On Groups with Chain Conditions on Subnormal Subgroups

Falih A.M. Aldosray
Department of Mathematics
Umm AlQura University,
Makkah, Saudi Arabia
fadosary@uqu.edu.sa

Abduallah A. Abduh
Department of Mathematics
Umm AlQura University
Makkah, Saudi Arabia
aaabduh@uqu.edu.sa

Abstract: Groups with chain Conditions on subnormal subgroups have been investigated by many authors. In this paper we give a necessarily and sufficient conditions under which a group G satisfy the ascending or the descending chain conditions on subnormal subgroups.

Keywords: Prime Subgroups, Groups with chain Conditions on subnormal subgroups.

1. INTRODUCTION

Let G be a group. A subgroup P of G is said to be a primesubgroup of G if P is normal in G and $[A, B] \subseteq P$ with $A, B \triangleleft G$ implies that either $A \subseteq P$ or $B \subseteq P$. Here $[,]$ is the commutator. Following Scukin [11] we say that a group G is prime if $[A, B] \neq 1$ whenever A and B are nontrivial normal subgroups of G, see also Dark [5]. Then P is prime in G if and only if G/P is a prime group.

We define the soluble radical $\sigma(G)$ to be the product of all soluble normal subgroups of G. We say that G is semisimple if $\sigma(G) = 1$. The terms of the derived and lower central series of G are denoted $G^{(n)}$ and $\gamma_n(G)$ as in Robinson [8]. A prime subgroup P of G is said to be a minimal prime subgroup belonging to a normal subgroup H if $P \supseteq H$ and if there is no prime subgroup between H and P, see Kurata [6, p 205]. The radical $r(H)$ of a normal subgroup in G is the intersection of all minimal prime subgroups belonging to H, see Kurata [6, p 206]. If G is unclear we write this as $r(G)$. It follows that $r(H)$ is the intersection of all prime subgroups containing H, see Kurata [6, Proposition 1.13 p.207]. We write r_G for $r_G(1)$, the intersection of all minimal prime subgroups of G.

We denote by $\text{Max} - \triangleleft$ the class of all groups satisfying the maximal condition on normal subgroups (often called Max-n), with similar definition for $\text{Min} - \triangleleft$. The classes of all groups satisfying the maximal (respectively minimal) condition on subnormal subgroups are denoted by Max-sn, and Min-sn, following Robinson[8], which is also our source for any other unexplained notation and determined by the corresponding chain condition, so that G satisfies Min-sn and $G \in \text{Min} - sn$ are equivalent statement.

2. RESULT

Proposition 1: For all group G,

(a) $\sigma(G) \subseteq r_G$.

(b) If $G \in \text{Max} - \triangleleft$, then $\sigma(G) = r_G$.

Proof

(a) Let H be a soluble normal subgroup of G. Then $H^{(n)} = 1$ for some $n \geq 0$. In particular $H^{(n)} \subseteq P$ for every prime subgroup P. Inductively we see that $H \subseteq P$, whence $\sigma(G) \subseteq r_G$.

©ARC
(b) Let $R = r_G$ and suppose that R not soluble. Let C be the collection of all normal subgroups N of G such that $R^{(n)} \nsubseteq N$ for all integers $n \geq 0$. Then C is non-empty since $1 \in C$. Hence C has a maximal element say p. We claim that P is prime. Suppose not, then there are normal subgroups A, B of G such that $A \not\subseteq P$ and $B \not\subseteq P$ but $[A, B] \subseteq P$. Therefore $AP, BP \subseteq C$. Hence $R^{(m)} \subseteq AP$ and $R^{(n)} \subseteq BP$ for some integers $m, n \geq 0$. Let $s = \max\{m, n\}$. Then $R^{(s+1)} \subseteq [AP, BP] = [AP, B][AP, P] = [A, B][P, B][A, P][P, P] \subseteq P$. Hence $AP \subseteq P$ or $BP \subseteq P$, which implies that $A \subseteq P$ or $B \subseteq P$, a contradiction. Hence P is prime and $R \not\subseteq P$, another contradiction. Therefore R is soluble so $R \subseteq \sigma(G)$. But $\sigma(G) \subseteq R$ by (a), so $R = \sigma(G)$ as claimed.

Proposition 2

(a) Let $G \in \text{Max}^\prec \sigma^3$. Then $\sigma(G)$ is soluble and $\sigma(G) \in \text{Max}$.

(b) Let $G \in \text{Min}^\prec \sigma^2$. Then $\sigma(G)$ is soluble and $\sigma(G) \in \text{Min}$.

Proof:

(a) Since in particular $G \in \text{Max}^\prec \sigma$ it follows that $S = \sigma(G)$ is the product of finitely many soluble normal subgroups, hence is soluble. Because $G \in \text{Max}^\prec \sigma^3$ we have $S \in \text{Max}^\prec \sigma^2$. Each derived factor $S^{\langle n \rangle}/S^{\langle n+1 \rangle}$ is abelian with $\text{Max}^\prec \sigma$, hence with Max. By E-closure of Max, we have $S \in \text{Max}^\prec \sigma$.

(b) By Theorem 5.49.1 or Robinson [8] p. 148 we have $\text{Min}^\prec \sigma^2 = \text{Min} - \text{sn}$. Now apply the analogous argument to part (a) with Max replaced by Min.

Proposition 3 Let G be a group and S be respectively the set of normal subgroups, subnormal subgroups, n-step subnormal subgroups of G. Suppose that $N_{i} \triangleleft G$ $(i = 1, \ldots, m)$ and $\cap_{i=1}^{m} N_{i} = 1$.

Let $S_{i} = \{HN_{i} : H \in S \} \in \text{Max} - S_{i}$ (respectively $\text{Min} - S_{i}$) for all i,
then $G \in \text{Max} - S$ (respectively $\text{Min} - S$).

Proof: This is equivalent to R_{0}-closure of these classes, see Robinson[8] Corollary to Lemma 1.48, p.39.

Proposition 4 A group G is a sub-direct product of a family of groups $\{ G_{a} \}_{a \in A}$ if and only if for each $a \in A$ there is a surjective homomorphism $g_{a} : G \rightarrow G_{a}$ such that $\bigcap_{a \in A} \ker g_{a} = 1$.

Proof: This is standard: compare Cohn [3, p.99]

Corollary 5 Let G be a group and let $G_{a} \big/ G_{a}$ be a family of normal subgroups of G.

If $\bigcap_{a \in A} G_{a} = 1$, then G is a sub-direct product of the family of groups $\{ G \big/ G_{a} \}_{a \in A}$.

Proposition 6

(a) G is semi-simple with $\text{Max}^\prec n \sigma^1$ $(n \geq 1)$ (respectively $\text{Max}^\prec \text{sn}$) if and only if G is a sub-direct product of a finite number of prime groups satisfying $\text{Max}^\prec n \sigma^1$ $(n \geq 1)$ (respectively $\text{Max}^\prec \text{sn}$).

(b) G is semi-simple with $\text{Min}^\prec n \sigma^1$ $(n \geq 1)$ (respectively $\text{Min}^\prec \text{sn}$) if and only if G is a sub-direct product of a finite number of prime groups satisfying $\text{Min}^\prec n \sigma^1$ $(n \geq 1)$ (respectively $\text{Min}^\prec \text{sn}$).
On Groups with Chain Conditions on Subnormal Subgroups

Proof: (a) Let \(G \) be semisimple with \(\text{Max} - \sigma^n(n \geq 1) \) (respectively \(\text{Max} - sn \)). Then \(\sigma(G) = 1 \). By Kurata [3] Proposition 4p 214 we have \(r_G = \bigcap_{i=1}^{m} P_i \) where the \(P_i \) are minimal prime subgroups of \(G \). But by Proposition 1(b) \(\sigma(G) = r_G \), so \(\sigma(G) = 1 \). Since \(P_i \) is a prime subgroup the quotient \(G/P_i \) is prime, and by Q-closure it lies in \(\text{Max} - \sigma^n(n \geq 1) \) (respectively \(\text{Max} - sn \)). By Corollary 5 \(G \) is a subdirect product of prime groups satisfying \(\text{Max} - \sigma^n \) (respectively \(\text{Max} - sn \)).

To prove the converse suppose that \(G \) is a subdirect product of finitely many prime groups \(G_i \) where \(i = 1, \ldots, m \) and each \(G_i \) satisfies \(\text{Max} - \sigma^n \) (respectively \(\text{Max} - sn \)). Let \(g_i : G \to G_i \) be the homomorphism of Proposition 4. For each \(I \) we have \(G/\ker g_i \cong G_i \), and \(G_i \) is prime. So \(\ker g_i \) is a prime subgroup of \(G \). Thus \(r_G \subseteq \ker g_i \) for all \(i \), so \(r_G = 1 \). By proposition 1(a) also \(\sigma(G) = 1 \), so \(G \) is semisimple. That \(G \in \text{Max} - \sigma^n \) (respectively \(\text{Max} - sn \)) follows from Proposition 3.

(b) Let \(G \) be semisimple with \(\text{Min} - \sigma^n(n \geq 1) \) (respectively \(\text{Min} - sn \)). Then \(G \) has only a finite number of minimal normal subgroups where \(i = 1, \ldots, r \). Let \(P_i \) be a normal subgroup of \(G \) that is maximal with respect to not containing \(M_j \). We claim that \(P_i \) is a prime subgroup of \(G \). If not there exist normal subgroups \(A, B \) of \(G \) such that \(A \subseteq P_i \), \(B \subseteq P_i \), but \([A,B] \subseteq P_i \). Now \(P_i \subset AP_i \) and \(P_i \subset BP_i \), so by the choice of \(P_i \) we have \(AP_i \supseteq M_i \) and \(BP_i \supseteq M_i \). Therefore \(\gamma_2 M_i \subseteq [AP_i, BP_i] \subseteq P_i \), but \(\gamma_2 M_i \neq 1 \) since \(G \) is semi-simple so \(\gamma_2 M_i = M_i \subseteq P_i \). Therefore \(P_i \) is a prime subgroup of \(G \) and \(G/P_i \) is a prime group. If \(\bigcap_{i=1}^{m} P_i \neq 1 \), then this intersection contains some minimal subgroup \(M_j \). But \(M_j \not\subset P_i \), a contradiction. Therefore \(\bigcap_{i=1}^{m} P_i = 1 \) and Corollary 5 implies that \(G \) is a sub-direct product of a finite number of prime groups with \(\text{Min} - \sigma^n \) (respectively \(\text{Min} - sn \)). The converse is as in part(a).

We now come to our main theorem:

Theorem 7 Let \(G \) be a group. Then

(a) \(G \in \text{Max} - \sigma^n(n \geq 3) \) (respectively \(\text{Max} - sn \)) if and only if

(i) \(\sigma(G) \) is soluble with \(\text{Max} \).

(ii) \(G/\sigma(G) \) is a sub-direct product of finitely many prime groups satisfying

\[\text{Max} - \sigma^n(n \geq 3) \] (respectively \(\text{Max} - sn \))

(b) \(G \in \text{Min} - \sigma^n(n \geq 2) \) (respectively (or equivalently \(\text{Min} - sn \)) if and only if

(i) \(\sigma(G) \) is soluble with \(\text{Min} \).

(ii) \(G/\sigma(G) \) is a sub-direct product of finitely many prime groups satisfying

\[\text{Min} - \sigma^n(n \geq 2) \] (respectively \(\text{Min} - sn \))

Proof: Combine Propositions 2 and 6.
Corollary 8: G is a finite group if and only if $\sigma(G)$ is finite and $G/\sigma(G)$ is a subdirect product of finitely many finite prime groups.

ACKNOWLEDGEMENTS

The authors would like to thank Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University (43305001) for the financial support.

REFERENCES

[4]. DaeHyumPaek, Chain conditions for subnormal subgroups of infinite order or index, Comm. In Algebra 29(7) 2001, 3069-3081.
[12]. H. Smith, Nilpotent by finite exponent groups with all subgroups subnormal, J.Group Theory 3, 47-56,(2000).
[13]. H. Wielandt, Eine verallgemeinerung der invarianten untergruppen, Math Z.45, 1939 209-244.