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Abstract: Inequalities of Dunkl-Williams, Mercer, Pečarić-Rajić and likewise the strictly triangle 

inequalities are of particular interest in theory of normed spaces. In [2] and [3], are proven the analogous 

inequalities of the strictly inequalities and the inequalities of Pečarić-Rajić type in the quasi-normed 
spaces. In this paper will be considered inequalities, which are analogous to the inequalities of Dunkl-

Williams and Mercer type in quasi-normed space.  
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1. INTRODUCTION 

The quasi-norm is a generalization of a norm and is defined as following. 

Definition 1 ([1], [5]). Let L  be a real vector space. A quasi-norm is a real function || ||: L R  

such that it satisfies the following conditions:  

i) || || 0x , for each x L  and || || 0x  if and only if 0x ,  

ii) || || | | || ||x x , for each R  and for each x L ,  

iii) It exists a constant 1C  such that || || (|| || || ||)x y C x y , for all ,x y L .  

The ordered pair ( ,|| ||)L  is said to be a quasi-normed space. The smallest possible C  as in 

condition iii) is said to be a modulus of concavity of || || . The complete quasi-normed space is 

said to be a quasi-Banach space.  

Definition 2 ([1], [5]). A quasi-norm || ||  is said to be a p norm , 0 1p  if   

|| || || || || ||p p px y x y ,                 (1) 

for all ,x y L . In this case a quasi-normed space is used to be said as p normed space and 

quasi-Banach space is used to be said as p Banach space.   

In quasi-normed space for the quasi-norms and the p  norms holds true the following theorem. 

This theorem actually enable rather than quasi-norms to deal with p norms, which is easier in 

many cases.  

Theorem 1 (Aoki-Rolewitz, [1], [5]). Let ( ,|| ||)L  be a quasi-normed space. Then, there exist 

, 0 1p p  and an equivalent quasi-norm ||| ||| of L , which is p norm.  

2. MAIN RESULTS  

Theorem 2. Let L  be a quasi-normed space with modulus of concavity 1C . Then for all non-

null vectors ,x y L  the following holds true  
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|| || max{|| ||,|| ||}

|| || || || || || || || || || || ||
|| || 4 2( 1)

y x y x yx
x y x y x y

C C .               (2) 

Proof. The definition 1 implies that for all non-null vectors ,x y L  it holds true that  

|| || || || || || || || || || || ||

|| || || || || || || ||

|| || || || || || || ||

|| || || || || || || ||

|| || | || || || || | .

y y y yx x
x y x x x y

y y yx
x x x y

x x

C x C x

C x y C y x

             (3) 

Further, since Definition 1 we have that 

|| || || || || ||y C y x C x  and || || || || || ||x C x y C y , 

which imply the following inequalities 

|| || || || || || ( 1) || || || || ( 1)max{|| ||,|| ||}y x C y x C x C x y C x y  and 

|| || || || || || ( 1) || || || || ( 1)max{|| ||,|| ||}x y C x y C y C x y C x y , 

i.e. the inequality 

| || || || || | || || ( 1)max{|| ||,|| ||}y x C x y C x y .              (4) 

Now, the inequalities (3) and (4) imply the inequality  

|| || || ||
|| || || || 2 || || ( 1)max{|| ||,|| ||}

yx
x y

x C x y C x y .             (5) 

Analogously, can be proven the following 

|| || || ||
|| || || || 2 || || ( 1)max{|| ||,|| ||}

yx
x y

y C x y C x y .             (6)  

Finally, if we summarize the inequalities (5) and (6) and the obtained inequality divide by 

|| || || || 0x y  we get the inequality (2).  

Theorem 3. Let L  be a p normed space, 0 1p . Then for all non-null vectors ,x y L  holds 

true that 

|| || | || || || || |

|| || || || || || || ||
|| || 2 .

p p

p p

x y y xy px
x y x y

               (7) 

Proof. The definition 2, i.e. the properties of p norm imply that for all non-null vectors ,x y L  

it hold true that 

|| || || || || || || || || || || ||

|| || || || || || || ||

|| || || || || || || ||

|| || || || || || || ||

|| || | || || || || |

y y y yp p p px x
x y x x x y

y y yp p p px
x x x y

p p

x x

x x

x y y x

            (8) 

and 

|| || || || || || || || || || || ||

|| || || || || || || ||

|| || || || || || || ||

|| || || || || || || ||

|| || | || || || || | .

y yp p p px x x x
x y x y y y

yp p p px x x
x y y y

p p

y y

y y

x y y x

            (9) 

Finally, if we summarize the inequalities (8) and (9) and the obtained inequality divide by 

|| || || || 0p px y , we get the inequality (7). 
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Remark 1. The inequalities (2) and (7) are actually inequalities of Dunkl-Williams type in quasi-

normed and p normed space, 0 1p , respectively. 

Theorem 4. Let L  be a quasi-normed space with modulus of concavity 1C . The following 

statements are equivalent:  

1) For all non-null vectors ,x y L  it is true that 

|| || max{|| ||,|| ||}

|| || || || || || || || || || || ||
|| || 2 ( 1)

y x y x yx
x y x y x y

C C .             (10) 

2) If ,x y L  are such that || || || || 1x y , then  

1
2 2

|| || || (1 ) || max{1 , }
x y CC t x ty t t ,             (11) 

for each [0,1]t .  

Proof. 1) 2) . Let assume that the statement 1) holds true. Let ,x y L  be such that 

|| || || || 1x y . Clearly, for 0t  and 1t , the inequality (11) holds true. If (0,1)t , then 1) 

implies the following 

1

1

1 1

1 1

1
2 2 1

1
2 1 || || || ||

|| || max{|| ||,|| ||}1
2 1 || || || || || || || ||

( 1)(1 )

1 2

|| || (1 ) || ||

(|| || || ||) || ||

(|| || || ||)(2 ( 1) )

(1 ) || || ma

t
t
t

t

t t
t t

t t
t t

x y t t
t

yt t x
t x y

x y x yt t
t x y x y

C tt
t

x y

x y

x y C C

C t x y
1

1
2

x{1, }

|| (1 ) || max{1 , },

t
t

CC t x ty t t

 

i.e. the inequality (11) holds true. 

2) 1) . Let assume that the statement 2) holds true. Let x  and y  be arbitrary non-null vectors 

in L . Then, for 
|| || || ||

,
yx

x y
L  holds true that 

|| || || ||
|| || || || 1

yx
x y

 and if we take that 
|| ||

|| || || ||

y

x y
t , then 

by 2) we get that  

|| || || ||

|| || || || 2

|| || || || || || || ||1
|| || || || || || || || || || || || 2 || || || || || || || ||

|| || max{|| ||,|| ||}

|| || || || || || || ||

|| || 2 || ||

2( || (1 ) || max{1 , }

2 ( 1)

yx
x yyx

x y

y y y y yx C
x y x x y y x y x y

x y x y

x y x y

C

C C

 

i.e. the inequality (8) holds true. 

3. CONCLUSION   

The inequality (10) is actually generalization of Mercer inequality 
2|| ||

|| || || || || || || ||
|| ||

y x yx
x y x y

. Which in 

normed space is satisfied if and only if the norm is generated by a scalar product. Thus, it is 

logically to wonder:  

Is the inequality (10) into a quasi-normed space with modulus of concavity 1C  satisfied if and 

only if there exists a function :f L L R  so that 
2( , ) || ||f x x x .  
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