Abstract: Let G be a Simple Graph with Vertex set $V(G)$ and Edge set $E(G)$ respectively. Vertex set $V(G)$ is labeled arbitrary by positive integers and let $E(e)$ denote the edge label such that it is the sum of labels of vertices incident with edge e. The labeling is said to be lucky edge labeling if the edge set $E(G)$ is a proper coloring of G, that is, if we have $E(e_1) \neq E(e_2)$ whenever e_1 and e_2 are adjacent edges. The least integer k for which a graph G has a lucky edge labeling from the set $\{1, 2, \ldots, k\}$ is the lucky number of G denoted by $\eta(G)$.

A graph which admits lucky edge labeling is the lucky edge labeled graph.

In this paper, it is proved that Path P_n, Comb P_n^+, Cycle C_n, Crown C_n^+ are lucky edge labeled graphs.

Keywords: Lucky Edge Labeled Graph, Lucky Edge Labeling, Lucky Number, 2010 Mathematics subject classification Number: 05C78.

1. INTRODUCTION

A graph G is a finite non empty set of objects called vertices together with a set of pairs of distinct vertices of G which is called edges. Each $e=\{uv\}$ of vertices in E is called an edge or a line of G. For Graph Theoretical Terminology, [2].

2. PRELIMINARIES

Definition: 2.1

Let G be a Simple Graph with Vertex set $V(G)$ and Edge set $E(G)$ respectively. Vertex set $V(G)$ are labeled arbitrary by positive integers and let $E(e)$ denote the edge label such that it is the sum of labels of vertices incident with edge e. The labeling is said to be lucky edge labeling if the edge set $E(G)$ is a proper coloring of G, that is, if we have $E(e_1) \neq E(e_2)$ whenever e_1 and e_2 are adjacent edges. The least integer k for which a graph G has a lucky edge labeling from the set $\{1, 2, \ldots, k\}$ is the lucky number of G denoted by $\eta(G)$.

A graph which admits lucky edge labeling is the lucky edge labeled graph.

Definition: 2.2

A Walk of a graph G is an alternating sequence of vertices and edges $v_1, e_1, v_2, e_2, \ldots, v_{n-1}, e_{n-1}, v_n$ beginning and ending with vertices such that each edge e_i is incident with v_{i-1} and v_i.

Definition: 2.3

If all the vertices in a walk are distinct, then it is called a Path and a path of length n is denoted by P_{n+1}.

Definition: 2.4

A graph obtained by joining each u_i to a vertex v_i is called a Comb and denoted by P_n^+. The vertex set and Edge set of P_n^+ is $V[P_n^+] = \{u_i, v_i: 1 \leq i \leq n\}$ and $E[P_n^+] = \{(u_i, u_{i+1}): 1 \leq i \leq n-1\} \cup \{(u_i, v_i): 1 \leq i \leq n\}$ respectively. P_n^+ has $2n$ vertices and $2n-1$ edges.

Definition: 2.5

A closed path is called a Cycle and a cycle of length n is denoted by C_n.

©ARC
Definition: 2.6

C_n^+ is a graph obtained from G by attaching a pendent vertex from each vertex of the graph C_n is called Crown.

3. MAIN RESULTS

Theorem: 3.1

P_n has $\{a, b\}$ lucky edge labeling graph for any $a, b \in N$.

Proof:

Let $V[P_n] = \{ u_i : 1 \leq i \leq n \}$ and $E[P_n] = \{ (u_i, u_{i+1}) : 1 \leq i \leq n-1 \}$.

Let $f: V[P_n] \to \{1, 2\}$ defined by

\[
f(u_{2i}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases}
\]

and $1 \leq i \leq (n - 1)/2$, for n is odd and $1 \leq i \leq n/2$, for n is even.

\[
f(u_{2i-1}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases}
\]

and $1 \leq i \leq (n + 1)/2$, for n is odd and $1 \leq i \leq n/2$, for n is even.

Then the induced edge coloring are

whenn is odd, $1 \leq i \leq (n - 1)/2$ and when n is even, $1 \leq i \leq (n/2) - 1$

\[
f^*(u_2u_{2i+1}) = 3
\]

whenn is odd, $1 \leq i \leq (n - 1)/2$ and when n is even, $1 \leq i \leq n/2$

\[
f^*(u_{2i-1}u_{2i}) = \begin{cases}
2 & i \equiv 1 \mod 2 \\
4 & i \equiv 0 \mod 2
\end{cases}
\]

It is clear that lucky edge labeling of P_n is $\{2, 3, 4\}$.

Hence, P_n has lucky edge labeling graph.

For example, lucky edge labeling of P_6 is shown in figure 1 and $\eta(P_6) = 4$.

\[\begin{array}{cccccc}
1 & 2 & 1 & 3 & 2 & 4 \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\end{array}\]

Theorem: 3.2

P_n^+ has $\{a, b, c\}$ lucky edge labeling graph for any $a, b, c \in N$.

Proof:

Let $V[P_n^+] = \{ \{u_i : 1 \leq i \leq n\}, \{v_i : 1 \leq i \leq n\}\}$ and $E[P_n^+] = \{(u_i, u_{i+1}) : 1 \leq i \leq n-1\} \cup \{(u_i, v_i) : 1 \leq i \leq n\}$.

Let $f: V[P_n^+] \to \{1, 2, 3\}$ defined by

\[
f(u_{2i}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases}
\]

and $1 \leq i \leq (n - 1)/2$, for n is odd and $1 \leq i \leq n/2$, for n is even.

\[
f(u_{2i-1}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases}
\]

and $1 \leq i \leq (n + 1)/2$, for n is odd and $1 \leq i \leq n/2$, for n is even.
Lucky Edge Labeling of P_n, C_n and Corona of P^+_n, C^+_n

$$f(v_i) = 2$$
$$f(v_i) = 3, \ 2 \leq i \leq n-1$$
$$f(v_n) = \begin{cases} 1 & n \equiv 0, 1 \ mod \ 4 \\ 2 & n \equiv 2, 3 \ mod \ 4 \end{cases}$$

Then the induced edge coloring are

when n is odd, $1 \leq i \leq (n-1)/2$ and when n is even, $1 \leq i \leq (n/2) - 1$

$$f'_{(u_2u_{2i+1})} = 3$$

when n is odd, $1 \leq i \leq (n-1)/2$ and when n is even, $1 \leq i \leq n/2$

$$f'(u_{2i,u_{2i+2}}) = \begin{cases} 2 & i \equiv 1 \ mod \ 2 \\ 4 & i \equiv 0 \ mod \ 2 \end{cases}$$

$$f'(u_1v_1) = 3$$

$$f'(u_iv_i) = \begin{cases} 4 & i \equiv 1, 2 \ mod \ 4 \\ 5 & i \equiv 0, 3 \ mod \ 4 \end{cases} \ for \ 2 \leq i \leq n-1.$$

$$f'(u_nv_n) = \begin{cases} 3 & n \equiv 0 \ mod \ 2 \\ 2 & n \equiv 1 \ mod \ 4 \\ 4 & n \equiv 3 \ mod \ 4 \end{cases}$$

It is clear that lucky edge labeling of P^+_n is $\{2, 3, 4, 5\}$.

Hence, P^+_n has lucky edge labeling graph.

For example, lucky edge labeling of P^+_5 and P^+_6 are given in the figure 2a and figure 2b and $\eta(P^+_n) = 5$.

![Figure 2a and $\eta(P^+_5) = 5$](image)

![Figure 2b and $\eta(P^+_6) = 5$](image)

Theorem 3.3:

$C_n : n \equiv 1, 2, 3 \ mod \ 4$ has $\{a, b, c\}$ lucky edge labeling and

$C_n : n \equiv 0 \ mod \ 4$ has $\{a, b\}$ lucky edge labeling for any $a, b, c \in \mathbb{N}$.
Proof:
Let \(V[C_n] = \{ u_i : 1 \leq i \leq n \} \) and \(E[C_n] = \{ (u_i, u_{i+1}) : 1 \leq i \leq n-1 \} \cup \{(u_n, u_1)\} \).

Case 1:
Let \(C_n \) be the graph when \(n \equiv 0 \pmod{4} \).
Let \(f: V[C_n] \to \{1, 2\} \) defined by
\[
f(u_{2i}) = \begin{cases} 1 & i \equiv 1 \pmod{2} \, 1 \leq i \leq n/2. \\ 2 & i \equiv 0 \pmod{2} \, 1 \leq i \leq n/2.
\end{cases}
\]
\[
f(u_{2i-1}) = \begin{cases} 1 & i \equiv 1 \pmod{2} \\ 2 & i \equiv 0 \pmod{2} \, 1 \leq i \leq n/2.
\end{cases}
\]
Then the induced edge coloring are
when \(1 \leq i \leq (n/2) - 1 \),
\[
f^\ast(u_{2i}u_{2i+1}) = 3,
\]
\[
f^\ast(u_{2i}u_{2i+1}) = 3.
\]
when \(1 \leq i \leq n/2 \),
\[
f^\ast(u_{2i}u_{2i+1}) = \begin{cases} 2 & i \equiv 1 \pmod{2} \\ 4 & i \equiv 0 \pmod{2}
\end{cases}
\]
It is clear that the lucky edge labeling of \(C_n : n \equiv 0 \pmod{4} \) is \{2, 3, 4\}.
For example, Lucky edge labeling of \(C_4 \) is given in the figure 3a and \(\eta(C_n) = 4 \).

Case 2:
Let \(C_n \) be the graph when \(n \equiv 1 \pmod{4} \).
Let \(f: V[C_n] \to \{1, 2, 3\} \) defined by
\[
f(u_{2i}) = \begin{cases} 1 & i \equiv 1 \pmod{2} \, 1 \leq i \leq n/2. \\ 2 & i \equiv 0 \pmod{2} \, 1 \leq i \leq n/2.
\end{cases}
\]
\[
f(u_{2i-1}) = \begin{cases} 1 & i \equiv 1 \pmod{2} \\ 2 & i \equiv 0 \pmod{2} \, 1 \leq i \leq n/2.
\end{cases}
\]
\[
f(u_i) = 3, i \equiv 1 \pmod{4} \text{ and } i = n.
\]
Then the induced edge coloring are
when \(1 \leq i \leq (n - 3)/2 \),
\[
f^\ast(u_{2i}u_{2i+1}) = 3,
\]
when \(1 \leq i \leq (n - 1)/2 \),
\[
f^\ast(u_{2i}u_{2i+1}) = \begin{cases} 2 & i \equiv 1 \pmod{2} \\ 4 & i \equiv 0 \pmod{2}
\end{cases}
\]
when \(i=n \),
\[
f^\ast(u_{i}u_{i-1}) = 4 \text{ and } f^\ast(u_{i}u_{i}) = 5.
\]
It is clear that the lucky edge labeling of \(C_n : n \equiv 1 \pmod{4} \) is clearly \{2, 3, 4, 5\}.
For example, Lucky edge labeling of \(C_5 \) is shown in the figure 3b and \(\eta(C_n) = 5 \).

Figure 3a and \(\eta(C_n) = 4 \) **Figure 3b** and \(\eta(C_n) = 5 \)
Lucky Edge Labeling of \(P_n \), \(C_n \) and Corona of \(P_n \), \(C_n \)

Case 3:
Let \(C_n \) be the graph when \(n \equiv 2 \) (mod 4). Let \(f: V[C_n] \rightarrow \{1, 2, 3\} \) defined by

\[
\begin{align*}
 f(u_{2i}) &= \begin{cases}
 1 & i \equiv 1 \text{ mod } 2 \\
 2 & i \equiv 0 \text{ mod } 2
 \end{cases},
 1 \leq i \leq (n/2) - 1, \\
 f(u_{2i-1}) &= \begin{cases}
 1 & i \equiv 1 \text{ mod } 2 \\
 2 & i \equiv 0 \text{ mod } 2
 \end{cases},
 1 \leq i \leq (n/2) - 1, \\
 f(u_i) &= \begin{cases}
 3 & i \equiv 1 \text{ (mod } 4) \\
 2 & i \equiv 2 \text{ (mod } 4)
 \end{cases} \text{ and } i = n, n-1.
\end{align*}
\]

Figure 3c and \(\eta(C_n) = 6 \)

Then the induced edge coloring are
when \(1 \leq i \leq (n/2) - 2, \)
\(f^*(u_{2i}u_{2i+1}) = 3. \)
when \(1 \leq i \leq (n/2) - 1, \)
\(f^*(u_{2i-1}u_{2i}) = \begin{cases}
 2 & i \equiv 1 \text{ mod } 2 \\
 4 & i \equiv 0 \text{ mod } 2
\end{cases}. \)
when \(i = n-1 \) and \(n-2, \)
\(f^*(u_{i}u_{i+1}) = \begin{cases}
 5 & i \equiv 0 \text{ mod } 4 \\
 6 & i \equiv 1 \text{ mod } 4
\end{cases}. \)
\(f^*(u_{n}u_{1}) = 4. \)

It is clear that the lucky edge labeling of \(C_n : n \equiv 2 \) (mod 4) is clearly \{2, 3, 4, 5, 6\}. For example, Lucky edge labeling of \(C_6 \) is shown in the figure 3c and \(\eta(C_n) = 6 \).

Case 4:
Let \(C_n \) be the graph when \(n \equiv 3 \) (mod 4). Let \(f: V[C_n] \rightarrow \{1, 2, 3\} \) defined by

\[
\begin{align*}
 f(u_{2i}) &= \begin{cases}
 1 & i \equiv 1 \text{ mod } 2 \\
 2 & i \equiv 0 \text{ mod } 2
 \end{cases},
 1 \leq i \leq (n-3)/2, \\
 f(u_{2i-1}) &= \begin{cases}
 1 & i \equiv 1 \text{ mod } 2 \\
 2 & i \equiv 0 \text{ mod } 2
 \end{cases},
 1 \leq i \leq (n+1)/2 \text{ and } i = n-1, \\
 f(u_i) &= 3, i \equiv 2 \text{ (mod } 4). \)
\end{align*}
\]

Then the induced edge coloring is
when \(1 \leq i \leq (n-3)/2, \)
\(f^*(u_{2i}u_{2i+1}) = 3. \)
when \(1 \leq i \leq (n-3)/2, \)
\(f^*(u_{2i-1}u_{2i}) = \begin{cases}
 2 & i \equiv 1 \text{ mod } 2 \\
 4 & i \equiv 0 \text{ mod } 2
\end{cases}. \)
\(f^*(u_iu_{i+1}) = \begin{cases}
 4 \text{ when } t = n-1 \text{ and } f^*(u_{n}u_{1}) = 3.
\end{cases}. \)

\[
\begin{align*}
 \text{Figure 3d and } \eta(C_n) &= 5
\end{align*}
\]
It is clear that the lucky edge labeling of $C_n : n \equiv 3 \pmod{4}$ is clearly $\{2, 3, 4, 5\}$. For example, Lucky edge labeling of C_7 is shown in the figure 3d and $\eta(C_7) = 5$. Hence, C_n has lucky edge labeling graph.

Theorem 3.4:

$C_n^* : n \equiv 0, 1, 2, 3 \pmod{4}$ has $\{a, b, c\}$ lucky edge labeling for any $a, b, c \in \mathbb{N}$.

Proof:

Let $V[C_n^*] = \{u_i : 1 \leq i \leq n\}$ and $\{v_i : 1 \leq i \leq n\}$ and

$E[C_n^*] = \{(u_i, u_{i+1}) : 1 \leq i \leq n-1\} \cup \{(u_1, u_n)\} \cup \{(u_i, v_i) : 1 \leq i \leq n\}$.

Case 1:

Let C_n^* be the graph when $n \equiv 0 \pmod{4}$.

Let $f : V[C_n] \to \{1, 2, 3\}$ defined by

\[
\begin{align*}
 f(u_{2i}) &= \begin{cases}
 1 & i \equiv 1 \pmod{2} \\
 2 & i \equiv 0 \pmod{2}
 \end{cases}, 1 \leq i \leq n/2.
\end{align*}
\]

\[
\begin{align*}
 f(u_{2i-1}) &= \begin{cases}
 1 & i \equiv 1 \pmod{2} \\
 2 & i \equiv 0 \pmod{2}
 \end{cases}, 1 \leq i \leq n/2.
\end{align*}
\]

\[
f(v_i) = 3, 1 \leq i \leq n.
\]

Then the induced edge coloring are

when $1 \leq i \leq (n/2) - 1$,

\[
\begin{align*}
 f^*(u_{2i}u_{2i+1}) &= 3. \\
 f^*(u_{2i-1}u_{2i}) &= 3.
\end{align*}
\]

when $1 \leq i \leq n/2$,

\[
\begin{align*}
 f^*(u_{2i+1}u_{2i}) &= \begin{cases}
 2 & i \equiv 1 \pmod{2} \\
 4 & i \equiv 0 \pmod{2}
 \end{cases}.
\end{align*}
\]

when $1 \leq i \leq n$,

\[
\begin{align*}
 f^*(u_i, v_i) &= \begin{cases}
 4 & i \equiv 1, 2 \pmod{4} \\
 5 & i \equiv 0, 3 \pmod{4}
 \end{cases}.
\end{align*}
\]

It is clear that the lucky edge labeling of $C_n^* : n \equiv 0 \pmod{4}$ is $\{2, 3, 4, 5\}$.

For example, Lucky edge labeling of C_4^* is shown in the figure 4a and $\eta(C_n^*) = 5$.

Case 2:

Let C_n^* be the graph when $n = 1 \pmod{4}$.

Let $f : V[C_n] \to \{1, 2, 3\}$ defined by

\[
\begin{align*}
 f(u_{2i}) &= \begin{cases}
 1 & i \equiv 1 \pmod{2} \\
 2 & i \equiv 0 \pmod{2}
 \end{cases}, 1 \leq i \leq n/2.
\end{align*}
\]

\[
\begin{align*}
 f(u_{2i-1}) &= \begin{cases}
 1 & i \equiv 1 \pmod{2} \\
 2 & i \equiv 0 \pmod{2}
 \end{cases}, 1 \leq i \leq n/2.
\end{align*}
\]

\[
f(u_n) = 3, i \equiv 1 \pmod{4} \text{ and } i = n.
\]

\[
f(v_1) = 2, f(v_{n-1}) = 1
\]

\[
f(v_i) = 3, 2 \leq i \leq n.
\]

Then the induced edge coloring are

when $1 \leq i \leq (n - 3)/2$,

\[
\begin{align*}
 f^*(u_{2i}u_{2i+1}) &= 3.
\end{align*}
\]

when $1 \leq i \leq (n - 1)/2$,

\[
\begin{align*}
 f^*(u_{2i+1}u_{2i}) &= \begin{cases}
 2 & i \equiv 1 \pmod{2} \\
 4 & i \equiv 0 \pmod{2}
 \end{cases}.
\end{align*}
\]

when $i = n$,

\[
\begin{align*}
 f^*(u_i, v_i) &= 4 \text{ and } f^*(u_i, u_1) = 5.
\end{align*}
\]
Lucky Edge Labeling of P_n, C_n and Corona of P_n, C_n

when $2 \leq i \leq n$,

$$f^*(u_i, v_i) = \begin{cases}
5 & i \equiv 3 \mod 4 \\
3 & i \equiv 0 \mod 4 \\
6 & i \equiv 1 \mod 4
\end{cases}$$

when $2 \leq i \leq n-3$,

$$f^*(u_i, v_i) = \begin{cases}
4 & i \equiv 1, 2 \mod 4 \\
5 & i \equiv 0, 3 \mod 4
\end{cases}$$

It is clear that the lucky edge labeling of $C_n^+: n \equiv 1 \mod 4$ is $\{2, 3, 4, 5, 6\}$.
For example, Lucky edge labeling of C_5^+ is shown in the figure 4b and $\eta(C_5^+) = 6$.

Case 3:

Let C_n^+ be the graph when $n \equiv 2 \mod 4$.

Let $f: V[C_n^+] \rightarrow \{1, 2, 3\}$ defined by

$$f(u_{2i}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases} \quad 1 \leq i \leq (n/2) - 1.$$

$$f(u_{2i-1}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases} \quad 1 \leq i \leq (n/2) - 1.$$

$$f(v_i) = 3, \quad i = n - 1, n-2 \text{ and } f(v_i) = 2, i = 1, n.$$

Then the induced edge coloring are

when $1 \leq i \leq (n/2) - 2$,

$$f^*(u_{2i}u_{2i+1}) = 3.$$

when $1 \leq i \leq (n/2) - 1$,

$$f^*(u_{2i-1}u_{2i}) = \begin{cases}
2 & i \equiv 1 \mod 2 \\
4 & i \equiv 0 \mod 2
\end{cases}.$$

when $i = n-1, n-2$,

$$f^*(u_{i+1}u_i) = \begin{cases}
5 & i \equiv 0 \mod 4 \\
6 & i \equiv 1 \mod 4
\end{cases}.$$

$$f^*(u_{n-1}u_1) = 4.$$

when $i = 1, n-2$,

$$f^*(u_{n-1}v_1) = 3.$$

when $2 \leq i \leq n-1$,

$$f^*(u_{i}v_{i+1}) = \begin{cases}
4 & i \equiv 1, 2 \mod 4 \\
5 & i \equiv 0, 3 \mod 4
\end{cases}.$$

$$f^*(u_{n-1}v_1) = 5, i = n.$$

It is clear that the lucky edge labeling of $C_n^+: n \equiv 2 \mod 4$ is $\{2, 3, 4, 5, 6\}$.
For example, Lucky edge labeling of C_6^+ is shown in the figure 4c and $\eta(C_6^+) = 6$.

Case 4:

Let C_n^+ be the graph when $n \equiv 3 \mod 4$.

Let $f: V[C_n^+] \rightarrow \{1, 2, 3\}$ defined by

$$f(u_{2i}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases} \quad 1 \leq i \leq (n - 3)/2.$$

$$f(u_{2i-1}) = \begin{cases}
1 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases} \quad 1 \leq i \leq (n + 1)/2 \quad \text{and } i = n-1.$$

$$f(u_{n+1}) = 2 \pmod{4}.$$

$$f(v_i) = \begin{cases}
2 & i \equiv 3 \mod 4 \\
3 & i \equiv 2 \mod 4, n-2 \leq i \leq n \\
1 & i \equiv 1 \mod 4
\end{cases}.$$

$$f(v_i) = 3, 1 \leq i \leq n-3.$$
Then the induced edge coloring are

when $1 \leq i \leq (n-3)/2$,

$f^*(u_{2i}u_{2i+1}) = 3$.

when $1 \leq i \leq (n-3)/2$,

$f^*(u_{2i-1}u_{2i}) = \begin{cases} 2 & i \equiv 1 \text{ mod } 2 \\ 4 & i \equiv 0 \text{ mod } 2 \end{cases}$,

$f^*(u_{i-1}u_i) = \begin{cases} 4 & \text{when } i = n-1 \\ 5 & \text{when } i = 1 \end{cases}$,

$f^*(u_{n}u_1) = 3$.

when $-2 \leq i \leq n$,

$f^*(u_iv_i) = \begin{cases} 2 & i \equiv 1 \text{ mod } 3 \\ 6 & i \equiv 2 \text{ mod } 3 \\ 4 & i \equiv 0 \text{ mod } 3 \end{cases}$.

when $1 \leq i \leq n-3$,

$f^*(u_iv_i) = \begin{cases} 4 & i \equiv 1, 2 \text{ mod } 4 \\ 5 & i \equiv 0, 3 \text{ mod } 4 \end{cases}$.
Lucky Edge Labeling of P_n, C_n and Corona of P_n, C_n

It is clear that the lucky edge labeling of $C_n^+ : n \equiv 3 \pmod{4}$ is $\{2, 3, 4, 5, 6\}$.

For example, Lucky edge labeling of C_7^+ is shown in the figure 4d and $\eta(C_n^+) = 6$.

Hence, C_n^+ has lucky edge labeling graph.

4. CONCLUSION

Among all labelling lucky edge labelling has a special importance because it is incorporated with coloring of graphs

REFERENCES

[3] NELLAIMURUGAN.A - STUDIES IN GRAPH THEORY –SOME LABELING PROBLEMS IN GRAPHS AND RELATED TOPICS,Ph.D. Thesis September 2011...

AUTHORS’ BIOGRAPHY

Dr. A. Nellai Murugan is working as a Associate Professor in theDepartment of Mathematics, V.O. ChidambaramCollege, Tuticorin. He has 30 years of teachingexperience and 10 years of research experience. He has participated in number of conferences/seminar atnational and international level. He has publishedmore than 40 research article in the reputed research journals. He is guiding 6 Ph.D research scholars.

R.Maria Irudhaya Aspin Chitra is a full time Ph.D Research Scholar working in Graph theory at Department of Mathematics, V.O. ChidambaramCollege, Tuticorin. She has communicated 3 more research articles