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Abstract: In this work, we apply He’s variotional iteration method for obtaining analytic solutions to non-
linear Black-Scholes equation with boundary conditions for European option pricing problem. The 
analytical solution of the equation is calculated in the form a convergent power series with easily 
computable components. The powerful VIM method is capable of handling both linear and non-linear 
equations in direct manner. And, three approximate numerical methods of the non linear Black-Scholes 
equation with European call option are defined using finite differences, finite difference equations with 
alternative derivation, and Euler method of finite difference equations with alternative derivation. The 
results obtained expilicit finite difference method and finite difference method with alternative derivation 
and  Euler method of finite difference method with alternative derivation and the results gave a good 
agreement with the previous methods [4, 5, 6, 10]. 
Keywords: He’s Variational iteration method, Black-Scoles equation, European call option,Free 
boundary problem, Finite difference, Euler method.

 
1. INTRODUCTION 
Finance is one of the most rapidly changing and fastest growing areas in the corporate business 
world. Because of this rapid chance, modern financial instruments have become extremely 
complex. As stock prices all over the world dramatically rise and fall, investors are continually in 
search for financial instruments to reduce the variability of their portfolio values. Consequently 
the volatility in the market receives much interest from market participants and researchers.   

 New mathematical models are essential to implement and rice these new financial instruments. 
The world of corporate finance once managed by business student is now controlled by 
mathematicians and computer scientists. 

Financial securities have become essential tools for corporations and investors over past few 
decades. Option pricing theory has made a great leap forward since the development of the Black- 
Scholes option pricing model by Fisher Black and Myron Scholes in [1] and previously by Robert 
Merton in [2].  

Recently, many scientists have paid more attention on new methods for solving option valuation. 
Caurtadon [3] and Wilmott et. Al. [4] used finite difference methods for option valuation. Barone-
Adesi [5], Barone-Adesi and Elliot [6], Geske and Johnson [7], McMillan [8], Barone-Adesi and 
Whaley [9], Gülkaç [10] developed an accurate analytical approximation method. Many authors 
have applied several different methods to various applications [11-20]. 

In this paper, we will use He’s variational iteration method (VIM), proposed by He [21-28] is one 
of the methods which has received much attention. It has been shown by many authors to be a 
powerful mathematical tool for solving various kinds of functional equation [29-35]. And, three 
approximate numerical solution of the Black-Scholes equation are defined. In the present 
methods, first, an approximate numerical solution of Black-Scholes equation is defined using 
expilicit finite difference equation, and the matrix method of analysis of the stability of the 
method  is also investigated. Second, an approximate numerical solution of the Black-Scholes 
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equation is defined using finite difference equations with alternative derivation and convergence 
of the method is also investigated. Third, an approximate numerical solution of the problem is 
defined using Euler Method for finite difference equations with alternative derivation. 

2. BLACK-SCHOLES EQUATIONS 
The Black-Scholes model is one of the most important concepts in modern financial theory. It was 
developed in 1973 by Fischer Black and Myron Scholes [1] and Robert C. Merton [2] and is still 
widely used today, and regarded as one of the best ways of determining fair prices of options. 

In the finance, the style or family of an option is a general term denoting the class into which the 
option falls, usually defined by the dates on which the option may be exercised. The vast majority 
of options are either European or American options. 

A European option may be exercised only at the expiration date of the option, i.e. at a single pre-
defined point in time. 

An American option on the other hand may be exercised at any time before the expiration date. 

For both, the pay off-when it occurs is via: 

Max[(S-K),0], for a call option. 

Max[(K-S),0], for a put option where K is strike price and S is spot price of the underlying asset. 

Famous linear Black- Scholes equation, 
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Where S and , provides both an option pricing formula for a European option 
and a hedging portfolio that replicates the contingent claim assuming that [10] 

• σ, the volatility of the underlying asset; 

• K, the exercise (strike) price; 

• T, the expiry; 

• r, the risk-free interest rate. 

It is easy to imagine that the qualificatory suppositions mentioned in the linear Black-Scholes 
equation are never fulfilled in reality. Due to transaction costs, large investor preferences and 
incomplete markets they are likely to become unrealistic and the classical model results in 
strongly nonlinear. 

In this paper, we will be interested in non-linear Black-Scholes equation for European options 
with a constant trend σ and no constant modified volatility function; 

 . 

According to these circumstances (1) equation becomes the following non-linear Black-Scholes 
equation with the terminal and boundary conditions: 

rVrSVVSVVStV SSSssst −++= 22 ),,,(~
2
10 σ

SdWSdt 2

                                                                        (5) 

~σσ += 0>S ),0( T  ,  ,      tWhere dS ∈                                                                  (6) 
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In order to able to solve equation (5) with terminal and boundary conditions (7, 8, 9), we perform 
the following variable transformation [36, 4]: 
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Substituting these derivatives into equation (5) leads to  
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~σ  depends on the volatility model, Rx∈  and 
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Now ),( τxu solves (16) on the transformed domain Rx , T~∈ 0 ≤≤ τ subject to the following 
 

))0,(xu

initial and boundary conditions resulting from (17, 18, 19). 
+−−= x1( e   for Rx∈                                                     17) 

,(

                                               (
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xDexu −−−≈ ττ 1),( ∞→x                                                                                                  (19) 

ETHODS 
t ation Method (VIM) 

3. M
3.1 He’s Varia ional Iter

Consider the differential equation 

),(),(),( txgtxNutxLu =+                                                                                                       (20) 

L and N are respectively line
In [21, 28], He proposed the variational iteration method where a correction functional for 

ar and nonlinear operators, and g(x, t) a known analytical function. 

equation (20) can be written as 
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Where λ is a general Lagrange multiplier [37] which can be identified optimally via variation 
theory, and u n

~  is considered as a restricted variation, i.e. 0~ =u nδ . In this method, we first 
determine the Lagrange multiplier λ that will be identified optimally via integration by parts. The 
successive approximations , , of the solution will be readily obtained upon using the 
determined Lagrange multiplier and using the initial approximation u . Consequently, the 
solution is given by  

un 1+ 0≥n u
0

),()( lim txx uu n
n ∞→

= .                                                                                                                  (22) 

3.2 The Black-Scholes Equation with VIM 

To clarify the basic ideas of He’s variational iteration method, we consider equation (16) with the 
initial and boundary conditions (17, 18, 19). 

According to variational iteration method (VIM), we derive a correct functional as follows: 
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this yields the following stationary conditions: 
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Substituting this value into Eq. (23) results the iterant formula: 
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We obtain the following successive approximations: 

txu ),(0                                                                                                                          (29) 
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This gives the exact solution, 
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Obtained upon using the Taylor expansion of e −  

4. APPROXIMATE NUMERICAL METHODS 

4.1 First Method of Solution 

Using the usual forward and central difference approximation for the time and spatial derivatives 
in equation (16) takes the following form: 
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4.1.1 Stability of the First Method 

To investigate the stability analysis of equation (36) it is convenient to use matrix analysis method 
[38]. Equation (36) can be written the following form: 
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r  

μ of . Ais of order (N-1). The eigenvalue 

Brauer’s Theorem: Let  be the sum of the module of the terms along the sth row excluding the 

diagonal element . Then every eigenvalue of 
sP

ssa A  lies inside or on the boundary of at least one of 

the circles sssss Paa =−μ  ,  [38]. 

The finite difference equations will be stable when the module of every eigenvalue of  A does 
not exceed one, that is when  
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Every positive D, and every positive F=1,2,… for r>0 1≤μ , therefore the equations are 
unconditionally stable as 1≤μ  for all values of D, F and r. 

4.2 Second Method of Solution 

Consider the equation (16) where u satisfies the initial condition and 
has known boundary values at 

Xxxgxu ≤≤= 0 ),()0,(
0, and 0 >= τXx . If the x derivetive at (x, τ ) is replaced by 
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2 hOhxuxuhxu +++−− τττ } and x considered as a constant eqn. (16) can 

be written as the ordinary differential equation [38] 
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Where V and V are known boundary values. These can be written in matrix form as 
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the solution of the ordinary scalar differential equation  
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if all boundary values are zero, (see eqn. (8)), 

τ VkAkV =+ τ .                                                                                                       (49) 

The boundary values can always be eliminated if we are concerned more, say, with stability than 
with a particular numerical solution.  

4.2.1 Stability of Second Method 

To investigate the stability analysis of equation (43) it is convenient to use matrix analysis method 
[38]. 

The eigenvalue μ of . By Gerschgorin’s theorem the modulus of largest eigenvalues cannot 
exceed the largest sum of moduli of term along any row or column of A [38]; hence, 
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proving that this method converges for all positive F, D, h and k values. 

4.3 Third Method of Solution 

Equation (49) can be written as Euler method, if all boundary values are zero, 
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This gives the iterative solution, 
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4.3.1 Stability of Third Method 

To investigate the stability analysis of equation (52) it is convenient to use matrix analysis method 
[38]. 
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max h
≤−−−+−++≤ DF
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Proving that this iteration converges for all positive values of F, D, h and k. 

5. CONCLUSION 
In this paper, He’s variational iteration method has been applied successfully for solving non-
linear Black-Scholes equation with European call option. He’s variational iteration method 
successfully worked to give exact solution to this problem. Also, this method provides the 
solution in a rapidly convergent form. He’s variational iteration method gives several successive 
approximations through using the iteration of the correction functional. In this method, there is no 
specific need to handle non-linear terms. He’s variational iteration method provides an efficient 
method for handling this nonlinear behavior. Figure1, Figure 2, Figure 3,and Figure 4 illustrates 
call option values of non linear Black-Scholes equation with variational iteration method. Figure 5 
illustrates call option values of non linear Black-Scholes equation, finite difference with 
alternative derivation. Figure 6 illustrates call option values of non-linear Black-Scholes 
Equation, with expilicit finite difference and Figure 7 illustrates call option values of non-linear 
Black-Scholes Equation, with Euler method.  

The second method is approximate numerical solution of the nonlinear Black-Scholes equation 
with European call option defined using explicit finite difference method and analysis of the 
stability of the second method is also investigated and explicit finite difference equations were 
found to be unconditionally stable for all F, D, and r>0. 

The third method is defined by alternative derivatives. Computing the procedure of this method is 
very effective and analysis of the stability of this iterative method is also investigated and iterative 
method was found to stable for all positive values of F, D, h and k. 

The fourth method is defined by Euler Method for finite difference method with alternative 
derivatives. Computing the procedure of this iterative method is also investigated and iterative 
method was found to stable for all positive values of F, D, h and k. 

All of these methods have several advantages. First, they can evaluate option positions with the 
same maturity for essentially all possible asset prices simultaneously. Second, they methods are 
believed to be adaptive to other options value problem. And, third, they solve the optimum 
exercise boundary together with option prices without extra energy. 
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Figure1. Call option values of non-linear Black-Scholes Equation, with variotional iteration method, F=8, 
D=0,005. 

 
Figure2. Call option values of non-linear Black-Scholes Equation, with variotional iteration method, F=1, 
D=0.005. 
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Figure 3.Call option values of non-linear Black-Scholes Equation, with variotional iteration method, F=1, 
D=0.025. 

 
Figure4.Call option values of non-linear Black-Scholes Equation, with variotional iteration method, F=10, 
D=0.025. 
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Figure5. Call option values of non-linear Black-Scholes Equation, finite difference with alternative 
derivation, F=1, D=0.025. 

 
Figure6. Call option values of non-linear Black-Scholes Equation, with expilicit finite difference, F=1, 
D=0.005. 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                Page 77 



Com
Equa

parative Study Analytic and Numerical Methods for Solving Non-Linear Black-Scholes 
tion with European Call Option 

 

 
Figure7. Call option values of non-linear Black-Scholes Equation, with Euler method, F=1, D=0.005. 
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