Super filters in BL-Almost Distributive Lattices

Naveen Kumar Kakumanu

Department of Mathematics KBN College Vijayawada, INDIA ramanawinmaths@gmail.com G.C. Rao

Department of Mathematics Andhra University Vijayawada, INDIA gcraomaths@yahoo.co.in

Abstract: These are the manuscript preparation guidelines used as a standard template for all journal submissions. Author must follow these instructions while preparing/modifying these guidelines. This guideline is used for all journals. These are the manuscript preparation guidelines used as a standard template for all journal submissions. Author must follow these instructions while preparing/modifying these guidelines. This guideline is used for all journals. These are the manuscript preparation guidelines used as a standard template for all journal submissions. Author must follow these instructions while preparing/modifying these guidelines. This guideline is used for all journals. These are the manuscript preparation guidelines used as a standard template for all journal submissions. Author must follow these instructions while preparing/modifying these guidelines. This guideline is used for all journals. These are the manuscript preparation guidelines used as a standard template for all journal submissions. Author must follow these instructions while preparing/modifying these guidelines. This guideline is used for all journals.

Keywords: ADL, BL-ADL, Super filter, Congruence

1. INTRODUCTION

In 1981, U.M. Swamy and G.C. Rao introduced the concept of an Almost Distributive Lattice (ADL) (see in [6]) as a common abstraction of most of the existing ring theoretic and lattice theoretic generalizations of a Boolean algebra. G. Epstein and A. Horn introduced the concept of a B–algebra(see in [2]) as a bounded distributive lattice with center B in which, for any x, $y \in A$, the largest element $x \Rightarrow y$ in B exists with the property $x \land (x \Rightarrow y) \le y$. The connective \Rightarrow play an important role in building block in the computers that is the comparator or analog-to-digital converter. For this reason, in our paper [4], we introduced the concept a BL-Almost Distributive Lattice(BL–ADL)(see [3]) as a generalization of a BL-Algebra and derived its properties. In this paper, we introduce the notation of *Super filter and studied its properties and derive different equivalent conditions*.

2. PRELIMINARIES

In this section, we give the necessary definitions and important properties of an ADL[6] and B-ADL[3]. For more information in theory of lattice, the reader is referred to G. Birkhoff [1].

Definition 2.1. [6] An algebra (A, \lor , \land , 0) of type (2, 2, 0) is called an Almost Distributive Lattice(ADL)(see [5]) if it satisfies the following axioms: for all x, y, z \in A.,

- (i) $x \lor 0 = x$
- (ii) (ii) $0 \land x = 0$
- (iii) (iii) $(x \lor y) \land z = (x \land z) \lor (y \land z)$
- (iv) $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- $(v) x \vee (y \land z) = (x \lor y) \land (x \lor z)$
- (v) $(x \lor y) \land y = y.$

Definition 2.2. [6] Let A be an ADL and F be a nonempty subset of A. Then F is said to be a filter if it satisfies the following:

- i. $x, y \in F$ implies $x \land y \in F$.
- ii. ii. $x \in F$ and $a \in A$ implies $a \lor x \in F$.

For other properties of an ADL, we refer the readers to [5].

Definition 2.3. Let *A* be an ADL with a maximal element *m* and $B(A) = \{a \in A \mid a \land b = 0 \text{ and } a \lor b \text{ is maximal for some } b \in A\}$. Then $(B(A), \lor, \land)$ is a relatively complemented ADL and it is called the Birkhoff center of *A*. We use the symbol *B* instead of B(A) when there is no ambiguity.

Definition 2.4. Let *A* be an ADL with Birkhoff center *B*. Then *A* is said to be a B–ADL(see [3]) if for any *x*, $y \in A$, there exists $b \in B$ satisfying the following conditions:

 $\begin{aligned} R_1 : y \land x \land b = x \land b \\ R_2 : \text{if } c \in B \text{ such that } y \land x \land c = x \land c, \text{ then } b \land c = c. \end{aligned}$

We denote $b \land m$ by $x \Rightarrow y$ where there is no ambiguity.

Here afterwards, A stands for a B-ADL (A, V, A, 0) with a maximal element m and Birkhoff center B.

Theorem 2.5. [3] If $x \in A$ and $y \in B$, then we have

(i) $x \land (x \Rightarrow y) = x \land y \land m$. (ii) $(x \Rightarrow y) \land y = y$.

Theorem 2.6. [3] For any *x*, *y*, $z \in A$, we have the following:

(i) $x \land m \le y \land m$ if and only if $(x \Rightarrow y) = m$.

(ii) $(0 \Rightarrow x) = m$, $(x \Rightarrow x) = m$ and $(x \Rightarrow m) = m$.

(iii) If $x \land m \le y \land m$, then $(z \Rightarrow x) \le (z \Rightarrow y)$ and $(x \Rightarrow z) \ge (y \Rightarrow z)$.

 $(\mathrm{iv}) \ (z \Rightarrow (x \land y)) = (z \Rightarrow x) \land (z \Rightarrow y) = (z \Rightarrow (y \land x)).$

 $(v) ((x \lor y) \Rightarrow z) = (x \Rightarrow z) \land (y \Rightarrow z) = ((y \lor x) \Rightarrow z).$

For other properties of B–ADL, we refer the readers to [3].

3. SUPER FILTER

Definition 3.1

Let A be an ADL with a maximal element m and Birkhoff center B. A filter F of A is called a super filter of A, if x! in F whenever x in F.Now we prove the following.

Theorem 3.2 Let *A* be a BL-ADL with a maximal element *m* and Birkhoff center *B*. Then we have the following:

- 1. If θ is a congruence relation on A, then $F_{\theta} := \{x \in A \mid (x, m) \in \theta\}$ is a super filter in A.
- 2. If F is a super filter in A, then $\theta_F := \{(x \land m, y) \in A \times A \mid (x \to y) \land (y \to x) \land m \in F\}$ is a congruence relation on A.
- 3. For any super filter F in A, $F_{\theta_r} = F$.
- 4. For any congruence θ on A, $\theta_{F_a} = \theta$.

Proof. Let \mathcal{A} be the set of all super filters of A and \mathcal{B} , the set of all congruence relations on A. Suppose $x, y, z \in A$.

1. Suppose \theta is a congruence relation on A.

Since $(m \land m, m) \in \theta$, we get $m \in F_{\theta}$ and hence $F_{\theta} \neq \phi$. Let $(x \land m, y) \in F_{\theta}$. Then $(x \land m, m)$, $(y \land m, m) \in \theta$ and hence $(x \land y \land m, m) \in \theta$. Thus $x \land y \in F_{\theta}$. Let $x \in F_{\theta}$ and $a \in A$. Then $(x \land m, m) \in \theta$. So that $((x \land m) \lor a, m) = ((x \lor a) \land m, m \lor a) \in \theta$ and hence $x \lor a \in F_{\theta}$. we have F_{θ} is a filter in A. Let $x \in F_{\theta}$. Then $(x \land m, m) \in \theta$. Since θ is a congruence relation on A, we get $(x! \land m, m) = ((m \Longrightarrow x) \land m, m \Longrightarrow m) = (m \Longrightarrow x, m) \in \theta$. Thus $x! \in F_{\theta}$. Hence F_{θ} is a super filter.

2. Suppose F is a super filter in A.

Since $m = (x \to x) \land (x \to x) \land m \in F$, we get $(x \land m, x) \in \theta$ and hence θ_F is reflexive. Let $(x \land m, y) \in \theta_F$. Then $(y \to x) \land (x \to y) \land m = (x \to y) \land (y \to x) \land m \in F$ and hence $(y \land m, x) \in \theta_F$. Therefore θ is symmetric. Let $(x \land m, y)$ and $(y \land m, z) \in \theta_F$. Then $(x \to y) \land (y \to x) \land m \in F$ and $(y \to z) \land (z \to y) \land m \in F$. We have $(x \to z) \land m \ge (x \to z) \land m \ge (x \to y) \land (y \to z) \land m$. So that we get $(x \to z) \land (z \to x) \land m \ge [(x \to y) \land (y \to x) \land (y \to z) \land (z \to y) \land m] \land m$ and hence $(x \to z) \land (z \to x) \land m \in F$. Therefore $(x \land m, z) \in \theta$. Hence θ_F is a equivalence relation on A. Now, let $(x \land m, y) \in \theta$ and $z \in A$. Then

$$[(x \land z) \to (y \land z)] \land [(y \land z) \to (x \land z)] \land m$$

= $((x \to y) \lor (z \to y)) \land m \land ((y \to x) \lor (z \to x)) \land m$
= $((x \to y) \lor (z \to y)) \land m \land ((y \to x) \lor (z \to x)) \land m$
= $(x \to y) \land (y \to x) \land m \in F$

and hence $(x \land z \land m, y \land z) \in \theta_F$. Similarly, we get that $((x \lor z) \land m, y \lor z) \in \theta_F$. Now we prove that $((x \to z) \land m, y \to z) \in \theta$ and $((z \to x) \land m, z \to y) \in \theta$.

Since
$$[(x \to z) \to (y \to z)] \land [(y \to z) \to (x \to z)] \land m \ge [(y \to x) \land (x \to y)] \land m \in F$$
, we get

 $((x \to z) \land m, y \to z) \in \theta$. Similarly, we get $((z \to x) \land m, z \to y) \in \theta_F$. Let $(x \land m, y) \in \theta_F$. Then $(x \to y) \land (y \to x) \land m \in F$. Since F is a super filter, we get $((x \to y) \land (y \to x))! \land m \in F$ and hence $(x \to y)! \land (y \to x)! \in F$. Thus $(x \Rightarrow y) \land (y \Rightarrow x) \in F$.

Since $(x \Rightarrow z) \rightarrow (y \Rightarrow z) \land (y \Rightarrow z) \rightarrow (x \Rightarrow z) \ge (y \Rightarrow x) \land (x \Rightarrow y) \in F$, we get $((x \Rightarrow z) \land m, y \Rightarrow z) \in \theta_F$. Hence θ_F is a congruence relation on A.

3.Now $x \in F_{\theta_F}$ iff $(x \land m, m) \in \theta_F$ iff $(x \to m) \land (m \to x) \land m \in F$ iff $m \land x \land m \in F$ iff $x \in F$ and hence $F_{\theta_F} = F$.

4. Let
$$F_{\theta_F} = F$$
. Then $(x \to y) \land (y \to x) \land m \in F_{\theta}$ and hence $((x \to y) \land (y \to x) \land m, m) \in \theta$.
Thus $((x \to y) \land (y \to x) \land y, y) \in \theta$. Now

 $(x \to y) \land (y \to x) \land y = (y \to x) \land (x \to y) \land y = (y \to x) \land y = y \land x \land m = x \land y \land m.$ Therefore $(x \land y \land m, y) \in \theta$. Similarly, we get $(x \land y \land m, x) \in \theta$ and hence $(x, y) \in \theta_{F_{\theta}}$. Thus $\theta_{F_{\theta}} \subseteq \theta$. Now, suppose

 $(x \land m, y) \in \theta$. Then $(x \to y, y \to y) = (x \to y, m) \in \theta$. Similarly, we prove $(y \to x, m) \in \theta$ and hence $((x \to y) \land (y \to x) \land m, m) \in \theta$. Thus $(x \to y) \land (y \to x) \land m \in F_{\theta}$. So that $(x \land m, y \land m) \in \theta_{F_{\theta}}$ and hence $\theta \subseteq \theta_{F_{\theta}}$. Therefore $\theta_{F_{\theta}} = \theta$.

References

- [1]. Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ. XXV, Providence (1967), U.S.A.
- [2]. Epstein, G. and Horn, A., P-algebras, an abstraction from Post algebras, Vol 4, Number 1,195-206,1974, Algebra Universalis.
- [3]. Rao, G.C. and Naveen Kumar Kakumanu, B-Almost Distributive Lattices, Southeast Asian Bulletin of Mathematics, Vol 39, 2015.
- [4]. Rao, G.C. and Naveen Kumar Kakumanu, BL-Almost Distributive Lattices, Asian European Journal of Mathematics, Vol 05(02)2012, pp no.1250022-1 to 1250022-8

- [5]. Naveen Kumar Kakumanu, Characterization of BL-Almost Distributive Lattices, Asian European Journal of Mathematics, Volume 08, Issue 03, September 2015, 1550041 (2015) [13 pages].
- [6]. Swamy, U.M. and Rao, G.C., Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), Vol.31 (1981), 77-91.