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1. INTRODUCTION 

In 1981, U.M. Swamy and G.C. Rao introduced the concept of an Almost Distributive Lattice (ADL) 

(see in [6]) as a common abstraction of most of the existing ring theoretic and lattice theoretic 
generalizations of a Boolean algebra. G. Epstein and A. Horn introduced the concept of a 

B−algebra(see in [2]) as a bounded distributive lattice with center B in which, for any x, y ∈ A, the 

largest element x ⇒ y in B exists with the property x ∧ (x ⇒ y) ≤ y. The connective ⇒ play an 

important role in building block in the computers that is the comparator or analog-to-digital converter. 
For this reason, in our paper [4], we introduced the concept a BL-Almost Distributive 

Lattice(BL−ADL)(see [3]) as a generalization of a BL-Algebra and derived its properties. In this 

paper, we introduce the notation of Super filter and studied its properties and derive different 
equivalent conditions. 

2. PRELIMINARIES  

In this section, we give the necessary definitions and important properties of an ADL[6] and 

B−ADL[3]. For more information in theory of lattice, the reader is referred to G. Birkhoff [1]. 

Definition 2.1. [6] An algebra (A, ∨, ∧, 0) of type (2, 2, 0) is called an Almost Distributive 

Lattice(ADL)(see [5]) if it satisfies the following axioms:   for all x, y, z ∈ A., 

(i) x ∨ 0 = x   

(ii) (ii) 0 ∧ x = 0 

(iii)  (iii) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)  

(iv) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

( v)  x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)        

(v) (x ∨ y) ∧ y = y. 

Definition 2.2. [6] Let A be an ADL and F be a nonempty subset of A.   Then F is said to be a filter if 

it satisfies the following:                                                                                                              

i. x, y ∈ F implies x ∧ y ∈ F.                                                                                 

ii. ii. x ∈ F and a ∈ A implies a ∨ x ∈ F. 
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For other properties of an ADL, we refer the readers to [5]. 

Definition 2.3. Let A be an ADL with a maximal element m and B(A) = {a ∈ A | a ∧ b = 0 and a ∨ b 

is maximal for some b ∈ A}. Then (B(A), ∨, ∧) is a relatively complemented ADL and it is called the 

Birkhoff center of A. We use the symbol B instead of B(A) when there is no ambiguity. 

Definition 2.4. Let A be an ADL with Birkhoff center B. Then A is said to be a B−ADL(see [3]) if for 

any x, y ∈ A, there exists b ∈ B satisfying the following conditions: 

R1 : y ∧ x ∧ b = x ∧ b 

R2 : if c ∈ B such that y ∧ x ∧ c = x ∧ c, then b ∧ c = c. 

 We denote b ∧ m by x ⇒ y where there is no ambiguity. 

Here afterwards, A stands for a B−ADL (A, ∨, ∧, 0) with a maximal element m and Birkhoff center B. 

Theorem 2.5. [3] If x ∈ A and y ∈ B, then we have  

(i)   x ∧ (x ⇒ y) = x ∧ y ∧ m. (ii)  (x ⇒ y) ∧ y = y. 

Theorem 2.6. [3]  For any x, y, z ∈ A, we have the following: 

(i) x ∧ m ≤ y ∧ m if and only if (x ⇒ y) = m. 

(ii) (0 ⇒ x) = m, (x ⇒ x) = m and (x ⇒ m) = m. 

(iii) If x ∧ m ≤ y ∧ m, then (z ⇒ x) ≤ (z ⇒ y) and (x ⇒ z) ≥ (y ⇒ z). 

(iv) (z ⇒ (x ∧ y)) = (z ⇒ x) ∧ (z ⇒ y) = (z ⇒ (y ∧ x)). 

(v) ((x ∨ y) ⇒ z) = (x ⇒ z) ∧ (y ⇒ z) = ((y ∨ x) ⇒ z). 

For other properties of B−ADL, we refer the readers to [3]. 

3. SUPER FILTER 

Definition 3.1 

  Let A be an ADL with a maximal element m and Birkhoff center B.  A filter F of A is called a super 

filter of A, if x!  in F whenever x in F.Now we prove the following. 

Theorem 3.2 Let A be a BL-ADL with a maximal element m and Birkhoff center B. Then we have the 
following: 

1. If   is a congruence relation on A, then : {  | ( , ) }F x A x m     is a super filter in A. 

2. If F is a super filter in A, then : {( , )  | ( ) ( ) }F x m y A A x y y x m F           is 

a congruence relation on A. 

3.  For any super filter F in A, .
F

F F   

4.  For any congruence   on A, .F
   

Proof. Let   be the set of all super filters of A and , the set of all congruence relations on A. 

Suppose , ,x y z A . 

1. Suppose \theta is a congruence relation on A. 

 Since ( , )m m m   , we get m F and hence F  . Let ( , ) .x m y F   Then ( , ),x m m

( , )y m m   and hence ( , ) .x y m m     Thus .x y F   Let x F  and .a A  Then 

( , ) .x m m    So that (( ) , ) (( ) , )x m a m x a m m a         and hence .x a F   we have 

F  is a filter in A. Let .x F  Then ( , ) .x m m    Since   is a congruence relation on A, we get 

( ! , ) (( ) , ) ( , ) .x m m m x m m m m x m          Thus ! .x F  Hence F is a super filter. 

2. Suppose F is a super filter in A. 
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Since ( ) ( ) ,m x x x x m F       we get ( , )x m x    and hence F is reflexive. Let 

( , ) .Fx m y   Then ( ) ( ) ( ) ( )y x x y m x y y x m F          and hence 

( , ) .Fy m x    Therefore   is symmetric. Let ( , ) ( , ) .Fx m y and y m z   
 

 Then ( ) ( ) ( ) ( ) .x y y x m Fand y z z y m F            

We have ( )x z m   ( ) ( ) ( ) .x z m x y y z m         So that we get 

( ) ( ) [( ) ( ) ( ) ( ) ]x z z x m x y y x y z z y m m               and hence 

( ) ( ) .x z z x m F      Therefore ( , ) .x m z     Hence F is a equivalence relation on A. 

Now, let ( , )x m y   and .z A  Then  

[( ) ( )] [( ) ( )]x z y z y z x z m          

= (( ) ( )) (( ) ( ))x y z y m y x z x m          

(( ) ( )) (( ) ( ))x y z y m y x z x m           

( ) ( )x y y x m F       

and hence ( , ) .Fx z m y z      Similarly, we get that (( ) , ) .Fx z m y z      Now we prove 

that (( ) , )x z m y z      and (( ) , ) .z x m z y       

Since [( ) ( )] [( ) ( )]x z y z y z x z m         [( ) ( )] ,y x x y m F      we get 

(( ) ,  ) .x z m y z      Similarly, we get  (( ) ,  ) .Fz x m z y      Let ( , ) .Fx m y    

Then ( ) ( ) .x y y x m F      Since F is a super filter, we get (( ) ( ))!x y y x m F      

and hence ( )! ( )! .x y y x F     Thus ( ) ( ) .x y y x F     

Since ( ) ( ) ( ) ( )x z y z y z x z        ( ) ( ) ,y x x y F     we get 

(( ) , ) .Fx z m y z      Hence F  is a congruence relation on A. 

3.Now 
F

x F iff ( , ) Fx m m   iff ( ) ( )x m m x m F     iff m x m F   iff x F and 

hence .
F

F F   

4. Let .
F

F F  Then ( ) ( )x y y x m F      and hence (( ) ( ) , ) .x y y x m m       

Thus (( ) ( ) , ) .x y y x y y       Now 

( ) ( ) ( ) ( ) ( ) .x y y x y y x x y y y x y y x m x y m                   

Therefore ( , ) .x y m y     Similarly, we get ( , )x y m x     and hence ( , ) .Fx y


  Thus 

.F
   Now, suppose 

( , ) .x m y    Then ( , ) ( , ) .x y y y x y m       Similarly, we prove ( , )y x m    and 

hence (( ) ( ) , ) .x y y x m m       Thus ( ) ( ) .x y y x m F      So that 

( , ) Fx m y m


    and hence .F
   Therefore .F
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