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Abstract: In this paper, we use a different proof technique to prove the Konig's theorem and Max-flow Min-cut 

theorem. We consider the linear programming formulation of the problem and show that the optimal values of 

primal and dual are equal. We use the total unimodularity property of coefficient matrix and the fundamental 

theorem of duality in linear program to drive this equivalence. The total unimodularity of the coefficient matrix 

helps in determining the integrality of the solution. we present the proof of the Max-flow Min-cut theorem and 

Konig's theorem using the properties of total uni-modular matrices in linear programming. We discuss the 

problem of Concurrent Multi-commodity Flow (CMFP) and present a linear programming formulation. 

Keywords: Unimodular matrix, Maximum flow, Concurrent Multi-commodity Flow

 

1. INTRODUCTION 

The Multi-commodity flow problem is a more generalized network flow problem. The problem of 

finding a maximum flow in a multi-commodity network arises in many network instances. In a Multi-

commodity flow problem, there exists 1k commodities each having its own source and sink. And 

we give an introduction to the Concurrent Multi-commodity Flow problem (CMFP) [15]and present 

the linear programming formulation for the problem and its dual. In CMFP, every commodity is 

assigned a demand iD , our objective is to assign flows to the commodities so as to maximize a 

fraction such that the flow for any commodity is at least iD units. 

1.1. Preliminaries 

Definition 1.1.1 (Unimodular Matrix) A matrix M over real numbers is said to be unimodular if every 

square sub matrix of M has determinant equal to 0,1 or -1. 

Examples of totally uni-modular matrices, 

1 1 0

0 1 1

0 0 1

  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

  

1 1 0 0 0 1

1 0 1 1 0 0

0 1 1 0 1 0

0 0 0 1 1 1

 

Definition1.1.2. (Linear Program) Let P be a maximization problem. Consider this as the primal. 

Then the linear program formulation can be given as Maximize
TC X  . 
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Subject to Ax b .                              (1.1.1) 

Where A is a mXn matrix and , ,c x b are column vectors of order , ,n n m respectively. 
TC denotes 

the transpose of C . 
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Definition 1.1.3.(Dual of a Linear Program) The dual of the LPP(P ), say D(P ),can be given as 

Minimize
Tb y  ., 

Subject to
TA y c .

1

2

.

.

.

n

y

y

y

y

 

0y ;   
Where y  is a column vector of order m . 

Theorem1. (Weak Duality) For any feasible solutions 
/x  and 

/y of P and D(P ),
/Tc x is always less 

than or equal to 
/Tb y . 

Proof. For a feasible 
/x and 

/y of P and D(P ), the inequality constraints will be satisfied. Consider 

the inequalities in P and multiply with /T

y  on both sides. 

/Ax b  

/ / /T T

y Ax y b         (1.1.2) 

Now, Consider the objective function
/Tc x  of P. We have, 

/ / / / / / /( )
TT T T T TA y c A y x c y y Ax c x     (1.1.3) 

Now from equations 1.1.2 and 1.1.3 we have 

/ / / /T TTc x y Ax y b        (1.1.4) 

We can see that
/ T /T

y b b y . Since, 

1

2

1 2

.
. . .

.

.

m

m

b

b

y y y

b

1 1 2 2 3 3 ... m mb y b y b y b y
               (1.1.5) 
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Therefore, 
/ / / /TT Tc x y Ax b y      (1.1.6) 

Theorem2: (Strong Duality) If the primal P has an optimal solution,
*x , then the dual D(P) also has an 

optimal solution, 
*y , such that 

* *T Tc x b y . 

Theorem3. (Unimodular LP) For the LPP(P), if A is a unimodular matrix and b is integral then some 

optimal solution is integral. 

1.2. Konig’s Theorem 

Theorem4. (Konig’s theorem, [1931]) In any bipartite graph, the number of edges in a maximum 

matching equals the number of vertices in a minimum vertex cover. 

Proof. Let ( , )G V E be a bipartite graph and ,X Y be the two partitions ofV . Let ,X m Y n

and 1,2,3,...,n , 1, 2,...,X m m m n Y . 

If E  is empty, then the size of both the minimum vertex cover and maximum matching is zero. 

Without loss of generality we shall assume that E  is non empty and E r . We shall introduce two 

variables p and q corresponding to every vertex and edge respectively. The linear program (P) for 

finding the maximum matching is as follows, 

Maximize 
( , )

ij

i j E

q                    (1.2.1a) 

Subject to 
j:( , )

1ij

i j E

q i X                              (1.2.1b) 

i:( , )

1ij

i j E

q j Y                              (1.2.1c) 

0,1 ( , )ijq i j E                              (1.2.1d) 

The first two constraints imply that at most one edge can be selected corresponding to every node. 

Here, the given problem is an Integer Linear Program. We relax the integrality constraints on ijq  so 

that it can take on decimal values. The resulting LPP, say
/P , is 

Maximize 
( , )

ij

i j E

q  

Subject to 
j:( , )

1ij

i j E

q i X                     (1.2.2) 

i:( , )

1ij

i j E

q j Y  

0 ( , )ijq i j E  

Let A be the coefficient matrix of the LPP (
/P ). By Theorem 1.2.1 below, 

A is unimodular. Hence by Lemma , there exists an optimal integral solution to
/P . Obviously, every 
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element of the solution is either 0 or 1. Otherwise it would violate the constraints. Hence optimal 

solution of 
/P  is also optimal solution of P . This is the size of the maximum matching in G . 

Consider the LP in equation 1.2.2.  We shall derive the dual of this LP formulation. Let ip and jp

where ,i X j Y be the dual variables corresponding to the first and second set of constraints, 

respectively. The matrices corresponding to the primal formulation 1.1.1 and dual formulation 1.1.3 

problems are as follows, 

1

1

1 1

1 1

1 1

ij

m

m

m n

p

q

p
x c b y

p

p





  

 

                  (1.2.3)

 

Where the order of the matrices are, x is 1rX , c is 1rX , b is ( ) 1m n X , and y is ( ) 1m n X . The 

optimization function with respect to the definition 1.1.3 can be given as, 

1

1

1

1

1

mT

m

m n

p

p
b y X

p

p







                    (1.2.4)

 

From Theorem 3.2.1, we know the coefficient matrix is unimodular. In the matrix A , with respect to 

a variable ijq , every column has exactly two ones corresponding to
thi  and 

thj rows. Thus, in 
TA

every row has two ones, one in the 
thi column and other in the 

thj column. So, the set of constraints,

TA y c  , for the dual can be given as follows. 

1 ( , )i jp p i j E
                              (1.2.5)

 

Along with the non-negativity constraints, the dual can be given as, 

Minimize 
i j

i X j Y

p p  

Subject to, 1 ( , )i jp p i j E
                               (1.2.6) 

0

0

i

j

p i X

p j Y  

This actually is the LP formulation for the relaxed minimum vertex cover problem that we see below. 

Now, consider the problem for finding the minimum vertex cover inG . Then the LPP formulation, 

say Q, is given as follows, 

Minimize 
i j

i X j Y

p p

      (1.2.7)

 

Subject to, 1 ( , )i jp p i j E
 

0,1

0,1

i

j

p i X

p j Y
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The above given problem is an ILP (Integer Linear Program). We shall relax the integrality 

constraints on ,i jx x  in order to obtain a LP. Let 
/Q be the new LP. 

The new LP is as follows, 

Minimize 
i j

i X j Y

p p  

Subject to, 1 ( , )i jp p i j E
                      (1.2.8)

 

0

0

i

j

p i X

p j Y
 

Let B be the coefficient matrix of
/Q . It is easy to see that B is the transpose of A. Since A is 

unimodular, B is also unimodular. Therefore, by Theorem 1.2.1, 
/Q has an optimal integral solution 

in which all ip and jq are either 0 or 1. Hence, optimal solution to
/Q  is also optimal solution to Q. 

That is equal to the size of the minimum vertex cover.Now, by the Theorem 6, both the problems have 

same optimal solution. 

Lemma1.2.1.The coefficient matrix A of the LPP(
/P ) is totally unimodular. 

Proof. Clearly, A has m + n rows and r columns in which first m equations con-tribute the first m 

rows and second n equations contribute the remaining n rows. Each column of A has exactly two 1's, 

one in the first m rows and one in the last n rows. All other elements are 0. Let D be a square sub-

matrix of order k. We will prove the theorem by using induction on k. 

Clearly, for k = 1, D = 0 or 1. Assume that all square sub-matrices of order 1k  have determinant 

equal to 0, 1 or -1. We shall consider different cases, 

(1) If D has at least one column containing only zeros, then D = 0. 

(2) If D has at least one column containing only one one. Then D E  where E is the sub-matrix 

obtained from D by deleting the corresponding Column and the row containing the one. By 

induction E = 0, 1 or -1. Hence D  = 0; 1 or -1. 

(3) If every column of D has exactly two 1. In this case, the first 1 comes from the first m rows of A 

and the second 1 comes from the later n rows of A. Strictly, every column has exactly a single 1 

within the rows that belong to the first m rows of A. So, the by performing row addition on all 

these rows, we obtain a row with all ones. The same argument applies for the remaining rows of 

D that came from the last n rows of A. Hence the rows of D are linearly dependent and D =0. 

Hence A is unimodular. 

1.3. The Max-Flow Min-Cut Theorem 

Theorem5. (Ford-Fulkerson, 1956) In a Network G , let f be any maximum flow in G , then  a cut 

(A, B) for which f(A, B) = c(A,B) 

Proof. Let N(V, E, c, s, t) be the network with V  = n and E = m. We shall write the linear 

programming formulation for the maximum flow. 

We want to find the maximal flow that can be sent from the source vertex s to the sink vertex t. Let v 

be the value of any flow from s to t and xij be the flow sent along the arc (i,j). Let the vertices be 

labeled using integers 1 to n such that the source s is labeled as 1 and the sink t is labeled with n. Then 

the LPP(R) corresponding to the maximum flow is, 

Maxmize v 
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Subject to 

( , ) ( , )

0 1ij ki

i j E k i E

x x v if i  

( , ) ( , )

0ij ki

i j E k i E

x x v if i n

               (1.3.1)

 

( , ) ( , )

0 2,3,..., 1ij ki

i j E k i E

x x if i n  

( , )

0 ( , )

0

ij ij

ij

x c i j E

x i j E

v

 

The first constraints imply that the net flow out of the source vertex 1 is equal to v and the second 

constraints imply that the net flow into the sink vertex n is v. The third constraints imply that the total 

flow into any intermediate vertex is equal to the total out flow of that vertex. By relaxing the equality 

in these three constraints, we will obtain the following inequalities. 

( , ) ( , )

0 1ij ki

i j E k i E

x x v if i  

( , ) ( , )

0ij ki

i j E k i E

x x v if i n

                    (1.3.2)

 

( , ) ( , )

0 2,3,..., 1ij ki

i j E k i E

x x if i n  

Let 
/R be the resulting LPP. In any optimal solution of 

/R , the above three inequalities should satisfy 

with equality. Otherwise, by adding all the LHS and RHS we get 0 < 0, a contradiction. Since, on the 

LHS for every arc (i, j), xij is added once and subtracted once, so the sum will result in a zero. So, they 

will satisfy with equality. Therefore, the optimal solution of 
/R  will also be the optimal solution of R. 

Consider the LP for Max-flow in equation 1.3.1. If we try to convert this into matrix form, the 

corresponding matrices will be, 

0
1

0
0

0

ij

ij

x

x b c

c










 

Now, we shall derive the dual for the above LP in equation. Let iu where 1 i n be the dual 

variables corresponding to the first three set of equations (flow constraints) and ijy where ( , ) ,i j E

be the dual variables corresponding to the fourth set of constraints (capacity constraints),Then the 

matrix y is, 

1

n

ij

u

y u

y





            (1.3.4) 

Therefore the objective function for the dual can be given as, 
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0
T

n

ij ij

u

b y u

c y

 

 

                   (1.3.5)
 

Consider the coefficient matrix, say A, of the LP formulation for Max-flow. We shall see the 

properties of this matrix. There will be (n+m) rows corresponding to ijm x the (n+m) constraints and 

m+1 columns corresponding to variables. The coefficient matrix A, will look as below, 

2,1 3,1 m 1,1

2,2 3,2 m 1,2

2,n 3,n m 1,n

1 2 3 1

1 1

2 0

1

0 1 0 0

0 0 1 0

0 0 0 1

ij

m

a a a

a a a

n a a a

x







     





 

     

 

 

Where ija = - 1or 0 or 1 2 ( 1), 1i m j n .This matrix is actually the transpose of the 

coefficient matrix for the Min-cut LP that we see below in equation 3.3.6. The objective function of 

the Min-cut is also the same as the function in equation 1.3.5. From this, it is easy to see that the dual 

of the Max-flow problem is Min-cut. 

Now we shall formulate the linear program(T) for finding the minimum cut capacity as follows, 

Minimize  
( , )

ij ij

i j E

c y  

Subject to 1 1nu u
                    (1.3.6) 

0 ( , )

0,1

0,1 ,

i j ij

i

ij

u u y i j E

u i

y i j

 

The solution to the above LPP will result in a cut such that, corresponding to a cut ( , )S S of the 

network N. 

0iu if vertex i S  

1 if vertex i S  

1 ,ijy if i S j S  

  
0 otherwise       (1.3.7) 

Now, relax the integrality constraints on iu and ijy  . The resulting LPP(
/T ) will be 

Minimize 
( , )

ij ij

i j E

c y  
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Subject to 1 1nu u
                         (1.3.8) 

0 ( , )

0

0 ,

i j ij

i

ij

u u y i j E

u i

y i j

 

In any optimal solution to T. ( , ) (0,0) (1,0) (1,1)i ju u or or will imply 0ijy and ( , ) (0,1)i ju u

imply 1ijy and hence T will give the capacity of the cut ( , )S S . 

Now, consider the LPP(
/T ). Clealrly, this is the dual of the LPP(

/R ). Let B be the coefficient matrix 

of 
/T  .From Lemma 1.3.1 below, B is unimodular. The column vector b of 

/T consists either 0’s or 

1’s. Then the optmal solution of
/T  is also the optimal solution of T. 

Now by theorem 6, the optimal values of 
/R and 

/T are equal. Hence, the optimal values of R and T 

are also equal. Therefore, the maximum flow in the network is equal to the minimum cut in the 

network. 

Lemma1.3.1. The coefficient matrix B of the LPP(T) is unimodular. 

Proof. Consider the matrix B. Clearly B has m+1 rows and n+m columns. Now, let D and E be two 

partitions of B, such that D consists of the first n columns and E consists of the second m columns. 

The matrix D is order ( 1)m X nand E is of order ( 1)m X m . The matrix D will be as below, 

1 2

2,1 2,2 2,n

m 1,1 m 1,1 m 1,n

1 0 11

2

1

nu u u

a a a

a a am







   



 

Where ija = - 1or 0 or 1 2 ( 1), 1i m j n . And the matrix E will be as below. 

1 0 0 0

2 1 0 0

3 0 1 0

1 0 0 1

ijy

m

 







    



 

Every row of C contains exactly one 1 and one -1. Every column of D will contain exactly one 1. 

Now we shall prove this by induction on the size of the sub-matrix. Let U be the square sub-matrix of 

order k of B. For, k=1, the element can only be either 1 or 0 or -1. Assume that all square sub-matrices 

of order k-1 have determinant equal to 0 or 1 or -1. Considering for k, the different cases can be as, 

(1) U consists of at least one column from D. Every column of D has exactly one 1. Then by deleting 

that column and the corresponding row, we can get a matrix of order k-1. Hence 1U or 0 or 1. 

(2) U consists of columns only form C. Now, if ther exists a row with all zeros or one 1 or one -1, 

then by induction we can see that the determinant of U will be 1 or 0 or -1. Otherwise, every row 

of U should contain exactly one 1 and one -1. Then by performing the column addition on all the 

columns will result in a column with all zeros. Then 0U . 

2. THE CONCURRENT MULTI-COMMODITY FLOW PROBLEM 

The Multi-commodity flow problem is a more generalized network flow problem. In a multi-
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commodity flow problem there are 1k commodities each having its own source and sink pair. 

Because of the multiplicity of the commodities, the problem to be optimized can be defined in several 

ways. Hence, there exists several variants of the Multi-commodity flow. The problem we are going to 

discuss is called Concurrent Multi-commodity Flow Problem (CMFP) [15][12]. In this problem, every 

i
th
 commodity is assigned a demand Di. Our objective is to maximize a fraction, such that there exists 

a flow of Di units for every commodity i. The previously studied maximum flow problem is a special 

case of Multi-commodity flow problem in which the number of commodities is one(k = 1). Below, we 

will give formal definitions and linear program formulation of the problem. 

2.1. Preliminaries 

Definition2.1.1. (Multi-commodity Network) A Multi-commodity Network is a directed graph 

G(V,E,c) with vertex set V and an arc set E in which every directed edge ( , )i j E , has a non 

negative capacity ( , ) 0, :c i j C V X V R . There are 1k   commodities K1,K2,…,Kk. For each 

commodity i, there is an ordered pair ( , )i is t  representing the source and sink of that commodity 

where ( , ) V Xi is t V and i is t . 

The flow of a commodity is similar to that of a flow in a single -commodity flow network. Let 
if

represent the 
thi flow of the commodity. 

Definition2.1.2. (Flow of a commodity) A flow of a commodity is a mapping :if E R denoted by 

( , )i i

uvf or f u v subject to the following constraints. 

(1) ( , ) ( , )if u v c u v for each ( , )u v E  (capacity constraint) 

(2) ( , ) ( , )i if u v f v u  (skew-symmetry) 

(3) ( , ) 0 \ ,i

i i

v V

f u v u V s t  (conservation of flow) 

The value of the flow of a commodity i  is given by ( , )i

i i

w V

f f s w . 

Definition2.1.3. (Concurrent Multi-commodity Flow Problem) Given a Multi-commodity Network 

along with demands 1 2 3, , ,..., kD D D D corresponding to the k commodities, the objective is to assign 

flow to commoditities so as to maximize a fraction such that for every commodity i , the value of 

the flow of the commodity if  is at least iD  . The assignment should satisfy the following 

constraints along with the flow constraints, 

1

( , ) ( , ) ( , )
k

i

i

f u v c u v u v E              (2.1.1) 

2.2. Linear Programming Formulation 

Below, we give the LP formulation for the Concurrent Multi-commodity Flow problem(CMFP) 

Maximize  

Subject to 

1

( , ) ( , ) ( , )
k

i

i

f u v c u v u v E

      (2.2.1)

 

( , ) 0 1 ,i

i i

w V

f u w i k u V s t  
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( , ) 1i

i i

w V

f s w D i k  

The above formulation is very intuitive and straight forward. We will now see another formulation of 

the same problem which uses paths. Let P  represent the set of all non-trivial paths in the network and 

jP be the set of paths corresponding to the commodity j (paths from i is to t ). Let ( )x be a variable 

corresponding to every path P . Then, he LPP formulation (primal) can be given as, 

Maximize  

Subject to 

:

( ) ( )
e

x c e e E        (2.2.2) 

( ) 0 1
j

j

P

D x j k  

( ) 0x P  

The dual problem for the above linear program can be interpreted as assigning weights ( )jz  to the 

commodities and lengths ( ( ))y e  to edges such that for any commodity i the length of every path from 

i is to t should be at least iz . The length of a path is given as the sum of the lengths of all the edges in 

that path. The LPP formulation for the dual is as follows, 

Minimize ( ) y( )
e E

c e e  

Subject to 

y( ) :j j

e

e z P j       (2.2.3)
 

1

1j j

j k

D z  

( ) 0l e e E  

0jz j  

We shall consider the example in the figure 2.1 with two commodities, say 1K and 2K  . Let the 

demands be 1D and 2D respectively. First, the primal formulation of the problem using paths is given. 

We shall then derive the dual formulation of the problem. 

 

 

 

 

 

 

Figure2.1. An example of a two commodity flow network with unit demands on the commodities. 

In the example figure, there are two paths form source to sink for each of the commodities 1K and 2K  

. The edges are labeled 1 2 8, ,...,e e e . Let us name the paths with respect to edges as follows, 

1 1 2 3 4

2 1 6 7 4

3 5 2 3 8

1 5 6 7 8

e e e e

e e e e

e e e e

e e e e

         (2.2.4)
 

S1 b 

a 

t1 

t2 

c 

S2 d 

e1 e2 
e3 e4 

e5 
e6 e7 

e8 
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The paths 1 2, belong to commodity 1K and the paths 3 4, belong to commodity 2K . The LP 

formulation for the example is as follows, 

Maximize  

Subject to 

1 2 1

1 2 1

1 4 2

1 4 3

1 2 4

3 4 5

3 2 6

3 2 7

3 4 8

1 1 2

2 3 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0

( ) ( ) 0

( ) 0 1 4i

x x c e

x x c e

x x c e

x x c e

x x c e

x x c e

x x c e

x x c e

x x c e

D x x

D x x

x i

   (2.2.5)
 

Now, multiply the constraints with the dual variables ( ( ) )jy e and z on both sides. 

1 2 1 1

1 4 2 2

1 4 3 3

1 2 4 4

3 4 5 5

3 2 6 6

3 2 7 7

3 4 8 8

1

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( )] ( )

[ (

x x c e y e

x x c e y e

x x c e y e

x x c e y e

x x c e y e

x x c e y e

x x c e y e

x x c e y e

D x 1 2 1

2 3 4 2

) ( ) 0]

[ ( ) ( ) 0]

x z

D x x z

    (2.2.6) 

By combining the equations on the left hand and the right hand sides we get the following inequality, 

1 2 1 1 4 2 1 4 3

1 2 4 3 4 5 3 2 6

3 2 7 3 4 8 1 1 2 1

2 3 4 2

[ ( ) ( )] ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( ) [ ( ) ( )]

[ ( ) ( )] ( ) (i

x x y e x x y e x x y e

x x y e x x y e x x y e

x x y e x x y e D x x z

D x x z c e y e
8

1

)i

i  

(2.2.7) 

Now, represent the inequality in terms of ( )x . 

1 2 3 4 1 1

1 6 7 4 1 2

5 6 7 8 2 3

5 2 3 8 2 4 1 1 2 2

8

1

[ ( ) ( ) ( ) ( ) ] ( )

[ ( ) ( ) ( ) ( ) ] ( )

[ ( ) ( ) ( ) ( ) ] ( )

[ ( ) ( ) ( ) ( ) ] ( ) [ ]

( ) ( )i i

i

y e y e y e y e z x

y e y e y e y e z x

y e y e y e y e z x

y e y e y e y e z x D z D z

c e y e

           (2.2.8) 
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Now, with respect to the objective function of the primal, the dual can be formulated as below, 

Minimize 

8

1

( ) y( )i i

i

c e e  

Subject to 

1 2 3 4 1

1 6 7 4 1

5 6 7 8 2

5 2 3 8 2

1 1 2 2

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

1

( ) 0 1 8

0 1

i

j

y e y e y e y e z

y e y e y e y e z

y e y e y e y e z

y e y e y e y e z

D z D z

y e i

z j k

   

 (2.2.9) 

This is the resulting LPP formulation for the dual of the example we considered in figure 2.1. The 

dual we have given in equation 2.2.3 is a generalization of this resulting formulation. 

The Multi commodity flow problem is very well studied in combinatorics. Unlike single commodity 

flow, the structural properties of this problem are not well known when the number of commodities is 

greater than two ( 2)k . This problem can be solved in polynomial time using linear programming. 

However, the problem of finding an integer flow is NP-Complete when ( 2)k . 

3. CONCLUSIONS 

In this paper we presented the proofs for Konig's theorem and Max-flow Min-cut theorem using a 

complete different technique based on the total unimodularity property of the coefficient matrix in 

their linear program formulation. Finally, we have briefly discussed about Multi-commodity flow and 

the Concurrent Multi-commodity Flow Problem (CMFP). Many more primal-dual relations exist in 

graph theory and the approach generalize to investigation into these relations and discovering LP 

based proofs for those Min-Max relations in graph theory. Hence, this approach is a general tool and 

the results presented here are just sample cases. We have also attempted to apply technique called 

Lagrangian relaxation [7] from linear programming to some of these relations in order to gain some 

insights into its effectiveness. A possibility is to apply different techniques in combination and try to 

investigate the outcome which could lead to interesting observations. 
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