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1. INTRODUCTION 

1950 y. Lagerstrom A.P. [1] for the investigation of the Nav’e-Stokes equation supposed next 

equation in the small number of Reinolds 
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here   - small parameter,n-dimension ofspace, [ , )r   - the independent variable, ( )r - 

unknown function. 

Existence and uniqueness of this equation was proved in [2-3]. Expansion asymptotic of the 

solution of this equation proved by method of matching (MM) in [4-11], by method of the integral 

equation in [12], by method of fictitious parameter in [13], for  the different meanings n.It is 

important to note that the rule of matching was proposed by Van Dike [14]. Justification of the 

MM was made by Il’in A.M [15]. Here we will  apply method of structural matching [16-20] for 

expansion asymptotic of solution of this equation. 

2. METHOD OF STRUCTURAL MATCHING 

It is conveniently to make the next transform , ( ) 1 ( )r x x y x    in this equation, then we 

have got 
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For concreteness we will consider case n=2 only. Then  
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Definition1. The variable x is named outer variable. 

Definition 2. We will call   the solution of this equation (1) that satisfies the condition 

(1) 0, '(1)y y a   here a const , outer solution. We will select a const  so that the outer 

solution will exist on maximal interval that is ( ) [1, ]J


  . 
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3. THE STRUCTURE OF THE OUTER SOLUTION 

 The outer solution we will seek in the form 

       0 1, n

ny x y x y x y x     . .                                       (2) 

Here   jy x   – as long as do not definite functions and one exist on ( )J   and will satisfy next  

conditions  :        ''

0 0 1 0,   1 0  ( 1,2, )1 1,   1 ;
k k

y y ky y a      . 

Substituting (3) on (2) we will have next equations for define of functions  ky x  : 

         0 0 0 0 0' ' 1,    1 0,   ' 1
1

Ly x y x y x y y a
x

     ,                        (3.0) 

           1 0 0 0 1 1'' ,    1 1 0Ly x y x y x y x y y      ,            (3.1) 

               2 1 0 1 1 0 2 2' ' '  ,  1 1 0 (3' .2)Ly x y x y x y x y x y x y y       ,  

  ………………………………………..  

           1

1

' '  , 1    1 0
m m i j m m

i j m

Ly x y x y x y x y y


  

      ,           (3.n) 

................................................................................ 

Solution of (3.0) will have the form 

 0 1.y x alnx                                                                  (4.0) 

By using (4.0), for define  1
y x   we have next equation 

     2 1
1 1 1,   1 0,    ' 1 0Ly x a x lnx y y   . 

 From here we have 

    2 2 22 1 2
1 1

  , .' a xy x u x a lnx a x a lnx a     
 

From here 

  22
1

  , .2 x xy x a xlnx a                                                                                        (4.1)
 

For define   2y x    we have the equation  

     2

2
3 3

2 2ln ,   1 0,    ' 1 0xLy x a ln x a y y   . 

Solving this equation we have 

 
3

2

3

2 ,
2

.'
2

a
ln x xlnx x

a
y x x     

By integrating this equation we have  

 
3 3

2 2 22

2

3

4 8 8
ln , .

a a
ln x xy x x x x x                                                                               (4.2) 

For define  3
y x  we have next equation 
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     3 24
3 3 3

3
ln , ;   1    ' 1 0x xxLy x a ln x a x y y    .

 

From here  
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a a
ln xy x x x x x


                                                                        (4.3) 

So on from (3. )m  we have  

 

 

1
1 1

1
1 1 1 1

, ,
!

, .
!

m
m m m m m

m m

m
m m m m m

m

a
y x x ln x a x ln x x

m m

a
y x x ln x a x ln x x

m






 


   

  


  

                      (4.m) 

Here and further k  и k  are noted some real numbers.We must prove formula (4.m) by the 

method of induction.Let (4.m) is correctly, then we will prove that  correct next  formula: 
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The equation for define of  1m
y x


 have the form  

                 1 0 1 1 1 1 0 .1 ' ' '( ) 'm m m m mLy x y x y x y x y x y x y x y x y x       

By using (4.0), (4.1),...,(4.m) this equation will have next form 

  2

2

1 1 1

1 ,
!

.m

m

m

m m m m

m

a
x ln x a x ln x x

m
Ly x 





  

     

By integrating this equation we have got (4.m). 

Consequently the outer solution we can reprisent next form 

21 1

2 2! !
( , ) 1 [ ( ) ... ( ) ...], ,m

m m
y x alnx a a xlnx a xlnx a xlnx x   

 
      

    (5) 

We will select indefinite number a  such: 
11

( )a ln


   , then the equation: 1xlnx    

will have the solution
1x     and the series (5) will have next form 

2

2

2 2! !
( , ) 1 [ ( ) ... ( ) ...], . (5 )

m

m m

my x lnx xlnx xlnx xln x x
 

     
 

       

This series is asymptotic series on the interval
1].[1,   

From here we can have got next  

Тhеоrем1.  Outer solution (2) is asymptotical series in the interval   1
[1, ]I  


 that is 

        1
0 1 1

, ( , )n n
n n

y x y x y x y x R x   


    .                                  (6)  

Here 1( , )nR x  is reminder term andfor it we have got the estimate: 

1
( , )

n
R x l


 .                                                                    (7) 

Here  l  constant that do not depend from . 
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4. INNER AND FULL SOLUTION 

Now we will construct the solution of the equation (1) that will satisfy the condition ( ) 0y   . 

It is make in (1) next transformt x  then we have got  

       
1

'' 1 ' 'u t u t u t u t
t

 
 
 

                                                                                           (8) 

Here     1, ,
x t

u t y x


  
 . 

Definition 3. The variable  t   is named inner variable.  

Definition 4. We will call   the solution of this equation (8) that satisfies the condition ( ) 0y    

the inner solution.  

It is evidently if  1x    then t   . 

We will rewrite the outer solution (6) in the inner variable t , then: 

1 1 1 1

1( )

21 1
) ) )

2 2! !
( , ) 1 [ ln( ( ln( ) ... ( ln( ) ...].

x t

m

m m
y x lnt t t t


            


 

     
     

                                                                                                                                                        (9)
 Series (9)is asymptotical series on the interval 

1  t     

It is appears that the inner solution will existence not only in the neighborhood of the point t  , 

but also everywhere in    ,I    . So we will solve the equation (8) with next boundary 

value problem: 

   1,   0u u                                                         (10) 

Теорема 2. The solution of the problem (8) and(10) we can  representative in the form

       0 1, , , ... , ...nu t u t u t u t         .                                                              (11) 

Here          , , , 0,1, 2,...'
k k

k k
u t O u t O k     , that is,  { },

k
u t   is the 

asymptotical sequence .  

By inserting (11) in (8) for defining of functions  ,
k

u t   we have got next equations 

           :
1

0 0 0 0 0
'' 2 0, 1, 0Mu t u t t u t u u

                                                (12.0)     

         1 0 0 1 1
' , 0Mu t u t u t u u                                                              (12.1) 

         2 0 1 1 0 2 2' ' , 0Mu t u u t u u t u u                                                        (12.2) 

           2
3 1 0 2 1 1 2 0 3 3 0( ' ) ' ' ' ,Mu t u t u u t u u u u t u u                                 (12.3) 

........................................................................................................... 

The homogenous equation (12.0) will have two linear independent solutions 

1

1 2 1

1 1

1 1
( ) 1, ( , ) , ( ) [ ] ( )

s st
U t U t s e ds s e ds O

 
     


   

      .                                           (13) 

Trivial boundary value problem    0 0 0u u    for the equation (13.0) will have only the 

trivial solution. 

Лемма 1. The function of Greene for the problem 
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( ) 0, ( ) ( ) 0Mz t z z     

will have next form 

1

1 1 2 1

1

1 1 2 1

1 2

( , , ) ( , ) ( , ), ,

( , , ) ( , ) ( , ), .

( , ) 1 ( , )

G t s U t K s t s

G t s U s K t s t

K t U t

    

   

 





  

   

 

                                                                                 (14) 

Лемма 2. Задача 
      ( ),   0, 0 Mz t f t z z     

here ( ) [ , )f t C   will have got the unique solution and one have  the form 

2

1( ) ( , , ) ( )sz t s e G t s f s ds





  .                                                                                                (15) 

The solution of the problem (12.0) has the form 

 0 1
( , )u t K t  . 

Now we will make transform in (8)  

   0 ( )u t u t z t                                                                                                                     (16)                                                                             

then one rewrite in the form 

       0 0

1
'' 1 ' [ ( )][ ' ( )]

( ) ( ) 0 .

z t z t u t z t u t z t
t

z z

 
     

 

  

                                                          (17) 

By using of formula (15) we can rewrite the problem (17) in the form of system integral equation 

   

   

2

1 0 0

2

0 01

( ) ( , , )[ ( )][ ' ( )] ,

( ) ( , , )[ ( )][ ' ( )] .

s

s

t

z t s e G t s u s z s u s z s ds

z t s e G t s u s z s u s z s ds













  

   




                                                                 (18)                                 

We will make in (18) the substitution 

1 1 1 2
( ) ( , ) ( ), ( ) ( , ) ( )

t
z t K t z t z t K t z t    

then 

1 100 110 1 101 2 111 1 2

2 200 210 1 201 2 211 1 2

( ) { ( , , ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( )} ,

( ) { ( , , ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( )} .

z t Q t s Q t s z s Q t s z s Q t s z s z s ds

z t Q t s Q t s z s Q t s z s Q t s z s z s ds





   

   





   

   




                     (19)

 

Here 
1

100 1 0 0 1

1

200 1 0 0 1

1

110 1 1 0 1

1

210 1 1 0 1

111

( , , ) ( , , ) ( ) ( ) ( , ),

( , , ) ( , , ) ( ) ( ) ( , ),

( , , ) ( , , ) ( , ) ( ) ( , ),

( , , ) ( , , ) ( , ) ( ) ( , ),

( , , )

t

s

s

t t

s

s

Q t s se G t s u s u s K t

Q t s se G t s u s u s K t

Q t s se G t s K s u s K t

Q t s se G t s K s u s K t

Q t s s
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It is true next  
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Лemma 3 

( )
( , ) ( , , ) ( ), ( ; , 0,1; 1,2)k

ij kij
J t Q t s ds O l const i j k


  



     .                               

Proof. We will consider only the case 00 ( , )J t  .Other cases will be proved analogously. We will 

have 

2

(1)

00 100 100 100

1 1

1 2 1 1
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1 1 1 1 2 2
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By using this lemma we easily prove next 

Тheorem 3 The solution of the equation (19) we can represent in the form 

       

       

(1) (1) (1)2
1 1 2

(2) (2) (2)2
2 1 2

, ... ...,

, ... ...

n
n

n
n

z t u t u t u t

z t u t u t u t

   

   

    

    
                                            (20)                                          

and this series will converge in the small parameter  

The proof of this theorem we will prove by the method of majorant. Let 

1 2sup { ( ), ( )}t z t z t   . By using of the lemma 3 we will estimate (19) then we have got 

next majorant equation 

2(1 )l       

The solution of this equation will expand to the analytical series on power small parameter   

2

1 2
... ...

n

n
        

and 
( ) ( ) ( , 1,2.,..)k

j ju t k j  .Theorem3 and Theorem 2 proved. 

The case of 3k   will consider analogously and true next 

Тheorem 4.The solution of the problem(8) and(10) we can  representative in the form

       0 1, , , ... , ...
k kk k knu t u t u t u t           .                                                    (21) 

Here  
       

 

1

3

1
( 4), ; , ' ,

2
ln , 0

0, 0,1,2,...

,
k mj

k

m m
k k km

j
j O u t O

j

m

u t      



 
  




 

 





 

that is ,  ,
kkmu t  is   the asymptotical sequence . Series (12) will convergent uniformly 

in the interval [ , )  . 

5. CONCLUSION  

Method of structurally matching will help what small parameter power  series will expand of the 

solution Lagerstrom’s  model  equation and one solution is not only asymptotical series but  and 

uniformly convergent for some small parameter.  
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