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Abstract: The aim of this paper is to define a new class of functions namely  * homeomorphism and strongly 

 * homeomorphism and study their properties. Additionally, we relate and compare these functions with some 

other functions in topological spaces. 
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1. INTRODUCTION 

The notion of Homeomorphism plays a very important role in Topology. In the course of 

generalization of the notion of Homeomorphism, Maki et al [3] introduced g-homeomorphisms in 

topological spaces. Devi et al [1] introduced the concept of  -homeomorphisms and then we 

introduce   *-homeomorphisms and strongly   *-homeomorphisms and discuss some of their basic 

properties. 

2. PRELIMINARIES      

Throughout this paper (X, τ), (Y, σ ) and (Z,  ) or X , Y , Z  represent non-empty topological spaces 

on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space 

(X, τ), cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is 

denoted by P(X). 

Definition 2.1: A subset A of a topological space X is said to be a   *open [5] if A  int* ( cl ( int* 

( A ))).  

Definition 2.2: A function f: (X, τ) ⟶ (Y, σ ) is called a  * continuous [6]if f 
-1

(O) is a           

 *open set  of (X, τ) for every open set O of  (Y, σ ). 

Definition 2.3: A map f: (X, τ) ⟶ (Y, σ )  is called a  * open map [4]if image of each open set in X 

is  * open in Y. 

Definition 2.4: A map f: (X, τ) ⟶ (Y, σ )  is called a Homeomorphism if f is both open and 

continuous. 

Definition 2.5: A map f: (X, τ) ⟶ (Y, σ )  is called a semi- homeomorphism [2]if f is both irresolute 

and pre semi-open . 

Definition 2.6: A function f: (X, τ) ⟶(Y, σ) is said to be Irresolute [7]if f
-1

(O) is semi-open in  (X, τ) 

whenever O is semi-open in (Y,  σ ). 

Definition 2.7: A function f: (X, τ) ⟶(Y, σ) is called pre semi open [7]f(O) is semi-open in    (Y,  σ ) 

for all O semi-open in (X, τ)  .  

Definition 2.8: A map f: (X, τ) ⟶ (Y, σ )  is called a g- homeomorphism [3]if f is both g-open and g-

continuous. 

Definition 2.9: A map f: (X, τ) ⟶ (Y, σ )  is called a   g- homeomorphism [1]if f is both    g -

open and   g - continuous. 
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Definition 2.10: A map f: (X, τ) ⟶ (Y, σ )  is called a  g - homeomorphism [1]if f is both  g -

open and g -continuous. 

Definition 2.11: A function f: (X, τ) ⟶(Y, σ) is said to be  *Irresolute [6] if f
-1

(O) is a            

 *open in (X, τ) for every  *open set O in (Y,  σ ). 

Theorem 2.12 [5]:  Every open set is  * open. 

Theorem 2.13 [6]: Every g-continuous map is  * continuous. 

Theorem 2.14 [4]: Every g-open map is  * open. 

Theorem 2.15 [4]: Let f: (X, τ) ⟶ (Y, σ ) be a bijective  map. Then the following are equivalent: 

(1) f is a  * open map. 

(2) f is a  * closed map. 

(3) f 
-1

 is a  * continuous map. 

Theorem 2.16[6]: Every  *irresolute map is  *continuous. 

3.  * HOMEOMORPHISMS 

Definition 3.1: A bijection f: (X, τ) ⟶ (Y, σ ) is called  * Homeomorphisms if f is both         

 *continuous and     *open. 

Example 3.2: Let X = Y= {a, b, c, d}, τ = {ϕ, {ab}, X} and  σ  = {ϕ, {a},{abc},Y},     

 *O(X, τ) = P(X) and  *O(Y, σ ) = { ϕ, {a} , {b} , {c} , {ab} , {ac} , {ad} , {bc} , {abc} , 

{abd} , {acd} , Y} .Let f: (X, τ) ⟶(Y, σ)  be defined by f(c) = f(d) = a, f(b) = c , f(a) = b. 
Clearly , f is   * Homeomorphisms. 

Theorem 3.3:  Let f: (X, τ) ⟶ (Y, σ ) be a bijective,  *continuous map. Then the following 

statements are equivalent 

(i) f is a  *open. 

(ii) f is a  * Homeomorphisms. 

(iii)f is a  *closed. 

Proof:   

(i) (ii)     Obvious from the definition. 

(ii) (iii)   Let V be a closed set in (X, τ). Then V
c
 is open in (X, τ). By hypothesis, f(V

c
) = 

(f(V))
c
 is  *open in (Y, σ ). That is, f(V) is  *closed in (Y, σ ). Therefore, f is a    

 *closed. 

(iii) (i)    Let V be a open set in (X, τ). Then V
c
 is closed in (X, τ). By hypothesis, f(V

c
) = 

(f(V))
c
 is  *closed in (Y, σ ). That is, f(V) is  *open in (Y, σ ). Therefore, f is a     

 *open map.   

Theorem 3.4:  Every homeomorphism is  * homeomorphism. 

Proof: Let f: (X, τ) ⟶ (Y, σ) be an homeomorphism, then f is bijective, continuous and 

open.. Let V be an open set in Y. Since, f is continuous, f 
-1

(V) is open in X. Since, every 

open set is     *open, f 
-1

(V) is  *open in X which implies f is  *continuous. Let W be an 

open set in X. Since, f is open, f (W) is open in Y. Since, every open set is  *open, f (W) is 

 *open in Y which implies f is  *open. Thus, f is  * homeomorphism. 

Remark 3.5:  The converse of the above theorem need not be true. 

Example 3.6: Let X = Y= {a, b, c, d}, τ = { ϕ, {ab}, X} and  σ  = {ϕ, {a},{abc},Y}, *O(X, 

τ) = P(X) and   *O(Y, σ ) = {ϕ, {a},{b},{c},{ab},{ac},{ad},{bc},{abc},{abd},{acd},Y} . 
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Let f: (X, τ) ⟶(Y, σ) be a map defined by f(a) = b, f(b) = c, f(c) = f(d) = a. Clearly, f is  * 
Homeomorphisms. Here, {ab} is open in X, but f{ab}= {bc} is not open in Y. Hence, f is not 

an open map. Therefore, f is not homeomorphism.   

Theorem 3.7: Every   homeomorphism is  * homeomorphism. 

Proof: Let f: (X, τ) ⟶ (Y, σ) be an  homeomorphism, then f is bijective,  continuous and 

 open. Let V be an open set in Y. Since, f is   continuous. f 
-1

(V) is  open in X. Since, 

every  open set is  *open, f 
-1

(V) is  *open in X which implies f is  *continuous. Let W 

be an open set in X. Since, f is  open, f (W) is  open in Y. Since, every  open set is 

 *open, f (W) is  *open in Y which implies f is  *open. Thus, f is  * homeomorphism. 

Remark 3.8:  The converse of above theorem need not be true. 

Example 3.9: Let X = Y= {a, b, c,d}, τ = {ϕ, {a},{ab},{abc}, X} and  σ  = {ϕ, 

{ab},{abc},Y}, *O(X, τ) = {ϕ, {a} ,{b},{c},{ab},{ac},{ad},{bc},{abc},{abd},{acd}, X} , 

 O(X, τ) = {ϕ, {a}, {ab} , {ac} , {ad} , {abc} , {abd} , {acd} , X } and  *O(Y, σ )={ϕ, 

{a} , {b} , {c} , {ab} , {ac} , {ad} , {bc}, {bd} , {abc} , {abd} , {acd} , Y } ,  O(Y, σ ) = 

{ϕ, {ab},{abc},{abd},Y}. Let f: (X, τ) ⟶(Y, σ) be a map defined by f(a) = a, f(b) = d, f(c) = 

b , f(d) = c. Clearly, f is  * Homeomorphisms. Here, {a} is open in X, but f{a}= a is not 

 open in Y. Hence, f is not a  open map. Therefore, f is not  homeomorphism.   

Theorem 3.10: Every  g -homeomorphism is  * homeomorphism.  

Proof: Let f: (X, τ) ⟶ (Y, σ ) be an g-homeomorphism, then f is bijective, g-continuous and 

g-open. Since, every g-continuous map is  *continuous and g-open map is  *open which 

implies f is both  *continuous and  *open. Therefore, f is  * homeomorphism.  

Remark 3.11: The converse of above theorem need not be true. 

Example 3.12: Let X = Y= {a, b, c}, τ = {ϕ, {ab}, X} and  σ  = {ϕ, {a},{ab},Y}, *O(X, τ) 

= {ϕ, {a},{b},{ab},{ac},{bc}, X} , GO(X, τ) = {ϕ, {a},{b},{ab}, X}  and  *O(Y, σ ) = {ϕ, 

{a},{b},{ab},{ac},Y} , GO(Y, σ ) ={ϕ, {a},{b},{ab},Y} .Let f: (X, τ) ⟶(Y, σ)  be a map 

defined by f(a) = c, f(b) = a, f(c) = b. Clearly, f is  * Homeomorphisms. But, f is not g- 

homeomorphism for the open set V= {ab} in X, f
 
(V) = {ac} is not g-open in Y. Hence, f is 

not g-open map. Therefore, f is not g -homeomorphism.   

Remark 3.13: The concept of  * homeomorphism and semi- homeomorphism are 

independent as can be seen from the following examples. 

Example 3.14: Let X = Y= {a, b, c}, τ = {ϕ, {ab}, X} and  σ  = {ϕ, {a},{ab},Y}, *O(X, τ) 

= {ϕ, {a},{b},{ab},{ac},{bc}, X} , SO(X, τ) = {ϕ, {ab}, X}  and  *O(Y, σ ) = {ϕ, 

{a},{b},{ab},{ac},Y} , SO(Y, σ ) ={ϕ, {a},{ab},{ac},Y} .Let f: (X, τ) ⟶(Y, σ)  be a map 

defined by f(a) = c, f(b) = a, f(c) = b. Clearly, f is  * Homeomorphisms. But, f is not semi- 

homeomorphism for the semi open set V= {ab} in Y, f
 -1`

 (V) = {bc} is not semi-open in X. 

Hence, f is not irresolute map. Therefore, f is not semi -homeomorphism.   

Example 3.15:  Let X = Y= {a, b, c, d}, τ = {ϕ, {a},{ab},{abc}, X} and  σ  = {ϕ, {a} , {b} , 

{c} , {ab} , {ac} , {bc} , {abc} , Y } ,  *O(X, τ) = {ϕ , {a} , {b} , {c} , {ab} , {ac} , {ad} , 

{bc} , {abc} , {abd} , {acd} , X }, SO(X, τ) = {ϕ, {a} , {ab} , {ad} , {abc} , {abd} , {acd} , 

X } and  *O(Y, σ ) = {ϕ, {a},{b},{c},{ab},{ac},{bc},{abc},Y}, SO(Y, σ ) = P(X) / {d}  . 

Let f: (X, τ) ⟶(Y, σ) be a map defined by f(a) =  f(b) =  f(d) = a , f(c) = d. Clearly, f is semi 
homeomorphisms. But for the open set V = {abc} in X, but f{V}= f{abc}= {ad} is not 

 *open in Y. Hence, f is not  * open map. Therefore, f is not  *homeomorphism.   

Remark 3.16: The concept of  * homeomorphism and  g- homeomorphism are 

independent as can be seen from the following examples. 
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Example 3.17:  Let X = Y= {a, b, c}, τ = {ϕ, {ab}, X} and  σ  = {ϕ, {a},{ab},Y}, *O(X, 

τ) = {ϕ, {a},{b},{ab},{ac},{bc}, X} ,  g(X, τ) = {ϕ, {a},{b},{ab}, X}  and  *O(Y, σ ) = 

{ϕ, {a},{b},{ab},{ac},Y} ,  g(Y, σ ) ={ϕ,{b}, {a},{ab},{ac},Y} .Let f: (X, τ) ⟶(Y, σ)  be 

a map defined by f(a) = c, f(b) = a, f(c) = b. Clearly, f is  * Homeomorphisms. But, f is not 

 g - homeomorphism for the open set V= {ab} in Y, f 
-1 

(V) = {bc} is not  g -open in X. 

Hence, f is not  g -continuous map. Therefore, f is not  g -homeomorphism.   

Example 3.18: Let X = Y= {a, b, c, d}, τ = {ϕ, {a},{b} , {ab} , {abc} , X } and σ = {ϕ, {a} , 

{b} , {ab} , {bc} , {abc} , Y }, *O(X, τ) = {ϕ , {a} , {b} , {c} , {ab} , {ac} , {bc} , {abc} , 

{abd} , X },  g(X, τ)= {ϕ, {a},{b},{c},{ab},{ac},{ad},{bc},{bd},{abc},{abd},X} and  

 *O(Y, σ ) = {ϕ, {a} , {b} , {c} , {ab} , {ac} , {bc} , {abc} , {abd} , Y } ,  g (Y, σ ) =  

{ϕ, {a},{b},{c},{ab},{ac},{bc},{abc},{abd},Y}.Let f: (X, τ) ⟶(Y, σ)  be a map defined by 

f(a) = a ,  f(b) =  f(d) = b , f(c) = d. Clearly, f is  g homeomorphisms. But for the open set V 

= {b} in Y, f
 -1

{V}= {bd} is not  *open in X . Hence, f is not  * continuous map. 

Therefore, f is not  *homeomorphism.   

Remark 3.19: The concept of  * homeomorphism and g - homeomorphism are 

independent as can be seen from the following examples. 

Example 3.20: Let X = Y= {a, b, c}, τ = {ϕ, {ab}, X} and  σ  = {ϕ, {a},{ab},Y}, *O(X, τ) 

= {ϕ, {a},{b},{ab},{ac},{bc}, X} , g  (X, τ) = {ϕ, {a},{b},{ab}, X}  and  *O(Y, σ ) = 

{ϕ, {a},{b},{ab},{ac},Y}, g  (Y, σ ) ={ϕ,{b}, {a},{ab},{ac},Y} .Let f: (X, τ) ⟶(Y, σ)  be 

a map defined by f(a) = c, f(b) = a, f(c) = b. Clearly, f is  * Homeomorphisms. But, for the 

open set V= {ab} in Y, f 
-1 

(V) = {bc} is not g  -open in X. Hence, f is not g  -continuous 

map. Therefore, f is not g  -homeomorphism.   

Example 3.21: Let X = Y= {a, b, c, d}, τ = {ϕ, {a} , {b} , {ab} , {abc} , X } and  σ  = {ϕ, 

{a} , {abc} , Y }, *O(X, τ) = { ϕ , {a} , {b} , {c} , {ab} , {ac} , {bc} , {abc} , {abd} , X }, 

g  (X, τ)= {ϕ, {a} , {b} , {ab} , {ac} , {ad} , {bc} , {bd} , {abc} , {abd} , X } and   *O(Y, 

σ ) = {ϕ, {a} , {b} , {c} , {ab} , {ac} , {ad},{bc} , {abc} , {abd} , {acd}, Y } , g  (Y, σ ) =  

{ϕ, {a},{b},{ab},{ac},{ad},{abc},{abd},{acd}, Y}.Let f: (X, τ) ⟶(Y, σ)  be a map defined 

by f(a) = a = f(d) ,  f(b) = b , f(c) = c. Clearly, f is g  homeomorphisms. But for the open set 

V = {a} in Y, f
 -1

{V}= {ad} is not  *open in X . Hence, f is not  * continuous map. 

Therefore, f is not  *homeomorphism.   

Remark 3.22:  The composition of two  *homeomorphism need not be a 

 *homeomorphism. 

Example 3.23: Let X = Y= Z = {a, b, c, d}, τ = {ϕ, {a}, {abc} , X } and  σ  = {ϕ, {ab}, 

{abc} , Y } ,   = {ϕ, {a}, {b} , {c} , {ab} , {ac} , {bc} , {abc} , Z }  , *O(X, τ) = {ϕ , {a}, 

{b} , {c} , {ab} , {ac} , {ad} ,{bc} , {abc} , {abd} ,  {acd} , X },   *O(Y, σ ) = {ϕ, {a} , 

{b} , {c} , {ab} , {ac} ,{bc} ,  {bd} , {abc} , {abd} , {acd}, Y } ,  *O(Z,  ) =  {ϕ, {a} , 

{b} , {c} , {ab} , {ac} , {bc} , {abc} , Z }  .Let f: (X, τ) ⟶(Y, σ)  be a map defined by f(a) = 

a ,  f(b) = d , f(c) = b , f(d) = c. Clearly, f is  *homeomorphism. Let g: (Y, σ) ⟶(Z,  ) be 

an identity map. Clearly, g is  *homeomorphism. Here, f and g are  *homeomorphism. 

But (g  f) 
-1

 {bc} = f
 -1

( g
 -1

 {bc} )) = f
 -1

 {bc} = cd, {cd} is not  *open in X. Therefore, 

(g  f) is not   *homeomorphism. 

4. STRONGLY  *HOMEOMORPHISM 

Definition 4.1: A bijection f: (X, τ) ⟶ (Y, σ ) is said to be strongly   * -homeomorphism if both f 

and f 
-1

 are   *Irresolute . 

Example 4.2: Let X = Y= {a, b, c}, τ = {ϕ, {a},{ab}, X} and  σ  = {ϕ, {a}, {b},{ab},Y}, *O(X, τ) 

= {ϕ, {a},{b},{ab},{ac}, X} and  *O(Y, σ ) = {ϕ, {a},{b},{ab},{ac},Y}.Let f: (X, τ) ⟶(Y, σ)  is 

an identity map. Clearly, f is strongly  * -Homeomorphisms.  
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We denote the family of all strongly   * -homeomorphism of a topological space X into itself by     

S  * -h(X). 

Theorem 4.3: Every strongly   * -homeomorphism is a   * -homeomorphism. In other words, for 

any space strongly  * -homeomorphism(X)    * -homeomorphism(X). 

Proof: Let f: (X, τ) ⟶ (Y, σ ) be a bijective  map which is strongly   * -homeomorphism. Then f 

and f
 -1

are  *irresolute. Since, every  *irresolute are  * continuous, f and f
 -1

are  * continuous. 

Since, f
 -1

 is  * continuous, by thm []f is  * open map. Thus, f is both  * continuous and  * 

open. Therefore, f is   * -homeomorphism.    

Remark 4.4: The converse of the above theorem need not be true. 

Example 4.5: Let X = Y= {a, b, c, d}, τ = {ϕ, {a},{abc}, X} and  σ  = {ϕ, {ab},{abc},Y},         

 *O(X, τ) = {ϕ, {a},{b},{c},{ab},{ac},{ad},{bc},{abc},{abd},{acd},X}  and   *O(Y, σ ) = {ϕ, 

{a},{b},{c},{ab},{ac},{bc},{bd},{abc},{abd},{acd},Y} .Let f: (X, τ) ⟶(Y, σ)  be a map defined by 

f(a) = a, f(b) = d, f(c) = b , f(d) =c. Clearly, f is  * Homeomorphisms. But for the  * open set V = 

{c} in (Y, σ), f
 -1

 ({c}) = d is not  * open in(X, τ). Therefore, f is not strongly   * -

homeomorphism. 

Theorem 4.6: If f: (X, τ) ⟶ (Y, σ ) and g: (Y, σ) ⟶(Z,  ) are strongly   * -homeomorphism then 

their (g f) : (X, τ) ⟶ (Z,  ) is also strongly   * -homeomorphism. 

Proof: 

(i) (g f) is  *irresolute. 

Let U be a  * open in Z. Now, (g f)
-1

 (U) = f
 -1

(g 
-1

(U)) = f
 -1

(V) where V = g 
-1

(U). By 

hypothesis, V =  g 
-1

(U) is  * open in Y and so again, by hypothesis f
 -1

(V)  is  * open in 

X. 

(ii) (g f) 
-1

 is  *irresolute. 

Let G be a  * open in X. By hypothesis, f(G) is  * open in Y. Again, by hypothesis    

(g f) (G) = g(f(G)) is  * open in Z. Thus, (g f)
-1 

is  *irresolute. 

From (i) and (ii) ,  (g f) : (X, τ) ⟶ (Z,  ) is also strongly   * -homeomorphism. 

Theorem 4.7: Every strongly   * -homeomorphism is  *irresolute. 

Proof: It is the consequence of the definition. 

Remark 4.8: The converse of the above theorem need not be true. 

Example 4.9: Let X = Y= {a, b, c, d}, τ = {ϕ, {ab},X} and  σ  = {ϕ, {a},{abc},Y},   *O(X, τ) = 

P(X)  and   *O(Y, σ ) = {ϕ, {a},{b},{c},{ab},{ac},{ad},{bc},{abc},{abd},{acd},Y} Let f: (X, τ) 

⟶(Y, σ)  be a identity map . Clearly, f is  * irresolute. But for the  * open set V = {d} in (X, τ),  f
 -

1
 ({d}) = d is not  * open in (Y, σ)  . Therefore, f is not strongly   * -homeomorphism. 

Theorem 4.10: The set S  * -h(X) is a group under the composition of maps. 

Proof: Define a binary operation ‘ * ‘ by S  * -h(X)   S  * -h(X) ⟶ S  * -h(X) , by f * g = f   g 

for all f and g in S  * -h(X) and    is the usual operation of composition of maps. Then by theorem 

4.6, f   g   S  * -h(X) . We know that the composition of maps are associative and the identity map 

i: X ⟶ X belonging to S  * -h(X) serves as the identity element. If f    S  * -h(X) then f  -1   S 
 * -h(X) such that f   f -1 =  f -1   f = i and so inverse exists for each element of  S  * -h(X). 

Therefore, S  * -h(X) is a group under the composition of maps. 

Theorem 4.11: Let f: (X, τ) ⟶(Y, σ) be a strongly   * -homeomorphism. Then f induces an 

isomorphism from the group S  * -h(X) onto the group S  * -h(Y). 

Proof:  Using the map f, we define a map  f : S  * -h(X)  ⟶ S  * -h(Y) by  f (h) = f  h f -1  

for  each h   S  * -h(X). By theorem 4.6,  f is well defined in general, because f  h  f -1 is a 
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strongly   * -homeomorphism for every strongly   * -homeomorphism h: X  ⟶ Y. To show that 

 f  is a bijective homeomorphism. Bijective of  f is clear. Further for all h1 , h2   S  * -h(X) ,  f 

(h1   h2 ) = f  (h1   h2)   f -1  = (f  h1   f -1)   ( f  h2   f -1) =  f (h1)    f (h2 ). Therefore ,  f is 

a homeomorphism and hence it induces an isomorphism induced by f. 

Theorem 4.12: strongly   * -homeomorphism is an equivalence relation on the collection of all 

topological spaces. 

Proof: Reflexivity and symmetry are immediate and transitivity follows from Theorem 4.6 
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