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Abstract: In this paper, a new auxiliary equation method is presented. Analytical multiple function 

solutions including trigonometric function, exponential function, elliptic function and other functions can be 

easily obtained. Novel exact interaction solutions of the fifth-order KdV equation with variable coefficients 

are obtained successfully by using this new auxiliary equation method. It is very significant to help 

physicists analyze special phenomena in their relevant fields accurately.  
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1. INTRODUCTION 

As we known, the complicated nature phenomena are often well described by nonlinear partial 

differential equations. These equations with variable coefficients are more realistic than constant-

coefficient equations in different physics fields[1]. The most representative nonlinear equation is 

KdV equation with variable coefficients[2]. 

 

where  are arbitrary function of . The Korteweg-de Vries (KdV) equation is 

derived by Korteweg and de Vries to model the evolution of shallow water wave in 1895. The 

fifth-order KdV equation with variable coefficients can better describe the phenomena of shallow 

water wave movements. 

Many fifth‐order physical models are governed by the fifth‐order KdV equation with variable 

coefficients. Such as: 

SK equation: 

 

KK equation: 

 

Soliton solutions of these equations have important applications in nonlinear optics, theoretical 

physics, plasma physics, fluid dynamics, semiconductors and other fields. It is meaningful to 

solve various exact solutions including trigonometric function, exponential function, elliptic 

function and other functions. The investigation of such analytical solutions helps us to understand 

the complicated physics phenomena well. In the past decades, many methods are proposed to 

obtain exact solutions of nonlinear partial differential equations: such as inverse scattering 
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theory[3], Hirota’s bilinear method[4], the truncated Painlevé expansion[5], Darboux 

transformation[6] and so on. In recent years, a large number of powerful methods to solve 

nonlinear partial differential equations are considered. One of important methods is the auxiliary 

equation method, it includes the homogeneous balance method[7], sine-cosine method[8], the 

sech-function method[9], the hyperbolic tangent function method[10,11], the multiple exp-

function method[12,13] , the -expansion method[14], the generalize  method[15], they 

all are collectively known as the auxiliary equation method. It has attracted extensive attention as 

its concise and understandable. Ma[16], Chen[17,18], Chen[19-24] are devoted to constructing 

special interaction soliton solutions by using combination of auxiliary equations and get great 

success. But the solutions of the solvable auxiliary equation are singular soliton solutions. In this 

paper, this novel auxiliary equation can successfully to obtain multiple function solutions which 

including trigonometric function, exponential function, elliptic function and other functions. 

This paper is organized as follow: a new auxiliary equation:  which we find 

out multiple function solutions in section 2. In section 3, we introduce this new auxiliary equation 

method, it can be applied to many nonlinear partial differential equations in different fields 

effectively. In section 4, this method is applied to the fifth-order KdV equation with variable 

coefficients successfully. Many new exact interaction solutions are obtained. Some conclusions 

and discussions are given in section 5. 

2. THE NEW SOLUTIONS OF THE NOVEL AUXILIARY EQUATION 

For the novel auxiliary equation read: 

 

where . We obtain new multiple solutions of Eq.(4) in the following cases: 

case 1:  

 

 

 

 

 

 

 

 

case 2:  
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where  are arbitrary constants. Some imaginary solutions are omitted above, 

therefore real interaction solutions of nonlinear partial differential equations are obtained when 

we apply this auxiliary equation into equations. 

3. THE NEW AUXILIARY EQUATION METHOD 

Step1: For a given nonlinear partial differential equation with independent variables  : 

  

Step1: For a given nonlinear partial differential equation with independent variables  : 

  

Step2: We make a transformation as follow: 

  

where  are arbitrary function of . 

Step3: Inserting eq(16) into eq(15), we yield an ordinary differential equation: 

  

Step4: We assume exact solutions of eq(15) in the following form: 

  

where  is positive integer, it is determined by the balance principle in eq(15).  satisfies the 

auxiliary equation eq(4). Substituting eq(18) into eq(17). We obtain a set of algebra equations 

when set each coefficients of  to zeros. There  will be 

determined by solving a set of algebra equations. 

4. APPLICATION TO THE FIFTH-ORDER KDV EQUATION WITH VARIABLE COEFFICIENTS 

 The fifth-order KdV equation with variable coefficients: 

 

Where  are arbitrary functions of . 

We have the hypothesis in the following terms is obtained: 

 

where  are functions of . Where  is positive integer and equate 

to 2, it is determined by balancing the linear term of  and the nonlinear terms of  or 

.  satisfies the auxiliary equation: . For the sake of simplicity, we 

take the exact solutions of eq(19) as following form: 

 

where  are arbitrary function of , they could be all determined in the 

later. Hence, substituting eq(21) into eq(19) along with aid of the auxiliary equation and equating 

the coefficients of ) to zero, a set of algebraic equations are yielded that 

unknown parameters  are able to solve by using the computation of 

Maple. 

We get two conditions: 

Type 1:  
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Type 2: 

  

We obtain analytical interaction solutions of eq(15) in type 1: 

 

 

 

 

 

 

 

 

 

 

Where   are arbitrary constants.   have the same meaning 

above. 

We get solutions eq(22)-(29) which contain trigonometric functions and hyperbolic functions. 

Solutions of eq(30)-(31) include exponential functions, elliptic functions. They are all determined 

by solvable new arbitrary equation and they are novel interaction solutions of eq(19) which are 

not obtained in ref[1]. The phenomena of appearance of interaction waves are instantaneous and 

changeful. The interaction solutions are so complex that the influences of solutions are not easy to 

uncover. The effects are so significant, as nonlinear phenomena appear always everywhere in 

nature.  

5. CONCLUSION AND DISCUSSION  

In this paper, a new auxiliary equation is considered which we seek out multiple function 

solutions. A new auxiliary equation method is presented. Some new exact interaction solutions of 

the fifth-order KdV equation with variable coefficients are obtained by using this method. This 
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method can be easily and effectively applied to other partial differential equations with constant 

or variable coefficients. It draws great attention that solutions of the novel auxiliary equation 

themselves include trigonometric function, hyperbolic function, elliptic function and other 

functions. It is not proposed in previous auxiliary equation methods. Complicate physical 

phenomena in nonlinear model systems will be described well when we analyze the typical 

interaction solutions we obtained in this paper. 
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