On Almost Supra N-continuous Function

L. Vidyarani
Research Scholar
Department of Mathematics
Kongunadu Arts and Science College
(Autonomous) Coimbatore-641029,
Tamil Nadu, India.
vidyarani16@gmail.com

M. Vigneswaran
Assistant Professor
Department of Mathematics
Kongunadu Arts and Science College
(Autonomous) Coimbatore-641029,
Tamil Nadu, India.
vignesh.mat@gmail.com

Abstract: In this paper, we introduce the concept of almost supra N-continuous function and investigated the relationship of this functions with other functions. Also we have defined mildly supra N-normal space.

Mathematics subject classification: 54C10, 54C05

Keywords: almost supra N-continuous function.

1. INTRODUCTION

In this paper, we bring out the concept of almost supra N-continuous function and investigated the relationship with other functions in supra topological spaces. Also a new type of normal space called mildly supra N-normal space is also defined and its properties are investigated.

2. PRELIMINARIES

Definition 2.1[3]
A subfamily μ of X is said to be supra topology on X if
i) $X, \varphi \in \mu$

ii) If $A_i \in \mu$, $i \in J$ then $\cup A_i \in \mu$

(X, μ) is called supra topological space.

The element of μ are called supra open sets in (X, μ) and the complement of supra open set is called supra closed sets and it is denoted by μ^c.

Definition 2.2[3]
The supra closure of a set A is denoted by $cl^H(A)$, and is defined as supra $cl(A) = \cap\{B : B \text{ is supra closed and } A \subseteq B\}$.

The supra interior of a set A is denoted by $int^H(A)$, and is defined as supra $int(A) = \cup\{B : B \text{ is supra open and } A \supseteq B\}$.

Definition 2.3[3]
Let (X, τ) be a topological space and μ be a supra topology on X. We call μ be a supra topology associated with τ, if $\tau \subseteq \mu$.

Definition 2.4
A subset \(A \) of a space \(X \) is called

(i) supra semi-open set[2], if \(A \not\subseteq \text{cl}^H(\text{int}^H(A)) \).

(ii) supra \(\alpha \)-open set[1], if \(A \not\subseteq \text{int}^H(\text{cl}^H(\text{int}^H(A))) \).

(iii) supra \(\Omega \)-closed set[5], if \(\text{sc}^H(A) \not\subseteq \text{int}^H(U) \). whenever \(A \not\subseteq U, \) \(U \) is supra open set.

(iv) supra \(N \)-closed set[7], if \(\Omega \text{cl}^H(A) \not\subseteq U, \) whenever \(A \not\subseteq U, \) \(U \) is supra \(\alpha \)-open set.

(v) supra regular open[10], if \(A=\text{int}^H\text{cl}^H(A) \)

The complement of the above mentioned sets are their respective open and closed sets and vice-versa.

Definition 2.5 A map \(f:(X, \tau) \to (Y, \sigma) \) is said to be

(i) supra \(N \)-continuous [8] if \(f^{-1}(V) \) is supra \(N \)-closed in \((X, \tau) \) for every supra closed set \(V \) of \((Y, \sigma) \).

(ii) supra \(N \)- irresolute[8] if \(f^{-1}(V) \) is supra \(N \)-closed in \((X, \tau) \) for every supra \(N \)-closed set \(V \) of \((Y, \sigma) \).

(iii) perfectly supra \(N \)-continuous[10] if \(f^{-1}(V) \) is supra clopen in \((X, \tau) \) for every supra \(N \)-closed set \(V \) of \((Y, \sigma) \).

(iv) Strongly supra \(N \)-continuous[10] if \(f^{-1}(V) \) is supra closed in \((X, \tau) \) for every supra \(N \)-closed set \(V \) of \((Y, \sigma) \).

(v) perfectly contra supra \(N \)- irresolute[9] if \(f^{-1}(V) \) is supra \(N \)-closed and supra \(N \)-open in \((X, \tau) \) for every supra \(N \)-open set \(V \) of \((Y, \sigma) \).

(vi) Contra supra \(N \)- irresolute[9], if \(f^{-1}(V) \) is supra \(N \)-closed in \((X, \tau) \) for every supra \(N \)-open set \(V \) of \((Y, \sigma) \).

(vii) Almost contra supra \(N \)- continuous[9], if \(f^{-1}(V) \) is supra \(N \)-closed in \((X, \tau) \) for every supra regular open set \(V \) of \((Y, \sigma) \).

Definition 2.6[11] A Space \((X, \tau) \) is said to be

(i) supra \(N \)-normal if for any pair of disjoint supra closed sets \(A \) and \(B \), there exist disjoint supra \(N \)-open sets \(U \) and \(V \) such that \(A \subset U \) and \(B \subset V \).

(ii) weakly supra \(N \)-normal if for any pair of disjoint supra \(N \)-closed sets \(A \) and \(B \), there exist disjoint supra open sets \(U \) and \(V \) such that \(A \subset U \) and \(B \subset V \).

3. **ALMOST SUPRA N-CONTINUOUS FUNCTION**

Definition 3.1 A map \(f:(X, \tau) \to (Y, \sigma) \) is called Almost supra continuous function if \(f^{-1}(V) \) is supra open set in \((X, \tau) \) for every supra regular open set \(V \) of \((Y, \sigma) \).

Definition 3.2 A map \(f:(X, \tau) \to (Y, \sigma) \) is called Almost supra \(N \)-continuous function if \(f^{-1}(V) \) is supra \(N \)-open in \((X, \tau) \) for every supra regular open set \(V \) of \((Y, \sigma) \).

Theorem 3.3 For a function \(f:(X, \tau) \to (Y, \sigma) \), the following are equivalent:

i) \(f \) is almost supra \(N \)-continuous.

ii) \(f^{-1}(V) \) is supra \(N \)-closed in \(X \) for every supra regular closed set \(V \) of \(Y \).

iii) \(f^{-1}(\text{cl}^H\text{int}^H(V)) \) is supra \(N \)-closed in \(X \), for every supra closed set \(V \) of \(Y \).
On Almost Supra N-continuous Function

iv) \(f^{-1}(\text{int}^{\mu} \text{cl}^{\mu}(V)) \) is supra N-open in X, for every supra open set V of Y.

Proof

(i) \(\Rightarrow \) (ii) Let V be supra regular closed set in Y. Then Y-V is supra regular open set in Y. Since f is almost supra N-continuous, \(f^{-1}(Y-V) = X-f^{-1}(V) \) is supra N-open in X. Hence \(f^{-1}(V) \) is supra N-closed in X.

(ii) \(\Rightarrow \) (iii) Let V be supra closed set in Y. Then V=\(\text{cl}^{\mu} \text{int}^{\mu}(V) \) is supra regular closed set in Y, then by hypothesis, \(f^{-1}(\text{cl}^{\mu} \text{int}^{\mu}(V)) \) is supra N-closed in X.

(iii) \(\Rightarrow \) (iv) Let V be supra open set in Y. Then V=\(\text{int}^{\mu} \text{cl}^{\mu}(V) \) is supra regular open set in Y. Then Y-\(\text{int}^{\mu} \text{cl}^{\mu}(V) \) is supra regular closed set in Y. Then by hypothesis, \(f^{-1}(Y-\text{int}^{\mu} \text{cl}^{\mu}(V)) = X-f^{-1}(\text{int}^{\mu} \text{cl}^{\mu}(V)) \) is supra N-closed in X. Hence \(f^{-1}(\text{int}^{\mu} \text{cl}^{\mu}(V)) \) is supra N-open in X.

(iv) \(\Rightarrow \) (i) Let V be supra open set in Y. Then V=\(\text{int}^{\mu} \text{cl}^{\mu}(V) \) is supra regular open set and every regular open set is open set in Y. Then by hypothesis, \(f^{-1}(\text{int}^{\mu} \text{cl}^{\mu}(V)) = f^{-1}(V) \) is supra N-open in X. Hence f is almost supra N-continuous.

Theorem 3.4 Every supra N-continuous function is almost supra N-continuous function.

Proof Let f:(X, \(\tau \)) \(\rightarrow \) (Y, \(\sigma \)) be a supra N-continuous function. Let V be supra regular open set in (Y,\(\sigma \)). Then V is supra open set in (Y,\(\sigma \)), since every supra regular open set is supra open set. Since f is supra N-continuous function \(f^{-1}(V) \) is both supra N-open in (X, \(\tau \)). Therefore f is almost supra N-continuous function. The converse of the above theorem need not be true. It is shown by the following example.

Example 3.5 Let X=Y={a, b, c} and \(\tau = \{ X, \varphi, \{a \}, \{a, b \}\} \), \(\sigma = \{ Y, \varphi, \{a \}, \{b \}, \{a, b \}, \{b, c \}\} \). N-open set in (X, \(\tau \)) are \{X, \varphi, \{a \}, \{b \}, \{a, b \}, \{b, c \}\}. N-open set in (Y,\(\sigma \)) are \{Y, \varphi, \{a \}, \{b \}, \{a, b \}, \{b, c \}\}. f:(X, \(\tau \)) \(\rightarrow \) (Y, \(\sigma \)) be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is almost supra N-continuous but not supra N-continuous, since V={a, b} is supra open in (Y, \(\sigma \)) but \(f^{-1}(\{a, b\}) = \{b, c\} \) is not supra N-open set in (X, \(\tau \)).

Theorem 3.6 Every strongly supra N-continuous function is almost supra N-continuous function.

Proof Let f:(X, \(\tau \)) \(\rightarrow \) (Y, \(\sigma \)) be a strongly supra N-continuous function. Let V be supra regular open set in (Y,\(\sigma \)), then V is supra N-open set in (Y,\(\sigma \)), since every supra regular open set is supra open set and every supra open set is supra N-open set. Since f is strongly supra N-continuous function, then \(f^{-1}(V) \) is supra N-open in (X, \(\tau \)). Therefore f is Almost supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.7 Let X=Y={a, b, c} and \(\tau = \{ X, \varphi, \{a \}, \{a, b \}\} \), \(\sigma = \{ Y, \varphi, \{a \}, \{b \}, \{a, b \}, \{b, c \}\} \). N-open set in (X, \(\tau \)) are \{X, \varphi, \{a \}, \{b \}, \{a, b \}, \{b, c \}\}. N-open set in (Y,\(\sigma \)) are \{Y, \varphi, \{a \}, \{b \}, \{a, b \}, \{b, c \}\}. f:(X, \(\tau \)) \(\rightarrow \) (Y, \(\sigma \)) be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is almost supra N-continuous but not strongly supra N-continuous, since V={a, b} is supra N-open in (Y, \(\sigma \)) but \(f^{-1}(\{a, b\}) = \{b, c\} \) is not supra open set in (X, \(\tau \)).

Theorem 3.8 Every perfectly supra N-continuous function is almost supra N-continuous function.

Proof Let f:(X, \(\tau \)) \(\rightarrow \) (Y, \(\sigma \)) be a perfectly supra N-continuous function. Let V be supra regular open set in (Y,\(\sigma \)), then V is supra N-open set in (Y,\(\sigma \)), since every supra regular open set is supra open set and every supra open set is supra N-open set. Since f is perfectly supra N-
continuous function, then $f^{-1}(V)$ is supra clopen in (X,τ), then $f^{-1}(V)$ is supra N-clopen in (X,τ), implies $f^{-1}(V)$ is supra N-open in (X,τ). Therefore f is Almost supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.9 Let $X=Y=\{a,b,c\}$ and $\tau=\{X,\varphi,\{a\},\{a,b\}\}, \sigma=\{Y,\varphi,\{a\},\{b\},\{a,b\}\}$. N-open set in (X,τ) are $\{X,\varphi,\{a\},\{a,b\}\}$. N-open set in (X,σ) are $\{Y,\varphi,\{a\},\{b\}\}$. f $(X,\tau)\rightarrow (Y,\sigma)$ be the function defined by $f(a)=b, f(b)=c, f(c)=a$. Here f is almost supra N-continuous but not perfectly supra N-continuous, since $V=\{a,b\}$ is supra N-open in (Y,σ) but $f^{-1}(\{a,b\})=\{b,c\}$ is not supra clopen set in (X,τ).

Theorem 3.10 Every almost supra continuous function is almost supra N-continuous function.

Proof Let $f:(X,\tau)\rightarrow (Y,\sigma)$ be a almost supra continuous function. Let V be supra regular open set in (Y,τ). Since f is almost supra continuous function, then $f^{-1}(V)$ is supra open in (X,τ), implies $f^{-1}(V)$ is supra N-open in (X,τ). Therefore f is almost supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.11 Let $X=Y=\{a,b,c\}$ and $\tau=\{X,\varphi,\{a\},\{a,b\}\}, \sigma=\{Y,\varphi,\{a\},\{b\},\{a,b\}\}$.
N-open set in (X,τ) are $\{X,\varphi,\{a\},\{a,b\}\}$.
N-open set in (Y,σ) are $\{Y,\varphi,\{a\},\{b\}\}$.
$f:(X,\tau)\rightarrow (Y,\sigma)$ be the function defined by $f(a)=b, f(b)=c, f(c)=a$. Here f is almost supra N-continuous but not almost supra continuous, since $V=\{a\}$ is supra regular open in (Y,σ) but $f^{-1}(\{a\})=\{c\}$ is not supra open set in (X,τ).

Theorem 3.12 If $f:(X,\tau)\rightarrow (Y,\sigma)$ is supra N- irresolute and $g:(Y,\sigma)\rightarrow (Z,\eta)$ is almost supra N-continuous then $g\circ f:(X,\tau)\rightarrow (Z,\eta)$ is almost supra N-continuous.

Proof Let V be supra regular open set in Z. Since g is almost supra N-continuous, then $g^{-1}(V)$ is supra N-open set in Y.
Since f is supra N- irresolute, then $f^{-1}(g^{-1}(V))$ is supra N-open in X. Hence $g\circ f$ is almost supra N-continuous.

Theorem 3.13 If $f:(X,\tau)\rightarrow (Y,\sigma)$ is strongly supra N-continuous and $g:(Y,\sigma)\rightarrow (Z,\eta)$ is almost supra N-continuous then $g\circ f:(X,\tau)\rightarrow (Z,\eta)$ is almost supra N-continuous.

Proof Let V be supra regular open set in Z. Since g is almost supra N-continuous, then $g^{-1}(V)$ is supra N-open set in Y.
Since f is strongly supra N-continuous, then $f^{-1}(g^{-1}(V))$ is supra open in X. Implies $f^{-1}(g^{-1}(V))$ is supra N-open in X. Hence $g\circ f$ is almost supra N-continuous.

Theorem 3.14 If $f:(X,\tau)\rightarrow (Y,\sigma)$ is contra supra N- irresolute and $g:(Y,\sigma)\rightarrow (Z,\eta)$ is almost contra supra N-continuous then $g\circ f:(X,\tau)\rightarrow (Z,\eta)$ is almost supra N-continuous.

Proof Let V be supra regular open set in Z. Since g is almost contra supra N-continuous, then $g^{-1}(V)$ is supra N-closed set in Y.
Since f is contra supra N- irresolute, then $f^{-1}(g^{-1}(V))$ is supra N-open in X. Hence $g\circ f$ is almost supra N-continuous.

Definition 3.15 A space X is said to be mildly supra N-normal if for every pair of disjoint supra regular closed sets A and B of X, there exist disjoint supra N-open sets U and V such that $A\subset U$ and $B\subset V$.

Theorem 3.16 Every supra normal space is mildly supra N-normal.

Proof Let A and B be disjoint supra regular closed sets of X, then A and B are disjoint supra closed sets of X, since every supra regular closed set is supra closed set. Since X is supra normal, there exist disjoint supra open sets U and V such that $A\subset U$ and $B\subset V$. Since every supra open set is supra N-open set, then U and V are disjoint supra N-open sets. Hence X is mildly supra N-normal.

The converse of the above theorem need not be true. It is shown by the following example.
On Almost Supra N-continuous Function

Example 3.17 Let \(X=\{a, b, c, d\} \) and \(\tau = \{X, \varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\} \) supra N-open sets in \((X, \tau) \) are \(\{X, \varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\} \). Here \((X, \tau) \) is mildly supra N-normal but not supra normal, since \(A=\{a, b\} \) and \(B=\{d\} \) is supra closed in \((X, \tau) \) but \(A \) and \(B \) is not contained in disjoint supra open sets.

Theorem 3.18 Every supra N-normal space is mildly supra N-normal.

Proof Let \(A \) and \(B \) be disjoint supra regular closed sets of \(X \), then \(A \) and \(B \) are disjoint supra closed sets of \(X \), since every supra regular closed set is supra closed set. Since \(X \) is supra N-normal, there exist disjoint supra N-open sets \(U \) and \(V \) such that \(A \subseteq U \) and \(B \subseteq V \). Hence \(X \) is mildly supra N-normal.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.19 Let \(X=\{a, b, c, d\} \) and \(\tau = \{X, \varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\} \) supra N-open sets in \((X, \tau) \) are \(\{X, \varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\} \). Here \((X, \tau) \) is mildly supra N-normal but not supra N-normal, since \(A=\{a, b\} \) and \(B=\{d\} \) is supra closed in \((X, \tau) \) but \(A \) and \(B \) is not contained in disjoint supra N-open sets.

Theorem 3.20 Every weakly supra N-normal space is mildly supra N-normal.

Proof Let \(A \) and \(B \) be disjoint supra regular closed sets of \(X \), then \(A \) and \(B \) are disjoint supra closed sets and hence supra N-closed sets of \(X \), since every supra regular closed set is supra closed set. Since \(X \) is weakly supra N-normal, there exist disjoint supra open sets \(U \) and \(V \) such that \(A \subseteq U \) and \(B \subseteq V \). Since every supra open set is supra N-open set, \(U \) and \(V \) are supra N-open sets. Hence \(X \) is mildly supra N-normal.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.21 Let \(X=\{a, b, c, d\} \) and \(\tau = \{X, \varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\} \) supra N-open sets in \((X, \tau) \) are \(\{X, \varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\} \). Here \((X, \tau) \) is mildly supra N-normal but not weakly supra N-normal, since \(A=\{a, b\} \) and \(B=\{d\} \) is supra N-closed in \((X, \tau) \) but \(A \) and \(B \) is not contained in disjoint supra open sets.

Theorem 3.20 If \(f:(X, \tau) \to (Y, \sigma) \) be supra N-open map, almost supra N-continuous surjective, and if \(X \) is weakly supra N-normal, then \(Y \) is mildly supra N-normal.

Proof Let \(A \) and \(B \) be disjoint regular closed set in \(Y \). Since \(f \) is almost supra N-continuous, then \(f^{-1}(A) \) and \(f^{-1}(B) \) are supra N-closed set in \(X \). Since \(X \) is weakly supra N-normal, there exist disjoint supra open set \(U \) and \(V \) in \(X \) such that \(f^{-1}(A) \subseteq U \) and \(f^{-1}(B) \subseteq V \). Since \(f \) is supra N-closed map, \(f(U) \) and \(f(V) \) are disjoint supra N-open set in \(Y \). Hence \(Y \) is mildly supra N-normal.

4. CONCLUSION
We introduced the concept of almost supra N-continuous function on supra topological space and investigated its relationship with other functions. Also a new type of normal space called mildly supra N-normal space was introduced and studied some of its properties.

REFERENCES
[1]. R.Devi, S.Sampathkumar and M.Caldas, On supra \(\alpha\)-open sets and \(\sigma\)-continuous maps, General Mathematics, 16(2)(2008), pp 77-84.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page 24

