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Abstract: In this paper we take a review of the linear and Nonlinear systems of ordinary differential
equations

X'=Ax €))
o,
. | dt
where X R" Aisan nxnmatrixand X' = — =| :
dt d)(n
dt

The solution of the linear system (1) together with the initial condition X(0) = X, is given by X = eAtXO,

where e”'is an nx n matrix function defined by its Taylor series. In addition to this, we also discuss the
nonlinear system of differential equation

X'=1(9) )

where ¥ :E — R", Eisan open subsetof R".
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1. INTRODUCTION

The method of separation of variables can be used to solve the first order linear differential
equations X' = ax. The general solution is given by x(t) = ce™ where the constantc = X(0), the

value of the function X(t)at time t =0.Now consider the uncoupled linear system X =—X, ,
X, = 2X,

-1 0
This can be written as X' = AX, where A :{ 0 2} .

The solution of this system can be given by X, (t) =ce™, X,(t) = c,e* or equivalently by

X(t) = [e; 0 }c . where ¢ =x(0).

eZt

2. FUNDAMENTAL RESULTS FOR LINEAR SYSTEM

Let A be an nxnmatrix. In this section we discuss the fundamental fact that for x, € R" the
initial value problem X" = AX, X(0) = X,has unique solution for allt € R which is given
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by x(t) = xoeAt . In order to prove this, we first compute the derivative of the exponential

function e using the basic fact from analysis, that the two convergent limit processes can be
interchanged if one of them converges uniformly.

= AR
Definitions: Let Abean nxnmatrix. ThenforteR, et = 7
k=0 -

Proposition 1: If S and T are linear transformations on R" which commute then e T =e%e'.

Proof: If the transformations S and T are commuting, then we have ST=TS.
By the Binomial theorem

SiTk
S+T)" =n!

eS+T: i Z Ska

Setting S = -T in above proposition we obtain following Corollary

Corollaryl:If T is a linear transformation on R”, the inverse of linear transformation of e’ is
. Ty-1 -T
givenby (6')" =€

d
Lemma 1:- Let A be a square matrix, then Ee“ = Ae™

Proof:-Science A commute with itself, it follows from proposition 1 and definition

d | pAlsh) _ oAt
—e™ —lim
dt h—0 h

— |imeAt (eAh—_|)
T ho0 h

2 32 ki k-1
- IimIim(A+ A2|h+Ah + .+Ah J

h—0 k—o 37 k1

_ AeAt

Since e™ converges uniformly for |h[<1. wecan interchange the two limits. [6]
Theorem 1: (The fundamental theorem for linear system)

Let Abe an nxnmatrix. Then for given x, € R"the initial value problem X' = AX,

x(0) = X, has a unique solution given by x(t) = e"'x, .

Proof: By the preceding Lemma, If x(t) =e™'x,, then X'(t) = %e’“x0 = Ae™x, = Ax(t) for all

teR Also x(0) = IX,=X,. Thus x(t) = e*x, is a solution.
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Uniqueness of the solution To see that this is the only solution, let x(t)be any solution of the
initial value problem (1) and set y(t) = e *'x(t). Then from the above lemma and the fact that
X(t)is a solution of (1), it follows that

y'(t) = —Ae M x(t) +e MX'(t)

=0 for all t€Rsince € ™and A commute. Thus Y(t)is a

constant. Setting t=0 shows that Y(t) =X;and therefore any solution of the initial value
problem is given by

X(t) = e™y(t) = e™X, . Thus the result.

3. FUNDAMENTAL RESULTS FOR NONLINEAR SYSTEM

Before starting and proving the fundamental results for the nonlinear system (2), we discuss the
basic terminology and notations concerning the derivative Df of a function f : R" — R".
Definition: The function f:R" — R"is differentiable at x, € R"if there is a linear
transformationDF e LR ")that satisfies

hi>0 Ih |

the linear transformation Df (Xo) is called the derivative of f at Xg .

The following result established by [6] gives us a method for computing the derivative in
coordinates .

Theorem 2: If T . — Ris differentiable at Xo, then the partial derivatives o 4,j=1,2,...n,
j

L of
all exist at Xpand for all X€ R" Df (x))x = zaT(Xo)Xj :
=1 9%
Proof: Ref [6].
Thus if f is differentiable function , the derivative Df is given by the NXN Jacobian matrix

of | . . . . . . . .
Df = K , it is assumed that the function f(X)is continuously differentiable ; i.e. that the
j

derivative D (X) is considered as a mapping Df : R" — L(R") and is a continuous function of

x in some open subset E < R" . The linear spaces R"and L(R") are endowed with the Euclidean
norm |.| and the operator norm ||.||.

Suppose that E is an open Subset of R" | the higher order derivatives D*f(X,) of a function

f : E — R"are defined in similar way and it can be shown that f €C“(E)if and only if the
OF o

i i i i I, 7 = = = ) i i .

partial derivatives ox, 8xj2- ox, with LA L > - -k=1,..., n exist and are continuous on E

Furthermore, D*f(x,) :ExE - R"and for (X,y) e EXE e have

: azf(x )
D2 f (x,)(X,Y) = — 70/
(X)(X,Y) Z %, ox,.

=1

X; Y;, . Similar results hold for higher ordered derivatives .

Definition: Suppose that f € C(E), where Eis an open subset of R". Then X(t)is a solution of
the differential equation (2)on an interval | if it is differentiable on | and for all
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tel x(t)eEand X'(t) = f(X(t)).Also, for a given X, € E, x(t) is a solution of the initial

value problem X' = f(X) X(t,) =X, on an interval 1 if t, €1 X(t;) =X, is a solution of the
differential equation on the interval I.

Definition: Let E be an open subset of R". A function f :E — R"js said to be locally Lipschitz
on E if for each X, € E there is an & -neighborhood of Xy, N,(X;) < E and a constant K > 0
such that for all X,y € N, (X,) € E

| F)-f(y)I<K[x-y].
If | F(X)—F(Y)[KK|X=Y] holds forall X,Y €E thenitis Lipschitz on E.

Lemma2: Let E be an open subset of R"and let f:E—>R"1f feC(E), fis locally
Lipschitz on E.

Proof: Refer[8]

Let I =FaAakhe norm on C(I) is define as |[U[=sup|u(t)|. Convergence in this norm is
|

equivalent to uniform convergence.

Definition: Let VV be a normed linear space . Then a sequence {Uk}CV is called a Cauchy

sequence if for all &> 0there is a positive integer N such that k,m >N implies that
u,—uy <.

The space V is called complete if every Cauchy sequence in V converges to an element in V.

Theorem3: For 1 = [—a,a] C(l) is a complete normed linear space. [8]

Theorem4: (Fundamental Existence theorem). Let E be an open subset of R" containing  Xpand
assume that T € C(1) . Then there exists an a > 0 such that the initial value problem X'=f(x)
,X(0) = X, has a unique solution x(t) on the interval a2,

Proof: Since f € C('), it follows from the lemma that there is an

¢ -neighborhood N, (X)) CEand a constant K > 0 such that for all X Y& N,(X),
| F)-f(y) I<K[x-y].

Let b=%. Then the continuous function f(X)is bounded on the compact set
No={x eR"/ |x—x, Kb},

Let M = max| f(X)|.Let the successive approximations U, (t) be defined by the sequence of

functions Uy (t) = X,
t

Uy () =%, + j f (U, (s))ds | for k=012,... (1)
0

Then assuming that there exist an a>0 such that U, (t) is defined and continuous on [-a, a] and
satisfies

max Ju.®-x kb ()

It follows that TG is defined and continuous on [-a, a] and therefore that
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t
Upa () =% + [ (U, (s))ds
0
is defined and continuous on [-a, a] and satisfies

t
U =% | < [I f(u(s)) | ds < Ma for ail t [-a,a].
0

Thus, choosing 0 <a < b M » it follows by induction that U, (t) is defined and continuous and
satisfies (2) for all t€ Fa,aland k=12,....

Next since for all t€ Fa,aland for k=1,2,3,...., U (t) € Ny it follows from Lipschitz condition
satisfied by f that for all te Fa,a]

t

U, -u, ) | < [ 1¢.©)- FUE)Ids

< Kj‘|u1(s)—u0(s)|ds

< Ka {na>§ lu,(t)—x, | < Kab
—a,a

And assuming that

max | u; (t) - uj, (1) < (Ka) b @)
For some integer 122 it follows that for all t €[-a,a]

U =y O <[] Fupa(s) - F(u; () ] ds

t

< Kj|uj(s)—uj_l(s)|ds
0

< Ka{paﬁluj(t)—uj_l(t)

< (Ka)'b

Thus it follows by induction that (3)holds for j=2,3,....Setting @ =Ka and choosing
O <a< ¥ weseethatfor m>k>Nand t €[-a,a]

U4, O-U, 1< 31040 -y, O]

< Y14, O

This last quantity approaches zero as N — 0 Therefore, for all & > O there exist an N such that
M,k > N implies that || U, —U, lI= r[?% lu,(®)—u, ()< ¢:ie. {Uk} is a Cauchy sequence of
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continuous functions in C([— a, a])_ Therefore this sequence converges to the continuous function

u(t) uniformly for all t € [-a,a] as k > . Taking limit of both sides of equation (1) defining
the successive approximations , we see that the continuous function

u(t) = limu, (t) (4)

satisfies the integral equation
t

u(t) = X, + [ f(u(s))ds (5)
0

for all t €[-a,a]. we have used the fact that the integral and the limit can be interchanged since
the limit in (4) is uniform for all t €[-a,a].

Also, since u(t)is continuous, f (u(t)) is continuous and by fundamental theorem of calculus, the
right hand of the integral equation (5) is differentiable and U'(t) = f (U(t)) for anl t €[-a,a].
Furthermore, U(0) = X, and from (1), it follows that U(t) € N, (X,) € E for all t €[-a,a]. Thus

u(t) is a solution of initial value problem defined on [— a, a].

Uniqueness of Solution Let U(t)and V(t) be two solutions of this initial value problem . Then

the continuous function |U(t) —V(t) |achieves its maximum at some point 4, € [-a,a]. it follows
that

[[u—v = max |u(t) - v(t) |
[-aal

it
[ fe®)- f@@))ﬂ{

Kl
< [|fe®)- fe©)s

It

<K j u®-vE)ds
0

< Ka [pa>§ |u(t) —v(t) |

< Kalu-v.

But Ka < 1 and this last inequality can only be satisfies if ||U —V|| =0

Thus U(t)=V(t) on [-a.a] ie. the successive approximations defined by (1) converges

uniformly to the unique solution of the initial value problem on [-a,a] where ais any number
satisfying

. (b 1)
O<a<min —,—|.
M K

Remark: Using this result we can prove following theorem in similar way.

Theorem5: If the matrix value function A(t) is continuous on [— ao,ao]then there existsana >0
such that the initial value problem ¢ =Alt)g, #0)=I Where | is an identity matrix of
order XN "has unique solution #(t) on [-a,a] .
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t
Proof Define & (1) =1 and #K+1®=1+ IA(s)ék(s)js_ As the continuous matrix function
0

A(t) is bounded i.e.it satisfies |A(t)| < M, for set of all t in the compact set|— 3.3 ]. Hence

using above techniques, the successive approximations (1) converges to A(t) on some interval
[-a,a] with a < %/I and =@,
0 .

4, CONCLUSION

Let A be an nxn matrix. The fundamental fact that for x, € R", the initial value problem
X' = Ax, x(0) = X, has unique solution for all t e R which is given by x(t) = x,e*

The existence and unigqueness results are the basic fundamental results for both linear and
nonlinear continuous Dynamical systems.
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