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Abstract: Presented is a proof of “Fermat’s Last Theorem that is simple, direct, and concise and that is 

readily understandable by most mathematically or scientifically trained persons as compared to the proof by 

Andrew Wiles, which is extremely complex, lengthy, and beyond the ability of most persons to understand. 
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1. INTRODUCTION 

“Fermat's Last Theorem” states:  

 There can be no non-zero integer solution for n>2 to the equation 

an  +  bn  =  cn                                                                                                                                       (1) 

2. STEP 1 

Restate the problem as follows: 

 For x, i, n and f(x,i) all non-zero integers and i<x there  is  no solution  for 

          n>2  to  the  equation 

xn = [x-i]n + [f(x,i)]n                                           (2)  

 That is, make the following substitutions in equation (1): 

             xn = cn       [x-i]n = an       [f(x,i)]n = bn 

Clearly there is no difficulty with the xn term nor the [x-i]n term.  Both are integers and 

perfect nth powers of integers.   

The issue now is: 

 Can f(x,i) be a non-zero integer for n>2 and equation (2) still valid ? 

3.  STEP 2 

The first constraint on bn is that it must be the difference of cn and an. 

bn = [f(x,i)]n                                                    (3)                             

      = xn - [x-i]n     [from equation (2)] 

      = xn - [xn - n∙xn-1∙i + ... ± in] [binomial expansion] 

      = n∙xn-1∙i - ... ± in 

4.  STEP 3 

The second constraint on bn is that it must be a perfect nth power. 
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bn = [x-j]n = [x-j]1∙[x-j]2∙[x-j]3∙ ∙∙∙ ∙[x-j]n                    (4) 

 where:  b = x-j  (just as a = x-i) 

                   j is a non-zero integer, j<x 

5.  STEP 4 

These two constraints are simultaneous. They are for the same bn.  Therefore, the two expressions 

must be identical; they must always simultaneously deliver the same value of bn. 

The order of equation (3) is one less than the order of equation (4).  To compare the two expressions 

as an identity their order must be the same. That is accomplished by removing one factor of b from 

each of equations (3) and (4), as follows. 

bn = n∙xn-1∙i - ... ± in                [equation (3)]                                         (5) 

     n∙i     ┌             in-1┐ 
   = ─── ∙ m∙│xn-1 - ... ± ────│ 
      m      └               n ┘ 
    └─┬─┘ └──────────┬──────────┘ 

      b              bn-1 

The parameter m is necessary because the quantity, n∙i, which factored out normalizes the 

expressing, is not necessarily equal to b. 

bn = [x-j]1 ∙ [x-j]2∙∙∙[x-j]n            [equation (4)]                                          (6) 

     └──┬──┘  └───────┬───────┘ 

        b           bn-1 

   = [x-j]1 ∙ m∙[[x-k]2∙[x-k]3∙ ∙∙∙ ∙[x-k]n] 

     └──┬──┘ └──────────────┬───────────────┘ 

        b                  bn-1 

The m here is for identity to be possible – for the coefficient of the xn-1 term in the two 

expressions to be able to be equal, when m1. 

6.  STEP 5 

Now, equation (5) and equation (6) must yield the same value for bn for all values of x.  To 

establish that condition for convenience we will require, rather than the entire expressions, that   

[bn-1/m] in each expression yield the same value for all values of x.   

The two expressions are (using the binomial theorem expansion formula) as follows.   

In equation (5) 

       [n-1]         [n-1][n-2]                in-1               (7) 

xn-1 - ─────∙xn-2i + ──────────∙xn-3i2 - ... ± ────  

        2∙1             3∙2∙1                    n  

and in equation (6) 

       [n-1]          [n-1][n-2]             

xn-1 - ─────∙xn-2k1 + ──────────∙xn-3k2 - ... ± kn-1              (8) 
        +1               2∙1 

Equating the pair of terms of zero order in equations (7) and (8): 

  in-1                                                            (9)                      

 ────  =   kn-1 

   n   

k = i/[n-1]th root of n 

The [n-1]th root of n is irrational for n>2.  [See Step 7, page 4].  Therefore, for n>2, k is 

irrational and b is irrational and cannot be an integer, which proves the theorem. 
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7.  STEP 6 

However, k in expression (8) is a function of x.  The only values of k that are able to make the 

expression for bn-1 in the horizontal bracket to the right in the second line of expression (6) 

actually be equal to bn-1 are as follows:  

    ┌    ┌ bn ┐1/
     ┐                                           (10) 

k = │x - │───│  
[n-1] │     [where b is also 

    └    └n∙i┘       ┘      a function of x] 

which can readily be verified by substitution, that is 

                 ┌    ┌────── k ───────┐┐n-1 
                 │    ┌    ┌   ┐1/     ┐│ 

             n∙i │    │    │ bn │  [n-1]││ 
m∙[x-k]n-1 = ───∙│x - │x - │───│       ││ 
              b  │    │    │n∙i│       ││ 
                 │    └    └   ┘       ┘│ 
                 └                      ┘ 

                 ┌┌   ┐1/     ┐
n-1 

             n∙i ││ bn │  [n-1]│     n∙i     bn 
           = ───∙││───│       │  =  ─── ∙ ───  =  bn-1 

              b  ││n∙i│       │      b    n∙i 
                 └└   ┘       ┘ 

The problem with k being a function of x is that the apparent terms of given orders of x and 

their coefficients are not necessarily as they appear in expression (8) when expression (9) is 

substituted for k in expression (8).  However, if the term coefficients experience no net change from 

the substitution, then the comparison of any pair of coefficients is valid even though k = f(x).  

That is exactly the situation in the present case (and may relate to why the theorem withstood proof 
for three centuries) as follows. 

To show this in an overall general form would be too algebraically complex to contemplate.  The 

pattern can be developed with two examples. 

      Example #1:  n=2 
Expression Nr 
As on Page 2                  Content 
 

(5)     bn = 2∙x∙i - i2 

 
 

                2∙i     ┌    i┐ 
                 = ─── ∙ m∙│x - -│ 

      
 
m      └    2┘ 

 
(6)     bn = [x-j]∙[x-j] 
 

 
        = [x-j] ∙ m∙[x-k] 
 

 

(7)                      [bn-1/m] = x - 
i/2 

 

 
(8)         [bn-1/m] = x – k 
 
 

 (10) Page 3       ┌  ┌ b2┐
1/1┐ 

     k = │x-│───│   │ 
         └  └2∙i┘   ┘ 

         ┌  ┌2∙x∙i-i2┐
1/1┐ 

       = │x-│────────│   │ 

         └  └  2∙i   ┘   ┘ 
             = i/2 
 

  Substituting (10)               ┌      ┐ 
  for the  k  in (8)            │bn-1/m│ = x - 

i/2 
          gives  (8)(7)            └      ┘ 
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Example #2:  n=3 

Expression Nr 
As on Page 2      Content 
 

(5)      bn = 3∙x2∙i - 3∙x∙i2 + i3 

           3∙i     ┌            i2 
┐ 

         = ─── ∙ m∙│x2 - x∙i + ───│ 
                                       

m      └            3 ┘ 
 

(6)                            bn = [x-j]∙[x-j]∙[x-j] 
 

                                    = [x-j] ∙ m∙[x-k]∙[x-k] 
 
(7)                           [bn-1/m] = x

2 - x·i + i2/3 

 
(8)                           [bn-1/m] = x

2 - 2·k·x + k2 
 
 
(10) Page 3                                                             ┌  ┌ b3┐

1/2┐ 
                                                                          k = │x-│───│   │ 

                                     └  └3∙i┘   ┘ 
                                     ┌  ┌3∙x2∙i-3∙x∙i2+i3┐

1/2┐ 
                                   = │x-│────────────────│   │ 
                                     └  └      3∙i       ┘   ┘ 
                                                                      1/   
                                  = x-[x2-x∙i+i2/3]  

2 

Substituting (10)                                               ┌      ┐ 
       For the k in (8)                                               │bn-1/m│ = x

2 - x·i + i2/3    gives (8)(7)                     └      ┘ 

This pattern persists for all positive integer values of n.  Therefore,  the term coefficients experience 

no net change from the substitution and the comparison of any pair of coefficients is valid even 

though k = f(x).  Therefore, expression (9) is valid and expression (9) shows that k, and 

therefore b, are irrational for n>2, which proves the theorem. 

8.  STEP 7 

Proof that the [n-1]th root of n is irrational. 

Trial calculations make clear that the numerical value of the [n-1]th root of n lies between 1 

and 2 as follows. 

   n [n-1]
th
 root of n                                              (11) 

 2 2 

 3 1.732… 

 4 1.607… 

 … … 

10 1.291… 

10
9
 1.000,000,020,7… 

Keeping in mind the significance of the positional notation used in representing numbers, the notation 
of a number such as 1.3, for example, means 1.3 = 1 × 10

0
 + 3 × 10

-1
, the number at issue, the        

[n-1]
th
 root of n being between 1 and 2 can then be represented as 

{[n-1]th root of n}  =   [ 1 × 10
0
] + [a × 10

-1
] + [b × 10

-2
] + [c × 10

-3
] + …                             (12) 

                    where the letters a, b, etc., represent a selection of one of the decimal digits 0 to 9. 

That number, the [n-1]th root of n, when multiplied by itself [n-1] times must yield the 

original number, n, an integer.  That is 

n = [[ 1 × 10
0
] + [a × 10

-1
] + [b × 10

-2
] + [c × 10

-3
] + …][n-1]                                                     (13) 

But, examining what happens when a rational such number is raised to a power greater than one, it 

becomes clear that the result cannot be an integer. 
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A rational number is one that can be expressed as the ratio of two integers.  Because ∞ is not a 

specific number but the concept “large without limit”, the two integers of a rational number cannot be 
infinite.  Therefore, both of the integers whose ratio makes a rational number have a finite number of 

non-zero digits and the decimal number representation has a finite number of non-zero digits. 

That is, a rational number has a finite number of non-zero digits to the right of its decimal point as 
compared to an irrational number, which has an infinite number of non-zero digits to the right of the 

decimal point.  The only exception to this distinction is the repeating decimal, which always is a 

rational number, but its infinite number of non-zero digits to the right of the decimal point is 
characterized by their repetition. 

Any rational number between 1 and 2 can then be represented as in equation (18). 

n =   1.ab … p0                                                  (18) 
     +0.00 … 0u  
     ────────── 
  =   1.ab … pu 

Where a, b, … p, u are decimal digits able to have value 0 through 9 except that u 

cannot be zero.  The digit p is the penultimate, the next to right-most digit and the digit u is the 

ultimate, the right-most non-zero digit. 

In the terms of equation (12) 

p is [p × 10-P]                                                              (19) 

u is [u × 10-U] 

that is, p is in the Pth column to the right of the decimal point and u is in the Uth such column. 

The number n of equation (18) raised to a power can be expressed as 

n
exp
 =[[1.ab … p0] + [0.00 … 0u]]exp                                                                          (20) 

    = [1.ab … p0]
exp
 + exp∙[1.ab … p0]

exp-1
∙[0.00 … 0u] 

      + … + [0.00 … 0u]
exp 

The last term of equation (20) is the digit u raised to the exp power and positionally notated in the 

column corresponding to the value of its original column, 10-U, raised to the exp power, that is 

the 10-U∙exp column. 

The digit u, by definition the right-most significant digit of the decimal number, cannot be zero.  

That digit raised to any power produces a number the right-most digit of which is never zero, which 

can readily be verified by examining the decimal digits 1 through 9 raised from power 1 to 

successively higher powers. 

The net effect of all of this is that any non-integer rational number raised to any integer power greater 

than 1 can never yield an integer result.  There will always be at least the uexp “out there” in the 

10
-U∙exp

 column providing a decimal fraction part of the result. 

But, that means that for n, an integer n>2, the [n-1]th root of n can never be an integer. 

Then, how can there be any non-integer roots of integers at all?  The answer is irrational numbers, of 

course.  Consider how such numbers are able to operate.  An example of irrational roots producing 

integer powers is the square root of 3.  That root is 1.732,050,807,77 …, an irrational number 

which squared equals the integer 3.  Picture the multiplication process as in equation (21), below 

                  1.732,050,807,77 …                               (21) 

                × 1.732,050,807,77 … 
     ───────────────────── 
Multiply by 1.   1.732,050,807,77 … 

Multiply by 0.7   1.212,435,565,39 … 

Multiply by 0.03   1.051,961,524,22 … 

 …    … 
─────────────────────────────────── 
Sum of the above  3   exactly 
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Speaking non-mathematically the result coming out to exactly 3 seems like a miracle – it certainly 
would seem highly improbable.  Yet, that is what the infinite string of non-repeating digits to the right 

of the decimal point in all irrational numbers is capable of. 

Irrational numbers have a special power.  There is no end to their non-zero digits to the right of the 
decimal point – they go on and on.  They have no “right-most” digit. 

But, what about repeating decimals?  They appear to have an infinite string of digits to the right of the 
decimal point.  Yet they are rational.  Repeating decimals do not really have an infinite string of digits 

to the right of the decimal point.   That appearance is pseudo.  It is a consequence of the number 

system in use.  We use the decimal system, most likely because evolution gave us 5 fingers on each 

of 2 hands. 

Consider, for example, the repeating decimal 0.333 … 1/3 .  That same numerical value, one item 

out of three, expressed in the number system using base 3 and the digits 0, 1, 2 is written 
1/10 = 0.1 not a repeating decimal nor a repeating [number system base three].  Any repeating 

decimal expressed in a number system that uses as its base the number cycle that is repeated appears 

as an ordinary, not repeating, ”decimal” (number system base) in that number system. 

No number system is sacred or prime; only the numerical values involved are so.  True irrational 

numbers have an infinite string of digits to the right of the decimal point regardless of the number 
system in which they are expressed.  The numerical value, itself, is that way.  And, that is so because 

a true irrational number’s digits have no cycle of repetition or, rather, that cycle extends to infinity 

and so cannot be repeated nor be a number system base. 

9. CONCLUSION 

This theorem was first conjectured by Pierre de Fermat in 1637. The first successful proof was 
released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by 

mathematicians. The unsolved problem stimulated the development of algebraic number theory in the 

19th century and the proof of the modularity theorem in the 20th century. It is among the most notable 
theorems in the history of mathematics and prior to its proof it was in the Guinness Book of World 

Records for "most difficult mathematical problems". 
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