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1. INTRODUCTION 

General topology is important in many fields of applied sciences as well as in all branches of 

mathematics. The concept of generalized closed sets introduced by Levine[13] plays important 

role in general topology. This notion has been extensively studied in recent years by many 

topologists. Bhattacharyya and Lahiri [2] continued  the work of Levine and offered another 

notion analogous to Levine’s g-closed sets called semi-generalized closed set (briefly sg-closed) 

by replacing the closure operator in Levine’s g-closed set by semi-closure operator and by 

replacing its open super set by semi-open super set. Recently, Dontchev and Maki [9] gave 

another new generalization of Levin’s g-closed set by utilizing θ-closure operator called θ-g-

closed set. The concept of θ-g-closed set was applied to the digital line. In 2003, Caldas and Jafari 

defined θ-semigeneralized closed set using semi-θ-closure operator. 

In section three, we introduce a new form of generalized closed set called θ-semigeneralized pre 

closed set (briefly, θ-sgp-closed set) by utilizing pre-θ-closure operator. We investigate its relation 

to θ-g-closed sets, θ-sg-closed sets and other generalized closed sets. We have proved that the 

class of θ-sg-closed sets and the class of θ-sgp-closed sets are independent. 

2. PRELIMINARIES  

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces on which 

no separation axioms are assumed unless explicitly stated. If A is any subset of space X, then 

Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively. 

The following definitions are useful in the sequel. 

Definition 2.1: A subset A of space X is called 

(i) a semi-open set [12] if A ⊆ Cl(Int(A)). 

(ii) a semi-closed set [5] if Int(Cl(A)) ⊆ A. 

(iii) a pre-open set[15] if A ⊆ Int(Cl(A)). 

(iv) a pre-closed set[15] if Cl(Int(A)) ⊆ A. 

(v) an α-closed set[16] if Cl(Int(Cl(A))) ⊆ A. 

(vi) a regular open set[21](resp. a regular closed set[21]) if A = Int(Cl(A))(resp. A = Cl(Int(A))). 
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Definition 2.2: A subset A of a topological space X is called  

(i) a generalized-closed (briefly g-closed) set[13] if Cl(A) ⊆ U and U is open in X. 

(ii) a semi-generalized closed set (briefly sg-closed)[2] if sCl(A) ⊆ U and U is semi-open in X.                             

The complement of a sg-closed set is called a sg-open set.  

(iii) a semi-generalized pre closed set (briefly sgp-closed)[17] if pCl(A) ⊆ U whenever A ⊆ U and 

U is semi-open in X.  

(iv) a generalized preregular closed set(briefly gpr-closed)[11] if pCl(A) ⊆ U whenever A ⊆ U 

and U is regular open in X. 

(v) an α-generalized semi-closed set(briefly αgs-closed)[20] if αCl(A) ⊂ U whenever  A ⊂ U  and 

U is semi-open in X. 

(vi) a generalized preclosed set(briefly gp-closed)[14] if pCl(A) ⊆ U whenever A ⊆ U and U is 

open in X. 

(vii) a generalized semi-preclosed set(briefly gsp-closed)[8] if spCl(A) ⊆ U whenever A ⊆ U and 

U is open in X. 

(viii) θ-generalized closed set(briefly θ-g-closed)[9] if Clθ(A) ⊆ U whenever A ⊆ U and U is open 

in X. 

(ix) θ-generalized semi-closed set(briefly θ-gs-closed)[18] if sClθ(A) ⊂ U whenever A ⊂ U and U 

is open in X. 

(x) θ-semigeneralized closed set(briefly θ-sg-closed)[4] if sClθ(A) ⊂ U whenever A ⊂ U and U is 

semi-open in X. 

Definition 2.3: The semi-closure [5] of a subset A of X is the intersection of all semi-closed sets 

that contain A and is denoted by sCl(A). 

Definition 2.4: The pre-closure [6] of a subset A of X is the intersection of all pre-closed sets that 

contain A and is denoted by pCl(A).  

Definition 2.5: The θ-closure [22] of a set A is denoted by Clθ(A) and is defined by Clθ(A) = {x 

 X : Cl(U) ∩ A ≠ Ø,U ε τ, x ε U} and a set A is θ-closed if and only if  A = Clθ(A). 

Definition 2.6: A point x  X is called a semi-θ-cluster point of A [7] if sCl(U) ∩ A ≠ Ø, for 

each semi-open set U containing x. 

Definition 2.7: A point x  X is called a pre-θ-cluster point of A[19] if pCl(U) ∩ A ≠ Ø, for each 

pre-open set U containing x. 

Definition 2.8: The semi-θ-closure [7] denoted by sClθ(A), is the set of all semi-θ-cluster points 

of A. A subset A is called semi-θ-closed set [7] if A = sClθ(A). The complement of semi-θ-closed 

set is semi-θ-open set. 

Definition 2.9: The pre-θ-closure denoted by pClθ(A), is the set of all pre-θ-cluster points of A. A 

subset A is called pre-θ-closed set [19] if A = pClθ(A). The complement of pre-θ-closed set is pre-

θ-open set. 

Definition 2.10: The set {x  X ǀ sCl(U) ⊂ A for some U ε SO(X, x)} is called the semi-θ-

interior of A and is denoted by sIntθ(A). A subset A is called semi-θ-open[10] if A = sIntθ(A). 

Definition 2.11: A topological space X is a pre-θ-R0 space[1] if every pre-θ-open set contains 

pre-θ-closure of each of its singletons. 

Definition 2.12: Let A be subset of a topological space X. The pre-θ-kernal[1] of A ⊂ X, denoted 

by pKerθ(A), is defined to be the set ∩{O : O  PθO(X, τ) and A ⊂ O}.  
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Lemma 2.13[3]: For any subset A of a topological space X, pCl(A) ⊂ pClθ(A). 

3. θ- SEMIGENARALIZED PRE CLOSED SETS 

We introduce the following definition. 

Definition 3.1: A subset A of a topological space X is called θ-Semigeneralized pre closed set 

(briefly, θ-sgp-closed set) if pClθ(A) ⊂ U whenever A ⊂ U and U is semi-open in X. 

      The complement of θ-Semigeneralized pre closed set is called θ-Semigeneralized pre open set 

(briefly, θ-sgp-open). 

Remark 3.2: The concept of θ-sgp-closed sets and closed sets are independent of each other as 

seen from the following examples. 

Example 3.3: Let X = {a, b, c} and τ = {X, Ø, {a, b}}. Then the subset A = {a, c} is θ-sgp-closed 

set but it is not closed set in X. 

Example 3.4: Let X = {a, b, c} and τ = {X, Ø, {a}, {a, b}, {a, c}}. Then the subset A = {b, c} is 

closed set but it is not θ-sgp-closed set in X. 

Theorem 3.5: Every pre-θ-closed set is θ-sgp-closed set but not conversely. 

Proof: Let A ⊂ U be pre-θ-closed. Then A = pClθ(A). Let A ⊂ U and U is semi-open in X. It 

follows that pClθ(A) ⊂ U. This means that A is θ-sgp-closed set. 

Example 3.6: Let X = {a, b, c} and τ = {X, Ø, {a}, {b}, {a, b}, {a, c}}. Then the subset A = {b, 

c} is θ-sgp-closed set but it is not pre-θ-closed set in X. 

Theorem 3.7: Every θ-sgp-closed set is sgp-closed set but not converse. 

Proof: It is true that pCl(A) ⊂ pClθ(A) for every subset A of X. 

Example 3.8: Let X = {a, b, c} and τ = {X, Ø, {a}, {a, b}}. Set A = {b} and U = {a, b}. But 

pClθ(A) = X which is not a subset of U, where U is semi-open in X. Hence A = {b} is not θ-sgp-

closed set. But it is sgp-closed set.   

Theorem 3.9: Every θ-sgp-closed set is gp-closed set. 

Proof: Let A be an θ-sgp-closed set in a topological space X. Let U be an open set and so it is 

semi-open such that A ⊆ U. Then pCl(A) ⊆ U. Hence A is gp-closed set. 

  The converse of the above theorem need not be true as seen from the following example. 

Example 3.10: Let X = {a, b, c} and τ = {X, Ø, {a}, {c}, {a, c}}. Then a subset A = {a, b} is gp-

closed set but it is not θ-sgp-closed set. 

Theorem 3.11: Every θ-sgp-closed set is gsp-closed set. 

Proof: Let A be a θ-sgp-closed set in X. Let A ⊆ U, where U is open and so it is semi-open set in 

X. Then pClθ(A) ⊆ U. But spCl(A) ⊆ pCl(A) ⊆ pClθ(A). Therefore spCl(A) ⊆ U. Hence A is gsp-

closed set in X. 

 The converse of the above theorem need not be true as seen from the following example. 

Example 3.12: Let X = {a, b, c} and τ = {X, Ø, {a}}. Then a subset A = {a, c} is gsp-closed set 

but it is not θ-sgp-closed set. 

Remark 3.13: The concept of θ-sgp-closed sets and θ-gs-closed sets are independent of each 

other as seen from the following examples. 

Example 3.14: Let X = {a, b, c} and τ = {X, Ø, {a}, {c}, {a, c}}. Then the subset A = {a, b} is θ-

gs-closed set but it is not θ-sgp-closed set in X. 

Example 3.15: Let X = {a, b, c} and τ = {X, Ø, {b}, {b, c}, {a, c}}. Then the subset A = {c} is θ-

sgp-closed set but it is not θ-gs-closed set in X. 

Remark 3.16: The notion of θ-sgp-closed sets and α-closed sets are independent of each other as 

seen from the following examples. 
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Example 3.17: Let X = {a, b, c} and τ = {X, Ø, {a, b}}. Then the subset A = {a, c} is θ-sgp-

closed set but it is not α-closed set in X. 

Example 3.18: Let X = {a, b, c} and τ = {X, Ø, {a}, {a, b}, {a, c}}. Then the subset A = {b, c} is 

α-closed set but it is not θ-sgp-closed set in X. 

Remark 3.19: The concept of θ-sgp-closed sets and αgs-closed sets are independent of each other 

as seen from the following examples. 

Example 3.20: Let X = {a, b, c} and τ = {X, Ø, {b}, {b, c}, {a, c}}. Then a subset A = {c} is a θ-

sgp-closed set but it is not αgs-closed set. 

Example 3.21: Let X = {a, b, c} and τ = {X, Ø, {a}, {c}, {a, c}}. Then a subset A = {a, b} is 

αgs-closed set but it is not θ-sgp-closed set. 

Theorem 3.22: Every θ-g-closed set is θ-sgp-closed set. 

Proof: Let A be a θ-g-closed set in X. Let A ⊆ U, where U is open set in X. Then Clθ(A) ⊆ U. 

But pClθ(A) ⊆ Clθ(A). Therefore pClθ(A) ⊆ U. Hence A is θ-sgp-closed set in X. 

   The converse of the above theorem need not be true as seen from the following example. 

Example 3.23: Let X = {a, b, c} and τ = {X, Ø, {b}, {b, c}, {a, c}}. Then a subset A = {c} is θ-

sgp-closed set but it is not θ-g-closed set. 

Remark 3.24: The notion of θ-sgp-closed sets and θ-sg-closed sets are independent of each other 

as seen from the following examples. 

Example 3.25: Let X = {a, b, c} and τ = {X, Ø, {a}, {c}, {a, c}}. Then a subset A = {a, b} is θ-

sg-closed set but it is not θ-sgp-closed set. 

Example 3.26: Let X = {a, b, c} and τ = {X, Ø, {b}, {b, c}, {a, c}}. Then a subset A = {c} is θ-

sgp-closed set but it is not θ-sg-closed set. 

Theorem 3.27: Every θ-sgp-closed set is gpr-closed set. 

Proof: Let A be a θ-sgp-closed set in X. Let A ⊆ U, where U is regular-open and so it is semi-

open set in X. Then pClθ ⊆ U. Hence A is gpr-closed set in X. 

   The converse of the above theorem need not be true as seen from the following example. 

Example 3.28: Let X = {a, b, c} and τ = {X, Ø, {a}, {c}, {a, c}}. Then a subset A = {a, b} is a 

gpr-closed set but it is not θ-sgp-closed set.  

Remark 3.29: Union of θ-sgp-closed sets need not be a θ-sgp-closed set as seen from the 

following example. 

Example 3.30: Let X = {a, b, c} and τ = {X, Ø, {a}, {b}, {a, b}, {a, c}, {b, c}}. Then the subsets 

{a} and {b} are θ-sgp-closed sets but their union {a} ∪ {b} = {a, b} is not a θ-sgp-closed set in X. 

Remark 3.31: Intersection of θ-sgp-closed sets need not be a θ-sgp-closed set as seen from the 

following example. 

Example 3.32: Let X = {a, b, c} and τ = {X, Ø, {a}, {b}, {a, b} {a,c}}. Then the subsets {a, b} 

and {a, c} are are θ-sgp-closed sets but their intersection {a, b} ∩ {a, c} = {a} is not a θ-sgp-

closed set in X. 

Theorem 3.33: A set A ⊂ X is θ-sgp-open set if and only if F ⊂ pIntθ(A) whenever F is semi-

closed set in X and F ⊂ A. 

Proof: Necessity. Let A be θ-sgp-open set and F ⊂ A, where F is semi-closed set. It is obvious 

that Ac (complement of A) is contained in Fc. This implies that pClθ(A
c) ⊂ Fc. Hence pClθ(A

c) = 

(pIntθ(A))c ⊂ Fc, i.e. F ⊂ pIntθ(A). 

       Sufficiency. If F is a semi-closed set with F ⊂ pIntθ(A) whenever F ⊂ A, then it follows that 

Ac ⊂ Fc and (pIntθ(A))c ⊂ Fc i.e. pClθ(A
c) ⊂ Fc. Therefore Ac is θ-sgp-closed set and therefore A is 

θ-sgp-open set. 

Lemma 3.34: Let A be a θ-sgp-closed subset of X. Then, 
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    (i) pClθ(A)\A does not contain a nonempty semi-closed set. 

   (ii) pClθ(A)\A is θ-sgp-open set. 

Proof: (i). Let F be semi-closed set such that F ⊂ pClθ(A)\A. Since Fc is semi-open set and A ⊂ 

Fc, it follows that pClθ(A) ⊂ Fc, i.e. F ⊂ (pClθ(A))c. This implies that F⊂(pClθ(A))c∩pClθ(A) = Ø.  

(ii) If A is θ-sgp-closed set and F is a semi-closed set such that F ⊂ pClθ(A)\A, then by (i), F is 

empty and therefore F ⊂ pIntθ(pClθ(A)\A). By theorem 3.33, pClθ(A)\A is θ-sgp-open set. 

Lemma 3.35: For any subset A of a topological space X, pClθ(A) is pre θ-closed set. 

Lemma 3.36: If A is a θ-sgp-closed set of a topological space X such that A ⊂ B ⊂ pClθ(A) then 

B is also a  θ-sgp-closed set of X. 

Proof: Let O be a semi-open set of X such that B ⊂ O. Then A ⊂ O. Since A is θ-sgp-closed set, 

pClθ(A) ⊂ O. By using Lemma 3.35, pClθ(B) ⊂ pClθ(pClθ(A)) = pClθ(A) ⊂ O. Therefore B is also 

a θ-sgp-closed set of X. 

Lemma 3.37: Let X be a topological space and x ϵ X. The following two statements are 

equivalent: 

       (i) y  pKerθ({x}); 

       (ii) x  pClθ({y}).  

Proof: Let y  pKerθ({x}). It follows that there exists a semi θ-open set U containing x such that 

y  U. This means that x  pClθ({y}). The converse can be proved by the same taken. 

Lemma 3.38: The following statements are equivalent for any points x and y in a topological 

space X:  (i) pKerθ({x}) ≠ pKerθ({y});  

               (ii) pClθ({x}) ≠ pClθ({y}). 

Proof: (i)→(ii): Let pKerθ({x}) ≠ pKerθ({y}). Then there exists a point z in X such that z  

pKerθ({x}) and z  pKerθ({y}). By z  pKerθ({x}), it follows that {x} ∩ pClθ({z}) ≠ Ø. This 

implies x  pClθ({z}). By z  pKerθ({y}), we obtain {y} ∩ pClθ({z}) = Ø. Since x  pClθ({z}), 

pClθ({x}) ⊂ pClθ({z}) and {y} ∩ pClθ({x}) = Ø. Hence it follows that pClθ({x}) ≠ pClθ({y}). 

Now pKerθ({x}) ≠ pKerθ({y}) implies that pClθ({x}) ≠ pClθ({y}).  

(ii)→(i): Let pClθ({x}) ≠ pClθ({y}). Then there exists a point z in X such that z  pClθ({x}) and z 

 pClθ({y}). This means that there exists a pre-θ-open set containing z and therefore x but not y, 

i.e., y  pKerθ({x}). Hence pKerθ({x}) ≠ pKerθ({y}). 

Theorem 3.39: A topological space X is a pre-θ-R0 space if and only if for x and y in X, 

pClθ({x}) ≠ pClθ({y}) implies pClθ({x}) ∩ pClθ({y}) = Ø. 

Proof: Suppose that X is pre-θ-R0 and x, y  X such that pClθ({x}) ≠ pClθ({y}). Then, there exist 

z  pClθ({x}) such that z  pClθ({y}) (or z  pClθ({y}) such that z  pClθ({x})). There exists V 

 SO(X, τ) such that y  V and z  V; hence x  V. Therefore, we have x  pClθ({y}). Thus x  

X \ pClθ({y}), which implies pClθ({x}) ⊂ X \ pClθ({y}) and pClθ({x}) ∩ pClθ({y}) = Ø. The 

proof for otherwise is similar. 

    Sufficiency. Let V be pre-θ-open set and let x  V. We will show that pClθ({x}) ⊂ V. Let y  

V, i.e., y  X \ V. Then x ≠ y and x  pClθ({y}). This shows that pClθ({x}) ≠ pClθ({y}). By 

assumption, pClθ({x}) ∩ pClθ({y}) = Ø. Hence y  pClθ({x}). Therefore pClθ({x}) ⊂ V. 

Theorem 3.40: A topological space X is a pre-θ-R0 space if and only if for any points x and y in 

X, pKerθ({x}) ≠ pKerθ({y}) implies pKerθ({x}) ∩ pKerθ({y}) = Ø.  

Proof: Suppose that X is pre-θ-R0 space. Thus by Lemma 3.38, for any points x and y in X if 

pKerθ({x}) ≠ pKerθ({y}) then pClθ({x}) ≠ pClθ({y}). Now we prove that pKerθ({x}) ∩ 

pKerθ({y}) = Ø. Asuume that z  pKerθ({x}) ∩ pKerθ({y}).  By z  pKerθ({x}) and Lemma 3.37, 

it follows that x  pClθ({z}). Since x  pClθ({x}), by Theorem 3.39, pClθ({x}) = pClθ({z}). 
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Similarly, we have pClθ({y}) = pClθ({z}) = pClθ({x}). This is a contradiction. Therefore, we have 

pKerθ({x}) ∩ pKerθ({y}) = Ø.  

           Conversely, let X be a topological space such that for any points x and y in X, pKerθ({x}) 

≠ pKerθ({y})  implies pKerθ({x}) ∩ pKerθ({y}) = Ø. If pClθ({x}) ≠ pClθ({y}), then by Lemma 

3.38, pKerθ({x}) ≠ pKerθ({y}). Because z  pClθ({x}) implies that x  pKerθ({z}) and therefore 

pKerθ({x}) ∩ pKerθ({z}) ≠ Ø. By hypothesis, we therefore have pKerθ({x}) = pKerθ({z}). Then z 

 pClθ({x}) ∩ pClθ({y}) implies that pClθ({x}) = pClθ({z}) = pClθ({y}). This is a contradiction. 

Hence, pClθ({x}) ∩ pClθ({y}) = Ø and by Theorem 3.39, X is a pre-θ-R0 space.     

3.41 Remark:  The “Implication Diagram” about θ-sgp-closed set. 

 

Closed set                 α-closed set           αgs-closed set           θ-sg-closed set         gsp-closed set 

 

 

 θ-gs-closed set                                        θ-sgp-closed set                                         sgp-closed set     

 

 

θ-g-closed set                        pre-θ-closed set                 gpr-closed set                  gp-closed set 

where A B (resp. AB) represents A implies B but not conversely (resp.A and B are 

independent). 

4. CONCLUSION  

In the class of θ-sgp-closed sets defined using semi-open sets lies between the class of θ-g-closed 

sets and the class of sgp-closed set. The θ-sgp-closed set can be used to derive a new 

decomposition of continuity and new separation axioms. This concept can be extended to 

bitopological and fuzzy topological spaces. 
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