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Abstract: In this paper we study the optimal control problem for multi-input bilinear systems. We adopt a 

method based on rewriting our system in a compartments form, and finding the optimal control which 

minimizes a given cost function by applying the Pontryagin’s maximum principle. Also, we present an 

iterative process to find a solution of the optimality system. 
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1. INTRODUCTION 

Bilinear systems are a special class of nonlinear systems, in which nonlinear terms are constructed 

by multiplication of control vector and state vector. Through nearly half a century, they have 

received great attention by researchers. The importance of such systems lies in the fact that many 

important processes, not only in engineering [1], but also in biology [2], socio-economics [3], and 

chemistry [4-5], can be modeled by bilinear systems. An overview of the available control 

strategies for bilinear systems can be found in [6]-[7]. Besides, optimal control is one of the most 

active subjects in the control theory. It has successful applications is many disciplines, economics, 

environment, management, engineering etc. As we know optimal control problem for the bilinear 

systems does not have an analytical solution as linear case so this reason motivates many 

researchers to try to obtain an approximate solution for this problem. Theory and application of 

optimal control have been widely used in different fields such as aircraft systems [8], robotic [9], 

biomedicine [10], etc. 

 

  

 (1) 

 

   with the initial conditions 𝑥(𝑡₀) = 𝑥₀. Where 𝑥 ∈ ℝⁿ, 𝑢 = (𝑢₁, 𝑢₂, . . . , 𝑢𝑝) ∈ ℝ𝑝 , 𝐴 and 𝐵 are 

𝑛 × 𝑛 matrices. We assumed that the process starts from 𝑡₀ and ends at fixed time 𝑡𝑓 ≻ 0. 

    The main objective of this paper is to develop an optimal control design algorithm for a multi-

input bilinear systems. We use a method developed by [11] and presented in [12] and [13]. This 

method is based on the maximum Pontrygin’s principle, and a numerical algorithm is proposed to 

find a solution of the optimality system. 
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    The system (1) can be rewritten in a compartments form. 

 

 

 (2) 

 

 

 

    with the initial 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑥𝑘(𝑡₀) = 𝑥𝑘
0, where 𝑥 = (𝑥₁, 𝑥₂, . . . , 𝑥𝑛), 𝑎𝑖𝑗 = (𝐴𝑖𝑗 )1≤𝑖,𝑗≤𝑛   and 

𝑏𝑖𝑗 = (𝐵𝑖𝑗 )1≤𝑖,𝑗≤𝑛 . 

    The 𝑥𝑖  is the 𝑖-th composents of the state system, which can represent, for example, in a 

chemotherapeutic model, the average number of cancer cells in the 𝑖-th compartment. Also, the 

𝑎𝑖𝑗  and 𝑏𝑖𝑗  can represent the exchanges between these compartments, and the control 𝑢 denoting 

the drug dosage administered. 

    The paper is organized as follows. Section 2 we present a compartments form for a multi-input 

bilinear system, and we analyze the optimal control problem. In section 3, we present a numerical 

algorithm to find a solution of the optimality system. In section 4, we present a study of a optimal 

control for a cancer chemotherapeutic model and the simulation corresponding results. Finally, 

the conclusion is summarized in Section 5. 

2. THE OPTIMAL CONTROL PROBLEM  

We consider the system of differential equations 

 

    

 (2) 

 

 

 

 with the initial conditions 𝑥𝑘 𝑡
0 = 𝑥𝑘

0 for 𝑘 ∈ {1,2, . . . , 𝑛}. Where 𝑥 = (𝑥₁, 𝑥₂, . . . , 𝑥𝑛)𝑇, 

𝑎𝑖𝑗 = (𝐴𝑖𝑗 )1≤𝑖,𝑗≤𝑛  , 𝑏𝑖𝑗 = (𝐵𝑖𝑗 )1≤𝑖,𝑗≤𝑛  and 𝑢𝑖 ∈ ℝ for 𝑖 ∈ {1,2, . . . , 𝑝}. 

    We define the objective functional as 

(3) 

 

where the parameters 𝑝𝑖 ≥ 0 and 𝑟𝑖 > 0 are the cost coefficients, they are selected to weigh the 

relative importance of 𝑥𝑖  and 𝑢𝑖 . And 𝑡₀ and 𝑡𝑓  are the initial and final times. The term, 

𝜑(𝑥₁(𝑡𝑓), . . . , 𝑥𝑛(𝑡𝑓)), represents a type of `salvage' term; for example, in a cancer model this 

term can represent a weighted average of the total number of cancer cells at the end of the therapy 

interval [𝑡₀ , 𝑡𝑓]. 

    Our goal is to minimize this objective functional. In other words, we seek the optimal control 

𝑢∗ = (𝑢1
∗ , 𝑢2

∗ , . . . , 𝑢𝑝
∗ ) 𝑇such that 
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  (4) 

where 𝑈 is the set of admissible controls defined by 

(5) 

    Returning to the general model (1), we also make the assumption that the control system is 

internally positive [14]: i.e. For any admissible control 𝑢, if 𝑥𝑖(0)≻0 for all 𝑖 = 1, . . . , 𝑛, then 

𝑥𝑖(t)≻0for all 𝑖 = 1, . . . , 𝑛, and all times 𝑡 > 0. 

    A simple sufficient condition for this assumption to hold (for example, see [14]) is that all the 

matrices 𝐴 +  𝑢𝑖(𝑡)𝐵𝑖
𝑖=𝑝
𝑖=1 , they have negative diagonal entries, but non-negative off-diagonal 

entries. 

    This condition is natural and will be satisfied for any compartmental model whose dynamics 

are given by balance equations where the diagonal entries correspond to the outflows from the 

𝑖 −th compartments and the off-diagonal entries represent the inflows from the 𝑖 −th into the 

𝑗 −th compartment, 𝑖 ≠ 𝑗. 

    Positive systems play an important role in systems and control theory because in many physical 

systems the state-variables represent quantities that can never attain negative values (e.g. 

population sizes or protein concentrations) [15,16,17]. 

    The solution of (1) is bounded. Indeed, the solution of (1) is 

(6) 

 

    where 𝑥 = (𝑥₁, 𝑥₂, . . . , 𝑥𝑛)𝑇and 𝑥₀ = 𝑥(𝑡₀). 

    So, ∀𝑡 ∈  𝑡0 , 𝑡𝑓 , 

 

   (7) 

 

 

 

  where 𝑐 = 𝑠𝑢𝑝(|𝑎|, |𝑏|), 𝐶₁ =  ‖𝑥₀‖ and 𝐶₂ =  ‖𝐴‖ + 𝑐  ‖𝐵𝑖‖.
𝑖=𝑝
𝑖=1  

    Using Gronwall inequality, see [18], we obtain ∀𝑡 ∈  𝑡0, 𝑡𝑓 , 

 

(8) 

 

Then, the boundedness of the solution (1). 

2.1 Existence of an Optimal Control. 

The existence of the optimal control can be obtained using a result by Fleming and Rishel in [19] 

(see Corollary 4.1). 
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Theorem.1: Consider the control problem with system (2). There exists an optimal control 

𝑢∗ ∈ 𝑈 such that 

𝐽 𝑢∗ = 𝑚𝑖𝑛 𝐽 𝑢 : 𝑢 ∈ 𝑈 , 
if the following conditions are met: 

(1) The set of controls and corresponding state variables is nonempty. 

(2) The control set U is convex and closed. 

(3) The right-hand side of the state system is bounded by a linear function in the state and control     

variables. 

(4) The integrand of the objective functional is convex on 𝑈. 

(5) There exist constants 𝑐₁, 𝑐₂ ≻ 0 and 𝛽 ≻ 1 such that the integrand L(𝑥₁, 𝑥₂, . . . , 𝑥𝑛 , 𝑢) of the   

objective functional satisfies 

𝐿(𝑥₁, 𝑥₂, . . . , 𝑥𝑛 , 𝑢) ≥ 𝑐₁ + 𝑐₂(|𝑢₁|²+. . . +|𝑢𝑝 |²)𝛽/2 .                            (9) 

    To prove that the set of controls and corresponding state variables is nonempty, we will use a 

simplified version of an existence result in Boyce and DiPrima ([20], Theorem 7.1.1): 

Theorem.2: Let 𝑥 𝑖 = 𝐹𝑖(𝑡; 𝑥₁, . . . , 𝑥𝑛) for 𝑖 ∈ {1, . . . , 𝑛} be a system of 𝑛 differential equations 

with initial conditions 𝑥𝑖(𝑡₀) = 𝑥𝑖
0 for 𝑖 ∈ {1, . . . , 𝑛}. If each of the functions 𝐹1 , . . . , 𝐹𝑛  and the 

partial derivatives 𝜕𝐹₁/𝜕𝑥₁, . . . , 𝜕𝐹₁/𝜕𝑥𝑛 , 𝜕𝐹₂/𝜕𝑥₁, . . . , 𝜕𝐹₂/𝜕𝑥𝑛 , . . . , 𝜕𝐹𝑛/𝜕𝑥₁, . . . , 𝜕𝐹𝑛/𝜕𝑥𝑛 , are 

continuous in ℝⁿ⁺¹ space, then there exists a unique solution 𝑥₁, . . . , 𝑥𝑛  that satisfies the initial 

conditions. 

Proof: (Theorem.1) We use Theorem.2 to prove that the set of controls and corresponding state 

variables is nonempty. Let 𝑥 1 = 𝐹1(𝑡; 𝑥₁, . . . , 𝑥𝑛) , . . . , 𝑥 𝑛 = 𝐹𝑛(𝑡; 𝑥₁, . . . , 𝑥𝑛) , where the 𝐹1 , . . . , 𝐹𝑛  

form the right hand side of the system of equations (2). Let 𝑢(𝑡) = 𝑐, for some constant, and since 

all parameters are constants, 𝐹1 , . . . , 𝐹𝑛  are linear. Thus, they are continuous everywhere. 

Additionally, the partial derivatives 𝜕𝐹₁/𝜕𝑥₁, . . . , 𝜕𝐹₁/𝜕𝑥𝑛 , 𝜕𝐹₂/𝜕𝑥₁, . . . , 𝜕𝐹₂/𝜕𝑥𝑛 , . . . , 𝜕𝐹𝑛/
𝜕𝑥₁, . . . , 𝜕𝐹𝑛/𝜕𝑥𝑛  are all constants, and so they are also continuous everywhere. 

Therefore, there exists a unique solution 𝑥₁, . . . , 𝑥𝑛  that satisfies the initial conditions. Therefore, 

the set of controls and corresponding state variables is nonempty, and condition 1 is satisfied. 

The control set is convex and closed by definition. Since the state system is bilinear in 𝑢, the right 

side of (2) satisfies condition 3, using the boundedness of the solution. The integrand in the 

objective functional (4) is convex on 𝑈. It rest to show that there exists constants 𝑐₁, 𝑐₂ ≻ 0 and 

𝛽 ≻ 1 such that the integrand 𝐿(𝑥₁, . . . , 𝑥𝑛 , 𝑢₁, . . . , 𝑢𝑝) of the objective functional satisfies 

 

The state variables being bounded, let c₁ =
1

𝑛
𝑖𝑛𝑓(𝑝₁𝑥₁, . . . , 𝑝𝑛𝑥𝑛), 𝑐₂ =

1

𝑝
𝑖𝑛𝑓(

𝑟₁

2
, . . . ,

𝑟𝑝

2
) and 

𝛽 = 2. Then it follows that :  𝑝𝑖𝑥𝑖
𝑛
𝑖=1 +  

𝑟𝑖

2
𝑢𝑖

2𝑛
𝑖=1 ≥ 𝑐₁ + 𝑐₂(|𝑢₁|²+. . . +|𝑢𝑝 |²). 

2.2 Characterization of the Optimal Control. 

    We are applying the Pontryagin's Maximum Principle [21]; the key idea is introducing the 

adjoint function to attach the system of differential equations to the objective functional, resulting 

in the formation of a function called the Hamiltonian. This principle converts the problem of 

finding the control to optimize the objective functional subject to the state differential equations 

with initial condition, to find the control to optimize Hamiltonian pointwise (with respect to the 

control). 

    Now we have the Hamiltonian in time 𝑡, 

(10) 

 

Where 𝜆𝑗  for 𝑗 = 0,1, . . . , 𝑛, is the adjoint function, where 𝑓𝑗  is the right hand side of the system of 

differential equations of 𝑗 − 𝑡ℎ equation for 𝑗 = 0,1, . . . , 𝑛. 
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Theorem.3: There exists an optimal control 𝑢∗ and corresponding solutions 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  that 

minimize  𝐽(𝑢) over 𝑈. Furthermore, there exists adjoint functions, 𝜆₁, 𝜆₂, . . . , 𝜆𝑛 , satisfying the 

equations 

(11) 

with the transversality conditions 

  (12) 

 

Furthermore, the optimal control 𝑢∗ is given by 

  (13) 

 

Proof: The adjoint equations and transversality conditions can be obtained by using Pontryagin's 

Maximum Principle such that 

 

 

(14) 

 

The optimal control 𝑢∗ can be solved from the optimality condition, 

  (15) 

that is 

(16) 

By the bounds in U of the controls, we obtain 𝑢∗ in the form of (13). 

3. Numerical algorithm. 

    In this section we present an iterative method for the numerical solution of the optimality 

system. The numerical algorithm presented below is a semi-implicit finite difference method. 

    We discretize the interval  𝑡0 , 𝑡𝑓  at the points 𝑡𝑖 = 𝑡0 + 𝑖ℎ, (𝑖 = 0,1, . . . , 𝑛), where ℎ is the time 

step such that 𝑡𝑛 = 𝑡𝑓 , [22]. Next, we define the state and adjoint variables 𝑥₁(𝑡), 𝑥₂(𝑡), . . . , 𝑥𝑛(𝑡), 

𝜆₁(𝑡), 𝜆₂(𝑡), . . . , 𝜆𝑛(𝑡) and the control 𝑢(𝑡) in terms of nodal points 𝑥1
𝑖 , … , 𝑥𝑛

𝑖 , 𝜆1
𝑖 , … , 𝜆𝑛

𝑖  and 𝑢𝑖 . 

Now a combination of forward and backward difference approximation is used as follows: 

    The method, developed by [11] and presented in [12] and [13], is then read as: 

 

 

     (17) 

 

 

By using a similar technique, we approximate the time derivative of the adjoint variables by their 

first-order backward-difference and we use the appropriated scheme as follows  
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 The algorithm describing the approximation method for obtaining the optimal control is the 

following 

Algorithm:  

 Step 1: 

Step 2: for 𝑖 = 1, . . . , 𝑛 − 1, do : 

 

 

 

 

 

 

 

 

(19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

end for 

x10  x1
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Step 3: for 𝑖 = 0, . . . , 𝑛, write 

 

end for. 

4. Application: Optimal controls for a cancer chemotherapeutic model. 

    In this section we formulate a general n-compartment model for cancer chemotherapy as an 

optimal control problem over a fixed therapy interval with dynamics described by a bilinear 

system [23]. 

    Let 𝑁 = (𝑁₁, . . . , 𝑁𝑛)𝑇  denote the state-vector with 𝑁𝑖  denoting the number of cancer cells in 

the 𝑖-th compartment, 𝑖 = 1, . . . , 𝑛. The control is a vector 𝑢 = (𝑢₁, . . . , 𝑢𝑚 )𝑇 with 𝑢𝑖  denoting the 

drug dosage administered. The control set 𝑈 is a compact m-dimensional interval of the form 

[𝛼₁, 𝛽₁] × ⋯ × [𝛼𝑚 , 𝛽𝑚 ] with each interval [𝛼𝑖 , 𝛽𝑖] ∈ [0, ∞). Let 𝐴 and 𝐵𝑖 , 𝑖 = 1, . . . , 𝑚, be 

constant 𝑛 × 𝑛 matrices, let 𝑟 = (𝑟₁, . . . , 𝑟𝑛) be a row-vector of positive numbers and let 𝑠 =
(𝑠₁, . . . , 𝑠𝑚 ) be a row-vector of non-negative numbers. The vectors r and s represent subjective 

weights in the objective. We then consider the following optimal control problem: 

    Minimize the objective 

(20)    

 Subject to the dynamic 

(21) 

     

where the parameters 𝑝𝑖 ≥ 0 and 𝑟𝑖 > 0 are the cost coefficients, they are selected to weigh the 

relative importance of 𝑁𝑖  and 𝑢𝑖 . and 𝑡₀ and 𝑡𝑓  are the initial and final times. The term 

𝜑(𝑁₁(𝑡𝑓), . . . , 𝑁𝑛(𝑡𝑓)) represents a weighted average of the total number of cancer cells at the end 

of an assumed fixed therapy interval  𝑡0 , 𝑡𝑓 . 

    In other words, we seek the optimal control 𝑢∗ such that 

(22) 

    where 𝑈 is the set of admissible controls defined by 

 

    We also make the assumption that the control system is internally positive [14]: i.e. For any 

admissible control 𝑢, if 𝑁𝑖(0) ≻ 0 for all 𝑖 = 1, . . . , 𝑛, then 𝑁𝑖(𝑡) > 0 for all 𝑖 = 1, . . . , 𝑛, and all 

times 𝑡 > 0. 

    Before introducing a 4-compartment model for cancer chemotherapy, we give a brief biological 

background on the cell cycle and chemotherapy agents[23]. Each cell passes through a sequence 

of phases from cell birth to cell division. After an initial growth phase 𝐺₁, the cell enters a phase 

𝑆 where DNA synthesis occurs. Following a second growth phase 𝐺₂, the cell prepares for mitosis 

or phase 𝑀 that leads to cell division. Each of the two daughter cells can either reenter phase 𝐺₁ 
or for some time may simply lie dormant in a separate phase 𝐺₀ until reentering 𝐺₁, thus starting 

the entire process all over again. Multi-compartment models combine phases of the cell cycle into 

clusters [24], with the purpose of effectively modeling the different types of chemotherapeutic 

agents used: cytotoxic (killing), cytostatic (blocking) and recruiting agents. 

    The dynamics of this cell cycle and the chemotherapy agents may be represented by the 

following compartmental model. 

x1
ti  x1

i , x2
ti  x2

i , . . . , xn
ti  xn

i , uti  u i.
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Figure 1: 4-compartment model. 

    Where the 𝑎𝑖  are positive coefficients related to the mean transit times of cells through the 𝑖-th 

compartment. The total number of cancer cells at time 𝑡 in the phases of the cell cycle 𝐺₀, 𝐺₁, 𝑆 

and 𝐺₂/𝑀, is given by 𝑁₁, 𝑁₂, 𝑁₃ and 𝑁₄, respectively. The killing agent 𝑢 act in the 𝐺₂/𝑀 phase 

which makes sense from a biological standpoint for a couple of reasons[23]. First, in mitosis 𝑀 

the cell becomes very thin and porous. Hence, the cell is more vulnerable to an attack while there 

will be a minimal effect on the normal cells. Second, chemotherapy during mitosis will prevent 

the creation of daughter cells. It is assumed that the dose rate stands in direct relation to the 

fraction of cells which are being killed in the 𝐺₂/𝑀 phase. Therefore only the fraction 1 − 𝑢 of 

the outflow of cells from the last compartment, −𝑎₄𝑁₄, undergoes cell division and reenters the 

first and second compartment. As a result the flow of cancer cells from the fourth into the first 

and the second compartment, 2(𝑎₄⁰ + 𝑎₄¹)𝑁₂, is reduced to (1 − 𝑢)2(𝑎₄⁰ + 𝑎₄¹)𝑁₂. However, 

all cells leave compartment 𝐺₂/𝑀. The blocking agent v is applied to slow the transit times of 

cancer cells during the synthesis phase S. As a result the flow of cancer cells from the third into 

the fourth compartment, 𝑎₂𝑁₂, is reduced by a factor 1 − 𝑣 to (1 − 𝑣)𝑎₂𝑁₂. The recruiting agent 

w is applied to reduce the average sejour time in the quiescent phase. As a result the average 

transit time through the compartment 𝐺₀ is reduced resulting in the outflow being increased by a 

factor 1 + 𝑤. The chemotherapy agents can vary between  (no chemotherapy) and  (maximal 

chemotherapy). (Note: Maximal chemotherapy is essentially a sub-lethal dose, or the maximum 

that can be given that will not kill the patient). 

    This model yields the mathematical system with controls of differential equations 

 

     (23) 

 

Our goal is to reduce the number of cancer cells in phases 𝐺₀, 𝑆 and 𝐺₂/𝑀 of cell cycle and 

maximize the number of cancer cells in synthesis phase 𝑆 by slowing the transit times of cancer 

cells during this phase 𝑆. And minimize the cost of chemotherapy. Mathematically, the problem is 

to minimize the objective functional 

(24) 

     

Subject to (23). 

    Using the algorithm proposed in section (3), we have the simulations results presented in the 

graph below. These graphs, allow us to compare changes in the cancer cell population before and 

after the introduction of the controls. The part of data for this model are taken from [25], like 

𝑎₁ = 0.197, 𝑎₂ = 0.395 and 𝑎₃ = 0.107, 𝑎4
0 + 𝑎4

1 = 0.107. But the initial conditions 𝑁₁ = 𝑁₃ =
𝑁₄ = 1000 and 𝑁₂ = 9000 and the parameter 𝑎4

0 = 0.2 and 𝑎4
1 = 0.3 are arbitrary academic 

values.  

4.1 The numerical simulations. 

    Figures 2 and 5 show that before chemotherapy, in 𝐺₀ and 𝐺₂/𝑀 phases, the number of cells 

increase rapidly. Whereas, we notice that after the chemotherapy by using the killing agent and 

recruiting agent, the number of cells decreases greatly in these phases. Also, figure 3 shows the 
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effect of the control in decreasing more rapidly the number of cells during the chemotherapy 

program. In figure 4, we can observe that the blocking agent can, with success, slowing the transit 

times of cancer cells during this phase 𝑆, so, increasing the number of cells in this phase. 

 

Figure 2: The number of cells cancer with 

 and without control in G₀ phase. 

 

Figure 3: The number of cells cancer with  

and without control in G₁ phase. 

 

Figure 4: The number of cells cancer with 

 and without control in S phase. 

 

Figure 5: The number of cells cancer with 

 and without control in G₂/M phase. 

 

5. Conclusion 

    In this paper, we have presented a method for the optimal control problem of a multi-input 

bilinear system. This method based on the Pontryagin's maximum principle and a numerical 

algorithm to solve the optimality system. An example of cancer chemotherapy has been proposed 

to clarify the method. 
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