
International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 

Volume 3, Issue 12, December 2015, PP 24-26 

ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) 

www.arcjournals.org 

 

©ARC                                                                                                                                                         Page | 24  

A Fixed Point Theorem in Generalized Metric Spaces 
 

Mothukuri Balaiah 

Associate Professor of Mathematics,  
Pragati Engineering College, Surampalem, Kakinada, East Godavari Dist.  

Andhra Pradesh, India. 

balaiah_m19@hotmail.com 

 

Abstract: The aim of this paper is to prove a fixed point theorem in generalized metric space which 

generalizes the result of Akbar Azam and Muhmmad Arshad [2] Theorem [2.1]. The result is supported through 
an example. 
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1. INTRODUCTION 

In literature, the basic fixed point theorem is Banach contraction principle which asserts that if M is a 

complete metric space and T: M → M is a contraction mapping. That is there exists k ∈[0, 1) such that 

for all  

Then T has unique fixed point.In 2000 A. Brainciari [1] introduced generalized metric space as 

follows. 

Definition 1.1: Let Mbe a non-empty set. Suppose that d:M × M → Rsatisfies 

(1) for all and  

(2)  

(3) for allx, y ∈ M and for all distinct 

points w, z ∈ M − {x, y}. [Rectangular property]. 

Then d is called a generalized metric and (M, d) is called a generalized metricspace.It is note that 

every metric space is a generalized metric space. But converseis not true. It is also illustrated with an 

example by A. Azam and M. Arshad with an example [1.2] in [2]. 

Definition 1.2: Let  be a generalized metric space. Let be a sequence in M and . If 

for  there is an such that for all , then is said to be convergent, 

converges to x and xis the limit of . We denote this by as 

also illustrated with an example by A. Azam and M. Arshad with an example [1.2] in [2]. 

Definition 1.3: A sequence is said to be Cauchy sequence if for every  there is an

such that for all , then is called a Cauchy sequence in M. 

Definition1.4: Let  be a generalized metric space. If every Cauchysequence in Mis convergent 

in M, then M is called a complete generalized metricspace. 

Remark that  and  when ever is asequence in M with 

 

In [2] Akbar Azmar proved the following result on generalized metric space. 
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Theorem 1.5: Let (M, d) be a complete generalized metric space and themapping T: M → M satisfies 

the following inequality 

where  

Then T has a unique fixed point. 

2. MAIN RESULT 

We have obtained the following main result. 

Theorem 2.1: Let be a complete generalized metric space and themapping T:M → M satisfies 
the following inequality 

 

for all  and then T has a unique fixed point in M. 

Proof: Let  be an arbitrary point in M. Let  

If  then  implies is a fixed point of T, which shows we have nothing to 

prove.We now assume that . Let Define of points in M as follows; 

 

Using the inequality (2.1.1) we have 

 
 

 

Hence we have 

 

 

Suppose that  is not a periodic point. Infact if then 

 

 

 

 

 

 

put then  and .  

Which shows is a fixed point of T. 

Thus we can suppose that . i.e.  

Now from the inequality 
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Therefore  as n → ∞ i.e. is a Cauchy sequence. SinceM is a complete 

generalized metric space, there exists a u ∈ M such that . 

By rectangular property we have 

 
 

 
As and using remark we have . 
Now we have to show that T has a unique fixed point. Suppose there existsone another fixed point v in 

M such that . 

Now 

 
 

 
 

 
Hence u = v. 

Now we give an example for our result which satisfies our inequality and 1as a unique fixed  

point of T. 

Example 2.2: Let and define by 

 
 

 

Also define  

It is observed that  is a generalized metric space, but not a metric space.Because it lacks 

triangular inequality. 

But  

Define by  

Then clearly satisfies our inequality and has unique fixed point 1. 
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