-Noetherian with respect to ideals,

(*ii*) A satisfies the ascending chain condition with respect to ideals,

(*iii*) A satisfies the maximal condition with respect to ideals.

3. SOME FURTHER PROPERTIES OF CO-NOTHERIAN BL-ALGEBRAS

In this section, we investigate further properties of co-Noetherian BL-algebras and give some of its characterizations.

Proposition 3.1. Let $h: A \rightarrow B$ be a *BL*-homomorphism. Then the following assertions are true:

(i). For any (proper, prime) ideal J of B, the set

$$h^{\leftarrow}(J) = \{a \in A : h(a) \in J\}$$

is an (proper, prime) ideal of A. In particular,

$$ker(h) = \{a \in A : h(a) = 0\}$$

is a proper ideal of A,

(*ii*). If M is a maximal ideal of B, then $h^{\leftarrow}(M)$ is a maximal ideal of A,

(*iii*). If h is surjective, I is an ideal of A and $ker(h) \subseteq I$, then

$$h^{\rightarrow}(I) = \{h(x) : x \in I\}$$

is an ideal of B,

(*iv*). If h is surjective, M is a maximal ideal of A and ker(h) $\subseteq I$, then $h^{\rightarrow}(I)$ is a maximal ideal of B,

(v). h is injective if and only if $ker(h) = \{0\}$.

Proof: (i). Let J be an ideal of B. Clearly, $0 \in h^{\leftarrow}(J)$. If $(x^- \to y^-)^-, x \in h^{\leftarrow}(J)$, then

$$(h(x)^{-} \to h(y)^{-})^{-} = h((x^{-} \to y^{-})^{-}) \in J \text{ and } h(x) \in J.$$

Since J is an ideal, we have $h(y) \in J$, i.e., $y \in h^{\leftarrow}(J)$. Therefore $h^{\leftarrow}(J)$ is an ideal of A.

(*ii*). First we show that M is a maximal ideal of A if and only if $x \notin M$, then $(x^{-})^{n} \in M$ for some $n \in N$.

Let *M* be a maximal ideal of *A* and $x \notin M$, then $(M \cup \{x\}] = A$. Since $1 \in A$, by Proposition 2.4 we get

$$(x^{-})^{n} = ((x^{-})^{n})^{--} = ((x^{-})^{n} \to 1^{-})^{-} \in M$$

for some $n \in N$.

Conversely, let $M \subset I$ where I is a proper ideal of A. Take $x \in I \setminus M$, then $(x^-)^n \in M$ for some $n \in N$ by hypothesis. Since

$$(x^{-})^{n} = ((x^{-})^{n})^{--} = ((x^{-})^{n} \to 1^{-})^{-}$$
$$= (x^{-} \to ((x^{-})^{n-1} \to 1^{-}))^{-}$$
$$= (x^{-} \to ((x^{-})^{n-1} \to 1^{-})^{--})^{-} \in M \subset I,$$

then we obtain $((x^{-})^{n-1} \to 1^{-})^{-} \in I$ by $x \in I$ and I is an ideal. By repeating the above proceeding n times, we have $1 \in I$, thus I = A. Therefore M is a maximal ideal of A. Now let M be a maximal ideal of B, then $h^{\leftarrow}(M)$ is a proper ideal of A by (i). If $x \notin h^{\leftarrow}(M)$, then $h(x) \notin M$. Since M is maximal, by the above conclusion we have

$$h((x^{-})^{n}) = h(x^{-})^{n} \in M$$

for some $n \in N$, i.e., $(x^{-})^{n} \in h^{\leftarrow}(M)$, hence $h^{\leftarrow}(M)$ is maximal.

(*iii*). Let h be surjective and I an ideal of A. Trivially $0 \in h^{\rightarrow}(I)$. Now let

$$(x^- \rightarrow y^-)^-, x \in h^{\rightarrow}(I)$$

then there exist $a, b \in I$ such that

$$h(a) = (x^- \rightarrow y^-)^-, h(b) = x$$

Since h is homomorphic, so we have

$$h(a^{-}) = x^{-} \rightarrow y^{-}, h(b^{-}) = x^{-},$$

then

$$h(a^- * b^-) = x^- * (x^- \to y^-) \le y^-.$$

By h is surjective, there exist $c \in A$ such that h(c) = y, hence

$$h(a^- * b^-) \le h(c^-),$$

i.e.,

$$h(a^- * b^- \to c^-) = 1,$$

by hypothesis we have

$$(a^- \to (b^- \to c^-))^- \in \ker(h) \subseteq I$$

Since *I* is an ideal and $a, b \in I$ then $c \in I$, hence $y \in h^{\rightarrow}(I)$. This shows that $h^{\rightarrow}(I)$ is an ideal of *B*.

(iv). By (iii) we know that $h^{\rightarrow}(M)$ is an ideal of B. Now let $h^{\rightarrow}(M) \subset J$ where J is a proper ideal of B, then

$$M \subseteq h^{\leftarrow}(h^{\rightarrow}(M)) \subseteq h^{\leftarrow}(J).$$

Since J is a proper ideal, by (i) we have $h^{\leftarrow}(J)$ is also proper ideal, thus $M = h^{\leftarrow}(J)$ because M is maximal. Since h is surjective, we get

$$h^{\rightarrow}(M) = h^{\rightarrow}(h^{\leftarrow}(J)) = J$$
.

This completed the proof.

(v). It is clear.

Proposition 3.2. Let $h: A \rightarrow B$ be a surjective *BL*-homomorphism. If A is co-Noetherian, then B is co-Noetherian.

Proof: Let $J_1 \subseteq J_2 \subseteq ...$ be a chain of ideals of B, then by proposition 3.1 (*i*) we know $h^{\leftarrow}(J_i)(i \in N)$ are ideals of A, hence

$$h^{\leftarrow}(J_1) \subseteq h^{\leftarrow}(J_2) \subseteq \dots$$

a chain of ideal of A. Since A is co-Noetherian, by Theorem 2.3, then there exists $k \in N$ such that $h^{\leftarrow}(J_n) = h^{\leftarrow}(J_k)$ for any $n \ge k$. By h is surjective, we get

$$h^{\rightarrow}(h^{\leftarrow}(J_i)) = J_i(\forall i \in N),$$

hence $J_k = J_n$ for any $n \ge k$, B is co-Noetherian.

Proposition 3.3. Let A be a *BL*-algebra and I an ideal of A. Then K is an ideal of A/I if and only if there exists an ideal J of A such that $I \subseteq J$ and K = J/I.

Proof: \Rightarrow . Denote $J = \bigcup \{ [x] \in K \}$. Since $I = [0] \in K$, then $I \subseteq J$ and $0 \in J$. Now let

$$(x^- \rightarrow y^-)^-, x \in J$$

it follows that

$$([x]^{-} \rightarrow [y]^{-})^{-}, [x] \in K.$$

By K being an ideal we have $[y] \in K$, hence $y \in J$, J is an ideal of A.

 \Leftarrow . Let $([x]^- \rightarrow [y]^-)^-, [x] \in K$, then there exist $a, b \in J$ such that

$$[(x^{-} \to y^{-})^{-}] = ([x]^{-} \to [y]^{-})^{-} = [a], [x] = [b].$$

Since

$$(a^- \to (x^- \to y^-)^{--})^- \le ((x^- \to y^-)^- \to a)^- \in I \subseteq J,$$

by $a \in J$ and J being an ideal of A, we have $(x^- \to y^-)^- \in J$. Similarly, we can prove $x \in J$, hence $y \in J$, $[y] \in K$. Therefore K is an ideal of A/I.

The above proposition shows that for any ideal of A/I, it must be the form of J/I where $J \supseteq I$ is an ideal of A.

By Proposition 3.2 and 3.3 the following conclusion holds.

Corollary 3.4. Let A be a co-Noetherian BL-algebra and I an ideal of A. Then A/I is co-Noetherian.

Proposition 3.5. Let A be co-Noetherian and h a surjective BL-homomorphism on A. Then h is one-to-one homomorphism.

Proof: Trivially $h^n (n \in N)$ is surjective. Consider

$$\ker(h) \subseteq \ker(h^2) \subseteq \dots$$

a chain of ideals of A. Since A is co-Noetherian, then there exists $k \in N$ such that

$$\ker(h^n) = \ker(h^k)$$

for any $n \ge k$. Let

$$a \in \ker(h) \subseteq \ker(h^n) (n \ge k)$$
.

By h^n being surjective we have $h^n(b) = a$ for some $b \in A$. Hence

$$h^{n+1}(b) = h(a) = 0, \ b \in \ker(h^{n+1}),$$

thus $a = h^n(b) = 0$, i.e., $ker(h) = \{0\}$, by proposition 3.1(v) we get h is one-to-one.

Definition 3.6. Let A be a *BL*-algebra. If for any $I \in I(A)$, I is a principal ideal, i.e., I = (a] where $a \in A$, then A is called a principal ideal *BL*-algebra, simply *pBL*-algebra.

Obviously, every *pBL*-algebra must be co-Noetherian.

Proposition 3.7. Let A be co-Noetherian. If for any ideal I which is generated with two elements is principal, then A is a *pBL*-algebra.

Proof: Let I be an ideal of A. Since A is co-Noetherian, then

$$I = (a_1, a_2, \dots, a_n]$$

for some $a_1, a_2, \dots, a_n \in A$. We demonstrate, by induction on n, that I is principal. If n = 2, then the claim is true by hypothesis. Now assume it is true for n = k and set

$$(a_1, a_2, \dots, a_k] = (b].$$

Let n = k + 1, by Proposition 2.5 we have

$$(a_1, a_2, \dots, a_k, a_{k+1}] \subseteq ((b] \cup (a_{k+1}]] = ((b^- * a_{k+1}^-)^-].$$

Conversely, since $(b], (a_{k+1}] \subseteq (a_1, a_2, ..., a_k, a_{k+1}]$, then

$$((b^{-} * a_{k+1}^{-})^{-}] = ((b] \cup (a_{k+1}]] \subseteq (a_1, a_2, \dots, a_k, a_{k+1}],$$

hence $(a_1, a_2, \dots, a_k, a_{k+1}] = ((b^- * a_{k+1}^-)^-]$, a principal ideal of A. Thus, the claim holds for all natural numbers n and the proof is completed.

By Proposition 2.5 we have the following conclusion.

Proposition 3.9. Let A be a *BL*-algebra. If for any ideal I of A, which is generated by union of finite principal ideals, then A is a *pBL*-algebra.

Corollary 3.10. Let A be a *pBL*-algebra and I an ideal of A. Then A_I is co-Noetherian.

Proposition 3.11. Let A be a *BL*-algebra. If for any nontrivial ideal I of A, A/I is co-Noetherian, then A is co-Noetherian.

Proof: Let $J_1 \subseteq J_2 \subseteq \dots$ be a chain of nontrivial ideals of A, then we have

$$J_1 / I \subseteq J_2 / I \subseteq \cdots$$

a chain of ideals of A_I . Since A_I is co-Noetherian, then there exists $k \in N$ such that

$$J_n/I = J_k/I$$

for any $n \ge k$, hence $J_n = J_k$. Therefore, A is co-Noetherian.

Theorem 3.12. Let A be a BL-algebra. Then A is co-Noetherian if and only if every prime ideal of A is finitely generated.

Proof: The necessity is obvious, so we just prove the sufficiency. Denote by K the set of all ideals I of A where I is not finitely generated. Assume that $K \neq \emptyset$ and

$$I_1 \subseteq I_2 \subseteq \dots$$

be a chain where $I_i \in K$ for any $i \in N$. Clearly, $I = \bigcup I_i$ is an ideal of A and $I \in K$. By Zorn's lemma, K has a maximal element M. Now we show that M is prime. Supposed that $a \land b \in M$ but $a, b \notin M$, then

$$(M \cup \{a\}] \cap (M \cup \{b\}] = M$$

Since M is maximal in K and

$$M \subset (M \cup \{a\}], (M \cup \{b\}],$$

hence

 $(M \cup \{a\}], (M \cup \{b\}] \notin K$.

 $(M \cup \{a\}\}, (M \cup \{b\}\})$

Thus

are finitely generated, it follows that M is finitely generated, a contradiction. Therefore $K = \emptyset$, the conclusion is true.

Theorem 3.13. Let A be a BL-algebra satisfying the ascending chain condition with respect to finitely generated ideals, then A is co-Noetherian.

Proof: Let A be not co-Noetherian, then there exists an ideal I not finitely generated. Obviously, $\{0\} \subset I$, $a_1 \in I \setminus \{0\}$ such that $(a_1] \subset I$. Take $a_2 \in I \setminus \{a_1\}$ then $(a_1, a_2] \subset I$. Continuing this procedure, we will get an increasing proper ideals chain

$$(a_1] \subset (a_1, a_2] \subset \dots$$
,

which every element is finitely generated, a contradiction.

By the prime ideal extended theorem (see [5]) we know that, if $I \subseteq J$ then J is prime, where I is an prime ideal and J is proper ideal of A.

Let A be a BL-algebra and I a proper ideal of A. We denote

$$K = \{J \in PI(A) : I \subseteq J\},\$$

then by prime ideal theorem (see [5]) we get $K \neq \emptyset$ and by dual Zorn's lemma K has a minimal element, which is called a minimal prime ideal associated with I. Denote the set of all minimal prime ideals associated with I by m(I).

Theorem 3.14. Let A be a *BL*-algebra and I a proper ideal of A. If every element of m(I) is finitely generated, then m(I) is a finite set.

Proof: We denote the set of all finite intersections of m(I) by F(I). It is Obvious that F(I) is nonempty. Now supposed that $I \subset P$ for any $P \in F(I)$. Consider the set

$$S = \{J \in I(A) : I \subseteq J, P \not\subset J, \forall P \in F(I)\}.$$

We have $I \in S$. Take $J_1 \subseteq J_2 \subseteq \dots$ a chain of S. Obviously, $J^* = \bigcup_i J_i$ is an ideal of A and $I \subseteq J^*$. If there exists $P \in F(I)$ such that $P \subseteq J^*$. Let

$$P = P_1 \cap P_2 \cap \ldots \cap P_n.$$

It is clear P is finitely generated since each P_i is finitely generated, then

$$P = (x_1, x_2, \dots, x_n] \subseteq J^*$$

for some $x_1, x_2, ..., x_n \in A$. Since $\{J_i\}$ is a chain, for some $k \in N$, all $x_i \in J_k$, thus $P \subseteq J_k$, a contradiction. Therefore, $J^* \in S$ and a upper bound of the chain in S. By Zorn's lemma, S has a maximal element M. We show that M is prime. If not, there is $a \wedge b \in M$ but $a, b \notin M$. By Corollary 4.9([5]) we have

$$(M \cup \{a\}] \cap (M \cup \{b\}] = M$$

It is obvious that $M \subset (M \cup \{a\}], (M \cup \{b\}]$, and so $(M \cup \{a\}], (M \cup \{b\}] \notin S$. Thus there exist $Q_1, Q_2 \in F(I)$ such that

$$Q_1 \subseteq (M \cup \{a\}], Q_2 \subseteq (M \cup \{b\}].$$

It follows that $Q_1 \cap Q_2 \subseteq M$, a contradiction because $Q_1 \cap Q_2 \subseteq F(I)$, hence M is prime. By Proposition 5.19 ([5]) there exists $P \in m(I)$ such that $I \subseteq P \subseteq M$, a contradiction with $M \in S$, that is to say, there exists $P' \in F(I)$ such that I = P'. Let

$$P' = P_1 \cap P_2 \cap \ldots \cap P_k \in F(I).$$

Then for any $P \in m(I)$, $P_1 \cap P_2 \cap \cdots \cap P_k = I \subseteq P$. By Theorem 2.39 ([5]), there exists $1 \le i \le k$ such that $P = P_i$, hence $m(I) = \{P_1, P_2, ..., P_k\}$ a finite set.

We denote all maximal ideals of a *BL*-algebra *A* by M(A). Obviously, $M(A) \subseteq PI(A)$.

Corollary 3.15. Let A be a co-Noetherian *BL*-algebra. If PI(A) = M(A), then M(A) is a finite set.

Proof: Since A be co-Noetherian, for any $P \in PI(A)$, P is finitely generated, hence every element of M(A) is finitely generated. By hypothesis, we obtain that every element of M(A) is also a minimal ideal of A containing the ideal $\{0\}$, thus $M(A) = m(\{0\})$, by Theorem 3.14 we have M(A) is a finite set.

4. CONCLUSION

In the paper, we investigate further properties of co-Noetherian BL-algebras. We also provide the sufficient conditions for a quotient BL-algebra to be co-Noetherian. A special BL-algebra is introduced and some characterizations for pBL-algebra are given. Finally, we characterize co-Noetherian BL-algebras by prime ideals.

REFERENCES

- [1]. Cinoli R, Esteva F, Godo L, Torrens A, Basic Fuzzy Logic is the Logic of Continuous *T* -norm and Their Residua, Soft Comput., (12)2000: 106-112.
- [2]. Hajek P, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- [3]. Haveshki M, Saeid A B, Eslami E, Some types of filters in *BL*-algebras, Soft Computing, (10)2006: 657-664.
- [4]. Kondo M, Dudek W A, Filter Theory in *BL*-algebras, Soft Comput., (12)2008: 419-423.
- [5]. Meng B L, Xin X L, Prime Ideals and Gödel Ideals of *BL*-algebras, Journal of advance in mathematics, (99)2015: 2989-3005.
- [6]. Motamed S, Moghaderi J, Noetherian and Artinian *BL*-algebras, Soft Comput., (16)2012: 1989-1994.
- [7]. Saeid A B, Motamed S, Normal Filters in *BL*-Algebras, World Applied Sciences Journal, 2009, 7(Special Issue for Applied Math): 70-76.
- [8]. Saeid A B, Ahadpanah A, Torkzadeh L, Smarandache *BL*-Algebras, Journal of Applied Logic, (8)2010: 253-261.
- [9]. Turunen E, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg, 1999.
- [10]. Turunen E, BL-algebras of Basic Fuzzy Logic, Mathware & Soft Comp., (6)1999: 49-61.
- [11]. Turunen E, Boolean Deductive Systems of *BL*-algebras, Arch Math Logic, (40)2001: 467-473.