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Abstract: The paper explicates to derive a series solution in a special case of ecological Ammensalism. In this 
model the harvested Enemy species is considered. Unlimited resources are given to Ammensal species. This 

model is formed by a couple of first order nonlinear differential equations. The series solution is obtained by 

utilizing homotopy analysis. In addition to this numerical solutions analyze various possibilities of interactions 

between Ammensal and Enemy species on the  
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1. INTRODUCTION 

Homotopy Analysis method mainly aims to supply a convergent series solution for nonlinear 

differential equations.The special features of HAM are flexibility on choice of base function and 
initial guess of solutions.It has been employed in many fields of science and technology. Homotopy 

analysis method involves Taylor’s series which helps to represent the functions as a power series. In 

the concept of homotopy,it helps to provide a connection between different systems. HAM was 
developed by Liao[4-7 ].HAM consists of Euler transforms which a can provide convergent series 

solution.Later few mathematicians like Liao. Abhashandy [1], Hilton,P.J [2], Liao Shijun [3] 

discussed the applications of HAM for enhancing computational efficiency to derive multiple 
solutions of nonlinear problems. HAM is defined to be independent of small and large physical 

parameters.  

HAM method is atmost valid procedure for getting a guaranteed convergence of solution series. It has 

a large freedom to consider any type of equations which divides into many possible linear sub 
problems. 

2. BASIC IDEA OF HOMOTOPY ANALYSIS METHOD 

Step (1): Let us consider nonlinear differential equation: 

 0,   A u f r r                       (I) 

With the the boundary condition 

 , 0,      
u

B u r
n

         

where A is a general differential operator, B a boundary operator, f r  is a known analytic function, 

is the boundary of the domain and 
n

denotes differentiation along the normal drawn outwards 

from . 
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Step (2): In general the operator A , is divided into two parts: a linear part L and a nonlinear part N. 

Therefore above differential equation(I) is expressed in the form of  

0L u N u f r
                                                               (II) 

Step (3):
 

With the help of homotopy Analysis, one can constitute a homotopy , : 0,1v r p which 

satisfies  

0, 1 0,  0,1 ,H v p p L v L u p A v f r p r
                                     (III) 

It is nothing but
  

0 0, 0H v p L v L u pL u p N v f r
      

                                     (IV) 

where 0,1p is named as an embedding parameter ,and 
0u is an initial approximation of 

equation(1),which satisfies the boundary conditions.  

Step (4): Then equations (III), (IV) follow that  

0,0 0H v L v L u           

and ,1 0H v A v f r
 

Thus the changing process of P from zero to unity is just that of ,v r p from 
0u r to u r . 

Step (5): According to the HPM, we can first use the imbedding parameter p as a ‘small parameter’ 

and assume that the solutions of the equations (III) and (IV) can be written as a power series in p : 

 
2 3 4

0 1 2 3 4v=v +pv +p v +p v +p v +----------       

The approximate solution of equation (I) can be obtained as  

 
0 1 2 3 4

1p
u Lt v v v v v v  

3. NOTATIONS ADOPTED 

N1 (t) : The population rate of the species S1 at time t 

N2 (t) :The population rate of the species S2 at time t 

ai  : The natural growth rate of Si, i = 1, 2. 

aii  : The rate of decrease of Si; due to its own insufficient resources ,i=1,2. 

a12 :The inhibition coefficient of S1 due to S2 i.e The Ammensal coefficient. 

H2(t) :The replenishment or renewal of S2 per unit time 

h2           :a22 H2 is rate of harvest of the enemy. 

The state variables N1 and N2 as well as the model parameters a1, a2, a11, a22, K1, K2, , h1, h2 are 

assumed to be non-negative constants. 

4. THE BASIC MODEL EQUATIONS 

= a1N1-a12N1N2                                                                              (1) 

 = a2N2-a22N2
2
-a22H2   With N1 (0) = c1, N2 (0) = c2                                     (2) 

with the conditions 2,1,0)0( 0 iNN ii ;  

A homotopy system of (1) & (2) can be constructed as 

v1
1 
– N1, 0

1 
+ p (N1,0

1 
– a1 v1 + a12v1v2)  =0                                                                         (3) 

v2 
1 
– N2,0

1
 +P (N2,0

1 
– a2 N2 + a22 N2

2
 +a22H2 ) = 0                                                         (4) 
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the initial approximations are assumed as  

v1,0 (t) = N1,0(t) = v1(0) = c1                     (5) 

v 2,0 (t) = N2,0(t) = v2(0) = c2                    (6)    

and  v1 (t) = v1,0 (t) + pv1,1(t) + p
2
v1,2(t) + p

3
v1,3(t) + p

4
v1,4(t) + …..                         (7)  

v2 (t) = v2,0 (t) + pv2,1(t) + p
2
v2,2(t) + p

3
v2,3(t) + p

4
v2,4(t) + …..                                     (8)        

here vi, j (i=1,2, j= 1,2,3,…) which are to be  determined by substituting (5),(6),(7),(8) in (3) & (4), 

After doing this, we obtain 

v1,0
1
(t) + pv1,1

1
(t) + p

2
v1,2

1
(t) + p

3
v1,3

1
(t) + p

4
v1,4

1
(t) + ….. - N1,0

1
(t) 

+ p[N1,0
1
 – a1(v1,0(t) + pv1,1(t) + p

2
v1,2(t) + p

3
v1,3(t) + p

4
v1,4(t) + …..) + a12(v1,0(t) + pv1,1(t) +p

2
v1,2(t) 

+p
3
v1,3(t) + p

4
v1,4(t) + …..) (v2,0(t) + pv2,1(t) + p

2
v2,2(t) + p

3
v2,3(t) + p

4
v2,4(t) + …..)] = 0                     (9)        

 v2,0
1
(t) + pv2,1

1
(t) + p

2
v2,2

1
(t) + p

3
v2,3

1
(t) + p

4
v2,4

1
(t) + ….. – N2,0

1
(t)  

+ p[N2,0
1
(t) – a2(v2,0(t) + pv2,1(t) + p

2
v2,2(t) + p

3
v2,3(t) + p

4
v2,4(t) + …..) +a22(v2,0(t) + pv2,1(t) +p

2
v2,2(t) + 

p
3
v2,3(t) + p

4
v2,4(t) + …..) (v2,0(t) + pv2,1(t) + p

2
v2,2(t) + p

3
v2,3(t) + p

4
v2,4(t) + …..) + a22H2] = 0         (10) 

From equation (9) 

0+ pv1,1
1
(t) + p

2
v1,2

1
(t) + p

3
v1,3

1
(t) + p

4
v1,4

1
(t) + ….. – 0  

+ p[0 - a1v1,0(t) - a1pv1,1(t) - a1p
2
v1,2(t) - a1 p

3
v1,3(t) - a1 p

4
v1,4(t) + …..  

+  a12 v1,0(t)v2,0(t) + p a12 v1,0(t)v2,1(t) + p
2
 a12 v1,0(t)v2,2(t) + p

3
 a12 v1,0(t)v2,3(t) + p

4
 a12  v1,0(t)v2,4(t) + 

…..  + pa12v1,1 (t) v2,0(t) + p
2
 a12v1,1 (t)v2,1(t) + p

3
 a12v1,1 (t)v2,2(t) + p

4
 a12v1,1 (t)v2,3(t) + p

5
 a12v1,1 

(t)v2,4(t) + ….. 

+ p
2
 a12v1,2 (t) v2,0(t) + p

3
 a12v1,2 (t)v2,1(t) + p

4
 a12v1,2 (t)v2,2(t) + p

5
 a12v1,2 (t)v2,3(t) + p

6
 a12v1,2 (t)v2,4(t) + 

….. + p
3
 a12v1,3 (t) v2,0(t) + p

4
 a12v1,3 (t)v2,1(t) + p

5
 a12v1,3 (t)v2,2(t) + p

6
 a12v1,3 (t)v2,3(t) + p

7
 a12v1,3 

(t)v2,4(t) + …..+ p
4
 a12v1,4 (t) v2,0(t) + p

5
 a12v1,4 (t)v2,1(t) + p

6
 a12v1,4 (t)v2,2(t) + p

7
 a12v1,4 (t)v2,3(t) + p

8
 

a12v1,4 (t)v2,4(t) + …..] = 0                                                                                                          (11)

                                                                                                                                                                                     

From equation (10) 

0 + pv2,1
1
(t) + p

2
v2,2

1
(t) + p

3
v2,3

1
(t) + p

4
v2,4

1
(t) + ….. – 0 

P [0 –a2 v2,0(t) - p a2v2,1(t) -p
2
 a2v2,2 (t) - p

3
 a2v2,3(t) - p

4
 a2v2,4(t) - …..  

+a22 v2,0
2
(t) + pa22 v2,0(t) v2,1(t) + p 

2
a22v2,0(t) v2,2(t) + p

3
 a22v2,0(t) v2,3(t) + p

4
 a22v2,0(t) v2,4(t) + ….. 

+pa22 v2,0(t)v2,1(t) + p
2
 a22  v2,1

2
(t) + p 

3
a22v2,1(t) v2,2(t) + p

4
 a22v2,1(t) v2,3(t) + p

5
 a22v2,1(t) v2,4(t) + ….. 

+p
2
 a22 v2,0(t)v2,2(t) + p

3
 a22  v2,1(t)v2,2(t) + p 

4
a22v2,2

2
(t)  + p

5
 a22v2,2(t) v2,3(t) + p

6
 a22v2,2(t) v2,4(t) + ….. 

+p
3
 a22 v2,0(t)v2,3(t) + p

4
 a22  v2,1(t)v2,3(t) + p 

5
a22v2,3(t)v2,2(t)  + p

6
 a22 v2,3

2
(t) + p

7
 a22v2,3(t) v2,4(t) + ….. 

+p
4
 a22 v2,0(t)v2,4(t) + p

5
 a22  v2,1(t)v2,4(t) + p 

6
a22v2,4(t)v2,2(t)  + p

7
 a22v2,4(t) v2,3(t) + p

8
 a22 v2,4

2
(t)   

+ …..+a22H2] = 0                         (12) 

 By comparing the coefficients of various powers of p in equation (11) & (12), 

Coefficient of p
1
:- 

v1,1
1
(t)-a1v1,0(t)+a12v1,0(t)v2,0(t) = 0 

v2,1
1
(t)-a2v2,0(t)+a22v2,0

2
(t)+a22H2= 0 

Coefficient of p
2
:- 
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 v1,2
1
(t)-a1v1,1(t)+a12v1,0(t)v2,1(t)+a12v1,1(t)v2,0(t) = 0 

 v2,2
1
(t)-a2v2,1(t)+a22v2,0(t)v2,1(t)+a22v2,0(t)v2,1(t) =0 

Coefficient of p
3
:- 

 v1,3
1
(t)-a1v1,2(t)+a12v1,0(t)v2,2(t)+a12v1,1(t)v2,1(t)+a12v1,2(t)v2,0(t) = 0  

 v2,3
1
(t)-a2v2,2(t)+a22v2,0(t)v2,2(t)+a22v2,1

2
(t)+a22v2,2(t)v2,0(t) = 0 

Coefficient of p
4
:-  

 v1,4
1
(t)-a1v1,3(t)+a12v1,0(t)v2,3(t)+a12v1,1(t)v2,2(t)+a12v1,2(t)v2,1(t)+a12v1,3(t)v2,0(t)  = 0                                

 v2,4
1
(t)-a2v2,3(t)+a22v2,0(t)v2,3(t)+2a22v2,1(t)v2,2(t)+a22v2,3(t)v2,0(t) = 0 

Now v1,0(t) = c1 , v2,0(t) = c2 

v1,1(t) = a1 1,0(t)  - a12 1,0(t)v2,0(t)  

           = (a1c –a12c1c2)t 

       v1,1(t) = (a1-a12c2) c1t 

v2,1(t) = a2 2,0(t) -a22 2,0
2
(t) -a22H2   

           = (a2c2-a22c2
2
-a22H2) t 

       v2,1(t) = (a2c2-a22c2
2
-a22H2) t 

v1,2(t) = a1 1,1(t) -a12 1,0(t)v2,1(t) -a12 1,1(t)v2,0(t)  

           = (a1-a12c2) (a1-a12c2) c1 
 
- a12c1 (a2c2-a22c2

2
-a22H2)  

          v1,2(t) = [c1 (a1-a12c2)
2
-a12c1 (a2c2-a22c2

2
-a22H2)]  

v2,2(t) = a2 2,1(t) -2a22 2,0(t)v2,1(t)  

            = a2 (a2c2-a22c2
2
-a22H2) -2a22c2 (a2c2-a22c2

2
-a22H2)   

           v2,2(t) = (a2-2a22c2) (a2c2-a22c2
2
-a22H2)  

v1,3(t) = a1 1,2(t) -a12 1,0 (t)v2,2(t) -a12 1,1(t)v2,1(t)   

                 - a12 1,2(t)v2,0(t)         

              = (a1-a12c2) [c1 (a1-a12c2)
2
-a12c1 (a2c2-a22c2

2
-a22H2)]   

                   -a12c1 (a2-a22c2
2
-a22H2) (a2-2a22c2)   

                 - a12c1 (a1-a12c2) (a2-a22c2
2
-a22H2)   

               v1,3(t) = [(a1-a12c2) [c1 (a1-a12c2)
2
- a12c1 (a2c2-a22c2

2
-a22H2)] 

                                -a12c1 (a2-a22c2
2
-a22H2) [(a2-2a22c2) + 2(a1 - a12c2)]]  

v2,3(t) = a2 2,2(t) - 2a22 2,0 (t)v2,2(t) – a22 2,1
2
(t)  

           = (a2-2a22c2)
2
 (a2c2-a22c2

2
-a22H2)  – a22 (a2c2-a22c2

2
-a22H2)  

           v2,3(t) = (a2c2-a22c2
2
-a22H2) [(a2-2a22c2)

2
 - 2 a22 (a2c2-a22c2

2
-a22H2)]  
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v1,4(t) = a1 1,3(t) -a12 1,0 (t)v2,3(t) -a12 1,1(t)v2,2(t)   

                 - a12 1,2(t)v2,1(t) - a12 1,3(t)v2,0(t)  

             = (a1-a12c2) [(a1-a12c2) [c1 (a1-a12c2)
2 
- a12c1 (a2c2-a22c2

2
-a22H2)] 

                - a12c1 (a2c2-a22c2
2
-a22H2) [(a2-2a22c2) + 2(a1-a12c2)]]  

               - a12c1 (a2c2-a22c2
2
-a22H2) [(a2-2a22c2)

2 
– 2a22 (a2c2-a22c2

2
-a22H2)]            

               - a12c1 (a1-a12c2) (a2-2a22c2) (a2c2-a22c2
2
-a22H2)   

               - a12 [c1 (a1-a12c2)
2
-a12c1 (a2c2-a22c2

2
-a22H2)] (a2c2-a22c2

2
-a22H2)  

     v1,4(t) = {c1 [(a1-a12c2)
2
-a12c1 (a2c2-a22c2

2
-a22H2)] 

                               [(a1-a12c2)
2
+ 3a12 (a2c2-a22c2

2
-a22H2)] 

                               - (a2c2-a22c2
2
-a22H2)[a12c2[(a2-2a22c2) + 2(a1-a12c2) + (a2-2a22c2)

2
  

                              - 2a22 (a2c2-a22c2
2
-a22H2) + 3(a1-a12c2) (a2-2a22c2)]]}   

v2,4(t) = a2 2,3(t) – a22c2 2,3 (t) - 2a22 2,1(t)v2,2(t)  
 

            = (a2-2a22c2) (a2c2-a22c2
2
-a22H2) [(a2-2a22c2)

2
 – 2a22c2 (a2c2-a22c2

2
-a22H2)]  

              -2a22 (a2-2a22c2) (a2c2-a22c2
2
-a22H2)

2
  

                 v2,4(t) =  (a2-2a22c2) (a2c2-a22c2
2
-a22H2)[ (a2-2a22c2)

2
 -8a2 (a2c2-a22c2

2
-a22H2) ]  

When approximate terms are considered up to four terms, we get 

 

 

The solutions are obtained by Homotopy analysis as follows, 

            N1(t) = c1 + (a1-a12c2) c1t + [c1 (a1-a12c2)
2
-a12c1 (a2c2-a22c2

2
-a22H2)]   

                            + [(a1-a12c2) [c1 (a1-a12c2)
2
- a12c1 (a2c2-a22c2

2
-a22H2)] 

                            -a12c1 (a2-a22c2
2
-a22H2) [(a2-2a22c2) + 2(a1 - a12c2)]]   

                             + {c1 [(a1-a12c2)
2
-a12c1 (a2c2-a22c2

2
-a22H2)] 

                              [(a1-a12c2)
2
+ 3a12 (a2c2-a22c2

2
-a22H2)] 

                              - (a2c2-a22c2
2
-a22H2)[a12c2[(a2-2a22c2) + 2(a1-a12c2) + (a2-2a22c2)

2
  

                             - 2a22 (a2c2-a22c2
2
-a22H2) + 3(a1-a12c2) (a2-2a22c2)]]}   

                N2(t) = c2 + (a2c2-a22c2
2
-a22H2) t + (a2-2a22c2) (a2c2-a22c2

2
-a22H2)  

                              + (a2c2-a22c2
2
-a22H2) [(a2-2a22c2)

2
 - 2 a22 (a2c2-a22c2

2
-a22H2)]  

                              + (a2-2a22c2) (a2c2-a22c2
2
-a22H2)[ (a2-2a22c2)

2
 -8a2 (a2c2-a22c2

2
-a22H2) ]  

5. NUMERICLA ILLUSTATIONS 

The nature of the ecological model is to be identified with a set of numerical solutions which can be 
illustrated in a course of specified time interval.        
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The fixed parameters are considered as a12=0.6, a2=2.9,a22= 0.4, H2=0.9, c 1=2.5 and c2=2 

The varying variable is a1, i.e a1= from 1.5 to 3.5.592739, 2.592739, 3.592739, 4.592739, 5.592739, 6 

and then t* is derived(1.75,1.02,0.73,0.58,0.48,0.41,0.35,0.31,0.28,0.25,0.23,0.22,0.19,0.17,0.16) 

The obtained solutions are illustrated from Fig. (1) to Fig.(21). 

Case(1):In the case where natural growth rate of Ammensal Species is less than the growth rate 

of enemy species(a1<a2)-From Fig(1) to Fig(14)  
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Conclusions: 

Case(1):From Fig(1) to Fig(14) 
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(i).Ammensal species is dominant over the Enemy species up to time distinct(t*).After the dominance 

reversal time, the Enemy species commands Ammnesal species by pulling it to less growth rate in the 
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0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

Fig.(13):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.31

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

Fig.(14):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.28

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

Fig.(15):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.25

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

Fig.(16):time(t)

N
1

a
n

d
 N

2

 

 

Ammnesal

Enemy

t*=0.23

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

Fig.(17):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.22

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

Fig.(18):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.19

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

Fig.(19):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.19

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

Fig.(20):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=1.07

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

16

Fig.(21):time(t)

N
1

a
n

d
 N

2

 

 

Ammensal

Enemy

t*=0.16



Dr.K.V.L.N.Acharyulu et al. 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 34 

(ii).Ammensal Species acquires a considerable growth rate at initial stage and slowly arises. It 

eclipses the enemy species up to t*, after which the enemy species exceeds Ammensal species and the 
enemy species has a steep rise where as there is no appreciable growth in Ammensal Species. 

6. OVER ALL CONCLUSIONS 

Ammensal model with harvesting for Ammensal species and unlimited resources for Enemy Species 

is formed by a couple of first order nonlinear differential equations. A series solution in a peculiar 

case of ecological Ammensalism is obtained by Homotopy Analysis. Some numerical solutions are 

utilized for analyzing various interactions between Ammensal species and enemy species 
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