On θ-Semigeneralized Pre Closed Sets in Topological Spaces

Md. Hanif PAGE

Asst. Professor, Department of Mathematics, B.V.B. College of Engg. and Technology, Hubli-580031, Karnataka, India. *hanif01@yahoo.com*

V.T. Hosamath

Asst. Professor, Department of Mathematics, K.L.E. Institute of Technology, Hubli-580030, Karnataka, India. *vthosamath@gmail.com*

Abstract: This paper introduces new class of sets called θ -semigeneralized pre closed set in topological spaces. Basic properties of this new generalized closed sets are analysed.

2010 Mathematics Subject Classification: 57N505

Keywords: θ -sgp-closed, θ -sg-closed, θ -g-closed set, sg-closed set, sgp-closed set, semi-open set, pre- θ -closed set.

1. INTRODUCTION

General topology is important in many fields of applied sciences as well as in all branches of mathematics. The concept of generalized closed sets introduced by Levine[13] plays important role in general topology. This notion has been extensively studied in recent years by many topologists. Bhattacharyya and Lahiri [2] continued the work of Levine and offered another notion analogous to Levine's g-closed sets called semi-generalized closed set (briefly sg-closed) by replacing the closure operator in Levine's g-closed set by semi-closure operator and by replacing its open super set by semi-open super set. Recently, Dontchev and Maki [9] gave another new generalization of Levin's g-closed set by utilizing θ -closure operator called θ -g-closed set. The concept of θ -g-closed set was applied to the digital line. In 2003, Caldas and Jafari defined θ -semigeneralized closed set using semi- θ -closure operator.

In section three, we introduce a new form of generalized closed set called θ -semigeneralized pre closed set (briefly, θ -sgp-closed set) by utilizing pre- θ -closure operator. We investigate its relation to θ -g-closed sets, θ -sg-closed sets and other generalized closed sets. We have proved that the class of θ -sg-closed sets and the class of θ -sgp-closed sets are independent.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of space X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

The following definitions are useful in the sequel.

Definition 2.1: A subset A of space X is called (i) a semi-open set [12] if $A \subseteq Cl(Int(A))$.

- (ii) a semi-closed set [5] if $Int(Cl(A)) \subseteq A$.
- (iii) a pre-open set[15] if $A \subseteq Int(Cl(A))$.
- (iv) a pre-closed set[15] if $Cl(Int(A)) \subseteq A$.
- (v) an α -closed set[16] if Cl(Int(Cl(A))) \subseteq A.

(vi) a regular open set[21](resp. a regular closed set[21]) if A = Int(Cl(A))(resp. A = Cl(Int(A))).

Definition 2.2: A subset A of a topological space X is called

(i) a generalized-closed (briefly g-closed) set[13] if $Cl(A) \subseteq U$ and U is open in X.

(ii) a semi-generalized closed set (briefly sg-closed)[2] if $sCl(A) \subseteq U$ and U is semi-open in X. The complement of a sg-closed set is called a sg-open set.

(iii) a semi-generalized pre closed set (briefly sgp-closed)[17] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

(iv) a generalized preregular closed set(briefly gpr-closed)[11] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

(v) an α -generalized semi-closed set(briefly α gs-closed)[20] if α Cl(A) \subset U whenever A \subset U and U is semi-open in X.

(vi) a generalized preclosed set(briefly gp-closed)[14] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(vii) a generalized semi-preclosed set(briefly gsp-closed)[8] if $spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(viii) θ -generalized closed set(briefly θ -g-closed)[9] if $Cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ix) θ -generalized semi-closed set(briefly θ -gs-closed)[18] if sCl_{θ}(A) \subset U whenever A \subset U and U is open in X.

(x) θ -semigeneralized closed set(briefly θ -sg-closed)[4] if sCl_{θ}(A) \subset U whenever A \subset U and U is semi-open in X.

Definition 2.3: The semi-closure [5] of a subset A of X is the intersection of all semi-closed sets that contain A and is denoted by sCl(A).

Definition 2.4: The pre-closure [6] of a subset A of X is the intersection of all pre-closed sets that contain A and is denoted by pCl(A).

Definition 2.5: The θ -closure [22] of a set A is denoted by $Cl_{\theta}(A)$ and is defined by $Cl_{\theta}(A) = \{x \in X : Cl(U) \cap A \neq \emptyset, U \in \tau, x \in U\}$ and a set A is θ -closed if and only if $A = Cl_{\theta}(A)$.

Definition 2.6: A point $x \in X$ is called a semi- θ -cluster point of A [7] if sCl(U) $\cap A \neq \emptyset$, for each semi-open set U containing x.

Definition 2.7: A point $x \in X$ is called a pre- θ -cluster point of A[19] if pCl(U) $\cap A \neq \emptyset$, for each pre-open set U containing x.

Definition 2.8: The semi- θ -closure [7] denoted by $sCl_{\theta}(A)$, is the set of all semi- θ -cluster points of A. A subset A is called semi- θ -closed set [7] if $A = sCl_{\theta}(A)$. The complement of semi- θ -closed set is semi- θ -open set.

Definition 2.9: The pre- θ -closure denoted by $pCl_{\theta}(A)$, is the set of all pre- θ -cluster points of A. A subset A is called pre- θ -closed set [19] if $A = pCl_{\theta}(A)$. The complement of pre- θ -closed set is pre- θ -open set.

Definition 2.10: The set $\{x \in X \mid sCl(U) \subset A \text{ for some } U \in SO(X, x)\}$ is called the semi- θ -interior of A and is denoted by $sInt_{\theta}(A)$. A subset A is called semi- θ -open[10] if $A = sInt_{\theta}(A)$.

Definition 2.11: A topological space X is a pre- θ -R₀ space[1] if every pre- θ -open set contains pre- θ -closure of each of its singletons.

Definition 2.12: Let A be subset of a topological space X. The pre- θ -kernal[1] of A \subset X, denoted by pKer_{θ}(A), is defined to be the set \cap {O : O \in P_{θ}O(X, τ) and A \subset O}.

Lemma 2.13[3]: For any subset A of a topological space X, $pCl(A) \subset pCl_{\theta}(A)$.

3. θ- Semigenaralized Pre Closed Sets

We introduce the following definition.

Definition 3.1: A subset A of a topological space X is called θ -Semigeneralized pre closed set (briefly, θ -sgp-closed set) if pCl_{θ}(A) \subset U whenever A \subset U and U is semi-open in X.

The complement of θ -Semigeneralized pre closed set is called θ -Semigeneralized pre open set (briefly, θ -sgp-open).

Remark 3.2: The concept of θ -sgp-closed sets and closed sets are independent of each other as seen from the following examples.

Example 3.3: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a, b\}\}$. Then the subset $A = \{a, c\}$ is θ -sgp-closed set but it is not closed set in X.

Example 3.4: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Then the subset $A = \{b, c\}$ is closed set but it is not θ -sgp-closed set in X.

Theorem 3.5: Every pre- θ -closed set is θ -sgp-closed set but not conversely.

Proof: Let $A \subset U$ be pre- θ -closed. Then $A = pCl_{\theta}(A)$. Let $A \subset U$ and U is semi-open in X. It follows that $pCl_{\theta}(A) \subset U$. This means that A is θ -sgp-closed set.

Example 3.6: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then the subset $A = \{b, c\}$ is θ -sgp-closed set but it is not pre- θ -closed set in X.

Theorem 3.7: Every θ -sgp-closed set is sgp-closed set but not converse.

Proof: It is true that $pCl(A) \subset pCl_{\theta}(A)$ for every subset A of X.

Example 3.8: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. Set $A = \{b\}$ and $U = \{a, b\}$. But $pCl_{\theta}(A) = X$ which is not a subset of U, where U is semi-open in X. Hence $A = \{b\}$ is not θ -sgp-closed set. But it is sgp-closed set.

Theorem 3.9: Every θ -sgp-closed set is gp-closed set.

Proof: Let A be an θ -sgp-closed set in a topological space X. Let U be an open set and so it is semi-open such that A \subseteq U. Then pCl(A) \subseteq U. Hence A is gp-closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then a subset $A = \{a, b\}$ is gp-closed set but it is not θ -sgp-closed set.

Theorem 3.11: Every θ -sgp-closed set is gsp-closed set.

Proof: Let A be a θ -sgp-closed set in X. Let $A \subseteq U$, where U is open and so it is semi-open set in X. Then $pCl_{\theta}(A) \subseteq U$. But $spCl(A) \subseteq pCl(A) \subseteq pCl_{\theta}(A)$. Therefore $spCl(A) \subseteq U$. Hence A is gsp-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then a subset $A = \{a, c\}$ is gsp-closed set but it is not θ -sgp-closed set.

Remark 3.13: The concept of θ -sgp-closed sets and θ -gs-closed sets are independent of each other as seen from the following examples.

Example 3.14: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then the subset $A = \{a, b\}$ is θ -gs-closed set but it is not θ -sgp-closed set in X.

Example 3.15: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{b, c\}, \{a, c\}\}$. Then the subset $A = \{c\}$ is θ -sep-closed set but it is not θ -gs-closed set in X.

Remark 3.16: The notion of θ -sgp-closed sets and α -closed sets are independent of each other as seen from the following examples.

Md. Hanif PAGE & V.T. Hosamath

Example 3.17: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a, b\}\}$. Then the subset $A = \{a, c\}$ is θ -sgp-closed set but it is not α -closed set in X.

Example 3.18: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Then the subset $A = \{b, c\}$ is α -closed set but it is not θ -sgp-closed set in X.

Remark 3.19: The concept of θ -sgp-closed sets and α gs-closed sets are independent of each other as seen from the following examples.

Example 3.20: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{b, c\}, \{a, c\}\}$. Then a subset $A = \{c\}$ is a θ -sgp-closed set but it is not α gs-closed set.

Example 3.21: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then a subset $A = \{a, b\}$ is ags-closed set but it is not θ -sgp-closed set.

Theorem 3.22: Every θ -g-closed set is θ -sgp-closed set.

Proof: Let A be a θ -g-closed set in X. Let $A \subseteq U$, where U is open set in X. Then $Cl_{\theta}(A) \subseteq U$. But $pCl_{\theta}(A) \subseteq Cl_{\theta}(A)$. Therefore $pCl_{\theta}(A) \subseteq U$. Hence A is θ -sgp-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.23: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{b, c\}, \{a, c\}\}$. Then a subset $A = \{c\}$ is θ -sep-closed set but it is not θ -g-closed set.

Remark 3.24: The notion of θ -sgp-closed sets and θ -sg-closed sets are independent of each other as seen from the following examples.

Example 3.25: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then a subset $A = \{a, b\}$ is θ -sg-closed set but it is not θ -sgp-closed set.

Example 3.26: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{b, c\}, \{a, c\}\}$. Then a subset $A = \{c\}$ is θ -sep-closed set but it is not θ -sep-closed set.

Theorem 3.27: Every θ -sgp-closed set is gpr-closed set.

Proof: Let A be a θ -sgp-closed set in X. Let A \subseteq U, where U is regular-open and so it is semiopen set in X. Then pCl_{θ} \subseteq U. Hence A is gpr-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.28: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then a subset $A = \{a, b\}$ is a gpr-closed set but it is not θ -spp-closed set.

Remark 3.29: Union of θ -sgp-closed sets need not be a θ -sgp-closed set as seen from the following example.

Example 3.30: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Then the subsets $\{a\}$ and $\{b\}$ are θ -sgp-closed sets but their union $\{a\} \cup \{b\} = \{a, b\}$ is not a θ -sgp-closed set in X.

Remark 3.31: Intersection of θ -sgp-closed sets need not be a θ -sgp-closed set as seen from the following example.

Example 3.32: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then the subsets $\{a, b\}$ and $\{a, c\}$ are are θ -sgp-closed sets but their intersection $\{a, b\} \cap \{a, c\} = \{a\}$ is not a θ -sgp-closed set in X.

Theorem 3.33: A set $A \subset X$ is θ -sgp-open set if and only if $F \subset pInt_{\theta}(A)$ whenever F is semiclosed set in X and $F \subset A$.

Proof: Necessity. Let A be θ -sgp-open set and $F \subset A$, where F is semi-closed set. It is obvious that A^c (complement of A) is contained in F^c . This implies that $pCl_{\theta}(A^c) \subset F^c$. Hence $pCl_{\theta}(A^c) = (pInt_{\theta}(A))^c \subset F^c$, i.e. $F \subset pInt_{\theta}(A)$.

Sufficiency. If F is a semi-closed set with $F \subset pInt_{\theta}(A)$ whenever $F \subset A$, then it follows that $A^c \subset F^c$ and $(pInt_{\theta}(A))^c \subset F^c$ i.e. $pCl_{\theta}(A^c) \subset F^c$. Therefore A^c is θ -sgp-closed set and therefore A is θ -sgp-open set.

Lemma 3.34: Let A be a θ -sgp-closed subset of X. Then,

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

(i) $pCl_{\theta}(A)\setminus A$ does not contain a nonempty semi-closed set.

(ii) $pCl_{\theta}(A) \setminus A$ is θ -sgp-open set.

Proof: (i). Let F be semi-closed set such that $F \subset pCl_{\theta}(A)\setminus A$. Since F^c is semi-open set and $A \subset F^c$, it follows that $pCl_{\theta}(A) \subset F^c$, i.e. $F \subset (pCl_{\theta}(A))^c$. This implies that $F \subset (pCl_{\theta}(A))^c \cap pCl_{\theta}(A) = \emptyset$.

(ii) If A is θ -sgp-closed set and F is a semi-closed set such that $F \subset pCl_{\theta}(A)\setminus A$, then by (i), F is empty and therefore $F \subset pInt_{\theta}(pCl_{\theta}(A)\setminus A)$. By theorem 3.33, $pCl_{\theta}(A)\setminus A$ is θ -sgp-open set.

Lemma 3.35: For any subset A of a topological space X, $pCl_{\theta}(A)$ is pre θ -closed set.

Lemma 3.36: If A is a θ -sgp-closed set of a topological space X such that $A \subset B \subset pCl_{\theta}(A)$ then B is also a θ -sgp-closed set of X.

Proof: Let O be a semi-open set of X such that $B \subset O$. Then $A \subset O$. Since A is θ -sgp-closed set, $pCl_{\theta}(A) \subset O$. By using Lemma 3.35, $pCl_{\theta}(B) \subset pCl_{\theta}(pCl_{\theta}(A)) = pCl_{\theta}(A) \subset O$. Therefore B is also a θ -sgp-closed set of X.

Lemma 3.37: Let X be a topological space and $x \in X$. The following two statements are equivalent:

- (i) $y \in pKer_{\theta}(\{x\});$
- (ii) $x \in pCl_{\theta}(\{y\})$.

Proof: Let $y \notin pKer_{\theta}(\{x\})$. It follows that there exists a semi θ -open set U containing x such that $y \notin U$. This means that $x \notin pCl_{\theta}(\{y\})$. The converse can be proved by the same taken.

Lemma 3.38: The following statements are equivalent for any points x and y in a topological space X: (i) $pKer_{\theta}(\{x\}) \neq pKer_{\theta}(\{y\})$;

(ii) $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$.

Proof: (i) \rightarrow (ii): Let $pKer_{\theta}(\{x\}) \neq pKer_{\theta}(\{y\})$. Then there exists a point z in X such that $z \in pKer_{\theta}(\{x\})$ and $z \notin pKer_{\theta}(\{y\})$. By $z \in pKer_{\theta}(\{x\})$, it follows that $\{x\} \cap pCl_{\theta}(\{z\}) \neq \emptyset$. This implies $x \in pCl_{\theta}(\{z\})$. By $z \notin pKer_{\theta}(\{y\})$, we obtain $\{y\} \cap pCl_{\theta}(\{z\}) = \emptyset$. Since $x \in pCl_{\theta}(\{z\})$, $pCl_{\theta}(\{x\}) \subset pCl_{\theta}(\{z\})$ and $\{y\} \cap pCl_{\theta}(\{x\}) = \emptyset$. Hence it follows that $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$. Now $pKer_{\theta}(\{x\}) \neq pKer_{\theta}(\{y\})$ implies that $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$.

(ii) \rightarrow (i): Let $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$. Then there exists a point z in X such that $z \in pCl_{\theta}(\{x\})$ and $z \notin pCl_{\theta}(\{y\})$. This means that there exists a pre- θ -open set containing z and therefore x but not y, i.e., $y \notin pKer_{\theta}(\{x\})$. Hence $pKer_{\theta}(\{x\}) \neq pKer_{\theta}(\{y\})$.

Theorem 3.39: A topological space X is a pre- θ -R₀ space if and only if for x and y in X, $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$ implies $pCl_{\theta}(\{x\}) \cap pCl_{\theta}(\{y\}) = \emptyset$.

Proof: Suppose that X is pre- θ -R₀ and x, $y \in X$ such that $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$. Then, there exist $z \in pCl_{\theta}(\{x\})$ such that $z \notin pCl_{\theta}(\{y\})$ (or $z \in pCl_{\theta}(\{y\})$ such that $z \notin pCl_{\theta}(\{x\})$). There exists $V \in SO(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin pCl_{\theta}(\{y\})$. Thus $x \in X \setminus pCl_{\theta}(\{y\})$, which implies $pCl_{\theta}(\{x\}) \subset X \setminus pCl_{\theta}(\{y\})$ and $pCl_{\theta}(\{x\}) \cap pCl_{\theta}(\{y\}) = \emptyset$. The proof for otherwise is similar.

Sufficiency. Let V be pre- θ -open set and let $x \in V$. We will show that $pCl_{\theta}(\{x\}) \subset V$. Let $y \notin V$, i.e., $y \in X \setminus V$. Then $x \neq y$ and $x \notin pCl_{\theta}(\{y\})$. This shows that $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$. By assumption, $pCl_{\theta}(\{x\}) \cap pCl_{\theta}(\{y\}) = \emptyset$. Hence $y \notin pCl_{\theta}(\{x\})$. Therefore $pCl_{\theta}(\{x\}) \subset V$.

Theorem 3.40: A topological space X is a pre- θ -R₀ space if and only if for any points x and y in X, pKer_{θ}({x}) \neq pKer_{θ}({y}) implies pKer_{θ}({x}) \cap pKer_{θ}({y}) = Ø.

Proof: Suppose that X is pre- θ -R₀ space. Thus by Lemma 3.38, for any points x and y in X if $pKer_{\theta}(\{x\}) \neq pKer_{\theta}(\{y\})$ then $pCl_{\theta}(\{x\}) \neq pCl_{\theta}(\{y\})$. Now we prove that $pKer_{\theta}(\{x\}) \cap pKer_{\theta}(\{y\}) = \emptyset$. Assume that $z \in pKer_{\theta}(\{x\}) \cap pKer_{\theta}(\{y\})$. By $z \in pKer_{\theta}(\{x\})$ and Lemma 3.37, it follows that $x \in pCl_{\theta}(\{z\})$. Since $x \in pCl_{\theta}(\{x\})$, by Theorem 3.39, $pCl_{\theta}(\{z\}) = pCl_{\theta}(\{z\})$.

Md. Hanif PAGE & V.T. Hosamath

Similarly, we have $pCl_{\theta}(\{y\}) = pCl_{\theta}(\{z\}) = pCl_{\theta}(\{x\})$. This is a contradiction. Therefore, we have $pKer_{\theta}(\{x\}) \cap pKer_{\theta}(\{y\}) = \emptyset$.

Conversely, let X be a topological space such that for any points x and y in X, $pKer_{\theta}({x}) \neq pKer_{\theta}({y})$ implies $pKer_{\theta}({x}) \cap pKer_{\theta}({y}) = \emptyset$. If $pCl_{\theta}({x}) \neq pCl_{\theta}({y})$, then by Lemma 3.38, $pKer_{\theta}({x}) \neq pKer_{\theta}({y})$. Because $z \in pCl_{\theta}({x})$ implies that $x \in pKer_{\theta}({z})$ and therefore $pKer_{\theta}({x}) \cap pKer_{\theta}({z}) \neq \emptyset$. By hypothesis, we therefore have $pKer_{\theta}({x}) = pKer_{\theta}({z})$. Then $z \in pCl_{\theta}({x}) \cap pCl_{\theta}({y})$ implies that $pCl_{\theta}({x}) = pCl_{\theta}({y})$. This is a contradiction. Hence, $pCl_{\theta}({x}) \cap pCl_{\theta}({y}) = \emptyset$ and by Theorem 3.39, X is a $pre-\theta-R_0$ space.

3.41 Remark: The "Implication Diagram" about θ -sgp-closed set.

where A \rightarrow B (resp. A \leftarrow \rightarrow B) represents A implies B but not conversely (resp.A and B are independent).

4. CONCLUSION

In the class of θ -sgp-closed sets defined using semi-open sets lies between the class of θ -g-closed sets and the class of sgp-closed set. The θ -sgp-closed set can be used to derive a new decomposition of continuity and new separation axioms. This concept can be extended to bitopological and fuzzy topological spaces.

REFERENCES

- A. A. El-Atik, Some more results on pre-θ-open sets, Antarctica J. Math. 2(1)(2005), 111-121.
- [2]. P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29(3)(1987), 375-382.
- [3]. Miguel Caldas, Saeid jafari and Takashi Noiri, Characterizations of Pre-R₀ and Pre-R₁ topological spaces, Topological proceedings, 25(2000), 17-30.
- [4]. Miguel Caldas and Saeid Jafari, On θ-semigeneralized closed sets in topology, Kyungpook Math J. 43(2003), 135-148.
- [5]. S.G.Crossely and S.K.Hildbrand, On semi-closure, Texas J. Sci, 22(1971), 99-112.
- [6]. N.El-Deeb, I.A.Hasanein, A.S.Mashhour and T.Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R.S.Roumanie, 22(75)(1983), 311-315.
- [7]. G. Di Maio, T.Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18(1987), 226-233.
- [8]. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 16(1995), 35-48.
- [9]. J. Dontchev and H. Maki, On θ-generalized closed sets, Internet. J. Math. & Math. Sci., 22(1999), 239-249S.
- [10].Ganguly and C.K.Basu, Further characterizations of s-closed spaces, Indian J. Pure Appl. Math., 23(9)(1992), 635-641.Y.
- [11].Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.

On θ-Semigeneralized Pre Closed Sets in Topological Spaces

- [12].N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [13]. N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Paleomo 19(1970), 89-96.
- [14].H.Maki, J.Umehara and T.Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 33-42.
- [15]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak precontinuous mapping, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- [16]. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α-continuous and α-open mappings, Acta Math. Hung., 41(3-4)(1983), 213-218.
- [17].Govindappa Navalagi and Mahesh Bhat, sgp-closed sets in topological spaces, Jour. Appl. Math. Ana. Appl.. Vol.3 Nr.1(2007), 45-58.
- [18].Govindappa Navalagi and Md.Hanif Page, On θgs-Neighbourhoods, Indian Journal of Mathematics and Mathematical Sciences, Vol.4, No.1, (June2008), 21-31.
- [19].M.C.Pal and P.Bhattacharyya, Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc., 19 (1996), 63-75.
- [20]. Rajamani M, K.Viswanathan, On αgs-closed sets in topological spaces, Acta Ciencia Indica, XXXM(3)(2004), 21-25.
- [21].M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.
- [22]. N.V. Velicko, On H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.