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Abstract: We investigate the combined effect of Soret and Dufour effects on free and forced convection 
flow through a porous medium in a co-axial cylindrical duct where the boundaries are maintained at 

constant temperature and concentration. The Brinkman-Forchhimer extended Darcy equations which takes 

into account the boundary and inertia effects are used in the governing linear momentum equations. The 

effect of density variation is confined to the buoyancy term under Boussinesq approximation.  The 

momentum, energy and diffusion equations are coupled equations.  In order to obtain a better insight into 

this complex problem, we make use of Galerkin finite element analysis with quadratic polynomial 

approximations. The behaviour of velocity, temperature and concentration is analysed at different axial 

positions. The rates of heat and mass transfer have also been obtained for variations in the governing 

parameters.    
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1. INTRODUCTION 

Transport phenomena involving the combined influence of thermal and concentration buoyancy 
are often encountered in many engineering systems and natural environments.  There are many 

applications of such transport processes in the industry, notably in chemical distilleries, heat 

exchangers, solar energy collectors and thermal protection systems.  In all such classes of flows, 
the driving force is provided by a combination of thermal and chemical diffusion effects.  In 

atmosphere flows, thermal convection of the earth by sunlight is affected by differences in water 

vapour concentration. This buoyancy driven convection due to coupled heat and mass transfer in 

porous media has also many important applications in energy related engineering.  These include 
moisture migration, fibrous insulation, spreading of chemical pollution in saturated soils, 

extraction of geothermal energy and underground disposal of natural waste.   

The increasing cost of energy has led technologists to examine measures which could 
considerably reduce the usage of the natural source energy. Thermal insulations will continue to 

find increased use as engineers seek to reduce cost.  Heat transfer in porous thermal insulation 

within vertical cylindrical annuli provides us insight into the mechanism of energy transport and 
enables engineers to use insulation more efficiently.  In particular, design engineers require 

relationships between heat transfer, geometry and boundary conditions which can be utilized in 

cost-benefit analysis to determine the amount of insulation that will yield the maximum 

investment.  Apart from this, the study of flow and heat transfer in the annular region between the 
concentric cylinders has applications in nuclear waste disposal research.  It is known that canisters 

filled with radioactive rays be buried in earth so as to isolate them from human population and is 

of interest to determine the surface temperature of these canisters.  This surface temperature 
strongly depends on the buoyancy driven flows sustained by the heated surface and the possible 

moment of groundwater past it.  This phenomenon is ideal to the study of convection flow in a 

porous medium contained in a cylindrical annulus [18, 17, 16]. 
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Free convection in a vertical porous annulus has been extensively studied by Prasad [17], Prasad 

and Kulacki [16] and Prasad et al [18] both theoretically and experimentally.  Caltagirone [3] has 
published a detailed theoretical study of free convection in a horizontal porous annulus including 

possible three dimensional and transient effects.  Convection through annulus region under steady 

state conditions has also been discussed with two cylindrical surface kept at different temperatures 
[8]. This work has been extended in temperature dependent convection flow [5,6,8] as well as 

convection flows through horizontal porous channel whose inner surface is maintained at constant 

temperature while the other surface is maintained at circumferentially varying sinusoidal 
temperature[11,20,29].   

Free convection flow and heat transfer in hydromagnetic case is important in nuclear and space 
technology [8,12,15,23,32,31].  In particular, such convection flow in a vertical annulus region in 

the presence of radial magnetic field has been studied by Sastry and Bhadram[21].  Nanda and 
Purushotham [9] have analysed the free convection of a thermal conducting viscous 

incompressible fluid induced by traveling thermal waves on the circumference of a long vertical 

circular cylindrical pipe.  Whitehead [30], Neeraja[10] has made a study of the fluid flow and heat 
transfer in a viscous incompressible fluid confined in an annulus bounded by two rigid cylinders. 

The flow is generated by periodical traveling waves imposed on the outer cylinder and the inner 

cylinder is maintained at constant temperature.   

Chen and Yuh[4] have investigated the heat and mass transfer characteristics of natural 
convection  flow along a vertical cylinder under the combined buoyancy effects of thermal and 

species diffusion. Sivanjaneya Prasad [24] has investigated the free convection flow of an 

incompressible, viscous fluid through a porous medium in the annulus between the porous 
concentric cylinders under the influence of a radial magnetic field.  Antonio[2] has investigated 

the laminar flow, heat transfer in a vertical cylindrical duct by taking into account both viscous 

dissipation and the effect of buoyancy, The limiting case of fully developed natural convection in 
porous annuli is solved analytically for steady and transient cases by E. Sharawi and Al-Nimir[22] 

and Al-Nimir[1].  Philip[14] has obtained solutions for the annular porous media valid for low 

modified Reynolds number. Ravi[19] has analysed the unsteady convective heat and mass transfer 

through a cylindrical annulus with constant heat sources.  Sreevani[26] has studied the convective 
heat and mass transfer through a porous medium in a cylindrical annulus under radial magnetic 

field with Soret effect.  Prasad [17] has analysed the convective heat and mass transfer in an 

annulus in the presence of heat generating source under radial magnetic field.  Reddy[25] has 
discussed the Soret effect on mixed convective heat and mass transfer through a porous 

cylindrical annulus.  For natural convection, the existence of large temperature differences 

between the surfaces is important.  Keeping the applications in view, Sudheer Kumar et al [28] 
have studied the effect of radiation on natural convection over a vertical cylinder in a porous 

media. Padmavathi [13] has analysed the convective heat transfer in a cylindrical annulus by 

using finite element method. Recently Mahesha Narayana et al [7] have discussed viscous 

dissipation and thermal radiation effects on mixed convection from a vertical plate in a non-darcy 
porous medium. 
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In this paper, we discuss the effect of Soret and Dufour effects on free and forced convection flow 
through a porous medium in a co-axial cylindrical duct where the boundaries are maintained at 

constant temperature and concentration.  The Brinkman-Forchhimer extended Darcy equations 

which take into account the boundary and inertia effects are used in the governing linear 

momentum equations.  The effect of density variation is confined to the buoyancy term under 
Boussinesq approximation.  The momentum, energy and diffusion equations are coupled 

equations.  In order to obtain a better insight into this complex problem, we make use of Galerkin 

finite element analysis with quadratic polynomial approximations.  The Galerkin finite element 
analysis has two important features.  The first is that the approximation solution is written directly 

as a linear combination of approximation functions with unknown nodal values as coefficients. 

Secondly, the approximation polynomials are chosen exclusively from the lower order piecewise 
polynomials restricted to contiguous elements.  The behaviour of velocity, temperature and 

concentration is analysed at different axial positions.  The rates of heat and mass transfer have 

been obtained for variations in the governing parameters.      

2. FORMULATION OF THE PROBLEM 

We consider the free and forced convection flow in a vertical circular annulus through a porous 

medium whose walls are maintained at a constant temperature and concentration.  The flow, 
temperature and concentration in the fluid are assumed to be fully developed.  Both the fluid and 

porous region have constant physical properties and the flow is a mixed convection flow taking 

place under thermal and molecular buoyancies and uniform axial pressure gradient.  The 

Boussinesq approximation is invoked so that the density variation is confined to the thermal and 
molecular buoyancy forces. The Brinkman-Forchhimer-Extended Darcy model which accounts 

for the inertia and boundary effects has been used for the momentum equation in the porous 

region.  The momentum, energy and diffusion equations are coupled and non-linear. Also the 
flow is unidirectional along the axial direction of the cylindrical annulus.     Making use of the 

above assumptions the governing equations are 
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where u is the axial velocity in the porous region, T, C are the temperature and concentration of 

the fluid, k is the permeability of porous medium, F is a function that depends on Reynolds 

number, the microstructure of the porous medium and D1 is the molecular diffusivity, β is the 
coefficient of the thermal expansion, β* is the coefficient of volume expansion, Cp is the specific 

heat,  is density and g is gravity. 

The relevant boundary conditions are  

       0u ,         T=Ti  , C=Ci   at    r = a 
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Introducing these non-dimensional variables, the governing equations in the non-dimensional 

form are (on removing the stars) 
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The corresponding non-dimensional conditions are 

0u    ,    0 ,   C=0      at   r=1                                                      (7) 

0u    ,    1H
r

,  C=1    at    r=1+s                                                  (8) 

For N=0 the equations (5) – (7) reduce to that of Padmavathi (12) 

For 0 they are in good agreement with Sudha (26) 

3. FINITE ELEMENT ANALYSIS 

The finite element analysis with quadratic polynomial approximation functions is carried out 

along the radial distance across the circular duct. The behavior of the velocity,   temperature and 

concentration profiles has been discussed computationally for different variations in governing 

parameters. The Gelarkin method has been adopted in the variational formulation in each element 

to obtain the global coupled matrices for the velocity, temperature and concentration in course of 

the finite element analysis.   

Choose an arbitrary element ek and let u
k
, 

k 
and C

k 
be the values of u,  and C in the element ek

 

We define the error residuals as     
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Expressing  u
k
 ,  θ

k 
,  C

k 
in terms of local nodal values in (12) - (14) we obtain 
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Choosing different
k

j
’s corresponding to each element ke in the equation (9) yields a local 

stiffness matrix of order 33  in the form 
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stiffness matrices (18) - (20) in terms of local nodes in each element are assembled using 

interelement continuity and equilibrium conditions to obtain the coupled global matrices in terms 

of the global nodal values of u, θ & C in the region.      

In case we choose n quadratic elements, then the global matrices are of order 2n+1. The ultimate 

coupled global matrices are solved to determine the unknown global nodal values of the velocity,  

temperature  and concentration in  fluid region. In solving these global matrices an iteration 
procedure has been adopted to include the boundary and effects in the porous medium.     
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In fact, the non-linear term arises in the modified Brinkman linear momentum equation (12) of the 
porous medium. The iteration procedure in taking the  global  matrices is  as follows.  We split the 

square term into a product term and keeping one of them say Ui’s under  integration,  the other is 

expanded in terms of local nodal values as in(15), resulting in the corresponding coefficient 

matrix )'( sn
j

k

i in (18), whose coefficients involve the unknown Ui’s . To evaluate  (18), to begin 

with, choose the initial global nodal values of Ui’s as zeros in the zeroth approximation.  We 

evaluate ui’s ,  θi’s and Ci’s in the usual procedure mentioned earlier. Later choosing these values 
of ui’s as first order approximation calculate θi’s, Ci’s. In the second iteration,  we substitute for 

Ui’s the first order approximation of and ui’s  and the first approximation of θi’s and Ci’s and 

obtain second order approximation. This procedure is repeated till the consecutive values of u i’s ,  

θi’s and Ci’s differ by a pre-assigned percentage.      

For computational purpose we choose five elements in flow region 

The shape functions in the region are  
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The global matrix for   is    

333 BXA                                                                                 (21) 

The global matrix for C is    

444 BXA                                                                                 (22) 

The global matrix for u is  

555 BXA                                                                                  (23) 
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(The details of  11e  etc,  11h  etc,  
1

uF  etc,  
1F  etc ,  

1

cF are constants).   

The equilibrium conditions are  
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3 SS ,              03
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3 SS ,  05

1

4

3 SS        (24) 

4. SOLUTION OF THE PROBLEM 

Solving these coupled global matrices for temperature, concentration and velocity (3.13)-(3.15) 

respectively and using the iteration procedure we determine the unknown global nodes through 

which the temperature, concentration and velocity at different radial intervals at any arbitrary 

axial cross sections are obtained.  The respective expressions are given by 
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5. NUSSELT NUMBER AND SHERWOOD NUMBER 

The rate of heat transfer (Nusselt number) is evaluated using the formula  

      sr
dr

d
Nu 1,1)(  

The rate of mass transfer (Sherwood number) is evaluated using the formula 

sr
dr

dC
Sh 1,1)(  

6. DISCUSSION OF THE NUMERICAL RESULTS 

In this analysis we discuss the combined influence of Soret and Dufour effects on convective heat 

and mass transfer flow of a viscous electrically conducting fluid through a porous medium 

confined in an annular region between the cylinders r = a and r = b in the presence of heat 
generating sources. The governing equations of flow, heat and mass transfer are solved by 

employing Galerkin finite element analysis. Also we consider the chemical reaction effect on flow 

phenomenon. 

The axial velocity (w) is shown in figures 1-4 for different values of S0, Du, Q1, and . The actual 
axial velocity is in vertically upward direction and hence w<0 represents a reversal flow. Fig (1) 
represents the variation w with Soret parameter S0. It is found that |w| depreciates with increase in 

|S0|. The variation w with Dufour parameter is shown in fig (2). It is found that |w| enhances with 

increase in Du 0.1 and depreciates with higher Du 0.1 and again depreciates with higher 

Du 0.75 (fig. 2). Fig (3) represents the variation of w with chemical reaction parameter . It is 
noticed that |w| enhances in the degenerating chemical reaction case and depreciates in the 

generating chemical reaction case. An increase in the radiation absorption parameter (Q1 1.5) 

results in depreciation in |w| and enhances with higher Q1 2.5 (fig.4). 
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Fig. 1 : The variation of w with S0       Fig. 2 : The variation of w with Du
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Fig. 3 : The variation of w with        Fig. 4 : The variation of w with Q1 
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The non-dimensional temperature ( ) is shown in figs. (5-8) for different parametric values. The 

variation  with Soret parameter S0 is shown in (Fig. 5). It is observed that the actual temperature 

reduces with S0 0.075 and enhances with higher S0 0.1 while an increase in |S0| we notice an 
enhancement in (Fig. 5). It is noticed that the actual temperature experiences an enhancement with 

increase in Du (Fig.6). 
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Fig. 5 : The variation of  with S0       Fig. 6 : The variation of  with Du
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The variation  with chemical reaction parameter  is shown in (Fig. 7). It is found that the actual 

temperature reduces with 1.5 and enhances with 2.5, while it reduces in the generating 

chemical reaction case. The actual temperature reduces with increase in (Q1 1.5) and enhances 

with Q1 2.5 in entire flow region (fig.8) 
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Fig. 7 : The variation of  with        Fig. 8 : The variation of  with Q1 
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Fig. 9 : The variation of C with S0       Fig. 10 : The variation of C with Du
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Fig. 11 : The variation of C with        Fig. 12 : The variation of C with Q1 
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The non-dimensional concentration (C) is shown in Figs (9-12) for a different parametric values. 

We follow the convention that the non-dimensional concentration positive (or) negative according 
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as actual concentration ><Ci. Fig. 9 represents the variation of C with Soret parameter S0, it is 

observed that the actual concentration reduces with S0>0 and enhances with |S0| in the entire flow 
region. From (Fig. 10) we conclude that the actual concentration experiences an enhancement 

with increase in Dufour parameter Du. The actual concentration depreciates with increase 1.5 

and enhances with 2.5 while it enhances in the generating chemical reaction case (Fig. 11). 

From fig.12, it can be seen that the actual concentration experiences a depreciation with Q1 1.5 

and enhances with higher value of Q1 2.5.  

The rate of heat transfer (Nusselt number) at the inner cylinder r = 1 is shown in tables 1-2 for 

different parametric values. An increase in S0 0.5 results in a depreciation in |Nu| and for higher 

S0 1, we notice an enhancement in |Nu|. The variation of Nu with Dufour parameter Du reveals 

that |Nu| reduces with increase Du 0.05 and enhances with higher Du 0.1. With respect to the 

chemical reaction parameter  we find that the rate of heat transfer enhances in the degenerating 
chemical reaction case and reduces in the generating chemical reaction case at the inner cylinder 

(table. 1 & 2). The rate of heat transfer experiences an enhancement with increase in the radiation 
absorption parameter Q1 at r=1.       

Table1. Nusselt Number (Nu) at r = 1 

G I II III IV V VI VII VIII IX 

103 19.8819 498.278 255.971 692.072 7.7902 8.10576 9.2184 51.4384 56.646 

3x103 21.8676 365.041 354.411 1013.82 7.84019 8.15151 9.21800 31.3305 34.018 

-103 18.2388 672.713 192.773 488.045 7.74167 8.06183 9.22456 89.3098 91.375 

-3x103 16.857 896.39 150.835 356.153 7.69464 8.01981 9.23684 98.119 107.43 

S0 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 

Q1 1 1 1 1 1 1 1 1.5 2.5 

Table 2. Nusselt Number (Nu) at r = 1 

G I II III IV V VI VII VIII IX 

103 10.3299 16.0733 37.8959 151.765 9.34957 8.79618 8.53041 7.7902 9.2185 

3x103 9.9441 15.5384 35.9163 143.349 9.32431 8.8135 8.5644 7.8402 9.2181 

-103 12.0297 16.6548 40.0109 160.67 9.38249 8.78259 8.49851 7.7417 9.2246 

-3x103 16.5391 17.2863 42.276 170.09 9.42371 8.77306 8.46888 7.6946 9.2368 

 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

Du 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.3 

The rate of mass transfer (Sherwood number) at r = 1&2 shows in tables 3-6 for different 

parametric values. An increase in |S0| enhances |Sh| at r =1&2. The variation of Sh with Du shows 

that |Sh| at r = 1, reduces with increase in Du 0.05 and enhances with higher Du 0.01. At r = 2, 

|Sh| enhances with increase in Du. We find that |Sh| reduces with increase in the chemical reaction 

parameter 1.5 and enhances with higher 2.5 at r = 1&2. In the generating chemical reaction 

case, |Sh| at r = 1 enhances with | |  1.5 and reduces with | | 2.5. At r = 2, |Sh| enhances in the 

generating chemical reaction case. An increasing Q1 leads to an increase in the rate of mass 
transfer at both the cylinders 

Table 3. Sherwood number(Sh) at r = 1 

G I II III IV V VI VII VIII IX 

103 

0.78362 81.3324 37.4524 105.422 
-0.05284 -0.16477 

-0.53913 
4.41655 60.78

64 

3x103 

0.7374 62.7674 46.1832 138.24 
-

0.060321 

-0.17292 -

0.553349 

1.92211 39.94

43 

-103 

0.82174 103.922 31.3816 82.6009 
-

0.045336 

-0.15652 -0.52429 8.48369 90.85

83 

-

3x103 0.85368 130.798 27.08 66.5633 
-0.03777 -

0.148147 

-0.50875 14.9576 133.5

61 

S0 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 

Q1 1 1 1 1 1 1 1 1.5 2.5 
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Table 4. Sherwood number(Sh) at r = 1 

G I II III IV V VI VIII IX X 

103 

-0.8585 0.04125 3.68071 23.541 
-

0.887841 

-

0.890199 

-

0.0528 

-

0.1648 

-

0.5392 

3x103 

-1.04754 -0.0457 3.39697 22.3118 -0.90153 -0.92774 
-

0.0603 

-

0.1729 

-

0.5534 

-103 

-0.5249 0.132804 3.9903 24.8263 -0.8734 -0.88235 
-

0.0453 
-

0.1565 
-

0.5243 

-

3x103 0.083115 0.229838 4.31649 26.1699 -0.85816 -0.87417 
-

0.0378 

-

0.1782 

-

0.5087 

 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

Du 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.03 

Table 5. Sherwood number(Sh) at r = 2 

G I II III IV V VI VII VIII IX 

103 

1.48682 
-

104.153 

-

46.1661 
-134.92 

2.43222 2.54885 
2.89421 

-3.7443 
-75.819 

3x103 

1.55603 -79.449 
-

59.3995 

-

182.715 

2.44332 2.56094 
2.91475 

-

4.44808 

-

48.2425 

-103 

1.42928 
-

134.604 

-

37.1509 

-

102.439 

2.42107 2.53662 2.8728 -9.2325 -

116.465 

-

3x103 1.38063 
-

171.342 

-

30.8628 

-

80.0621 

2.40985 2.52423 2.85045 -

18.1787 

-

175.504 

S0 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 

Q1 1 1 1 1 1 1 1 1.5 2.5 

Table 6. Sherwood number(Sh) at r = 2 

G I II III IV V VI VII VIII IX 

103 3.11955 1.7254 -2.8619 -25.6851 3.39202 3.63284 3.8072 2.4322 2.8942 

3x103 3.38877 1.83844 -2.49808 -24.234 3.41317 3.64603 3.81719 2.4433 2.9147 

-103 2.65277 1.60604 -3.24624 -27.2051 3.36981 3.61922 3.79706 2.4211 2.8728 

-

3x103 1.79612 1.479 -3.65189 -28.7968 3.34645 3.60512 
3.78672 2.4098 2.8505 

 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

Du 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.3 

7. CONCLUSION                                                                                                                                                                   

In this analysis the following conclusions are drawn: (1) The axial velocity depreciates with 
increase in Soret parameter. (2) The velocity enhances in the degenerating chemical reaction case 

and depreciates in the generating chemical reaction case. (3) The actual temperature experiences 

an enhancement with increase in Dufour parameter. (4) The actual concentration reduces with 
positive values of Soret parameter and enhances with absolute values of Soret parameter. (5) The 

actual concentration experiences an enhancement with increase in Dufour parameter. 

REFERENCES 

[1] Al.  Nimr, M.  A :Analytical solutions for transient laminar fully developed free convection 

in vertical annuli.  , Int.  J.  Heat  and Mass Transfer , V.  36, pp. 2388-2395 (1993) 

[2] Antonio Barletle: Combined forced and free convection with viscous dissipation in a vertical 

duct.  , Int.  J.  Heat and Mass Transfer, V.  42, pp.  2243-2253(1999) 

[3] Caltirone, J.  P:J.  Fluid Mech, V.  76, p.  337(1976) 

[4] Chen, T.  S and Yuh, C.  F :Combined heat and mass transfer in natural  convection  inclined 

surface.  , J.  Heat Transfer, V.  2, pp.  233-250(1979)  

[5] Faces, N and Faroup, B :ASME, J.  Heat Transfer, V.  105, p.  680(1983) 

[6] Havstad, M.  A and Burns, P.  J : Int.  J .  Heat  and  Mass Transfer, V. 25, No.1,  p. 1755, 

(1982). 



C. Sulochana & Tayappa H. 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 697 

[7]  Mahesha Narayana, Ahmed A, Khidir, Precious Shibanda, Murthy, P.V.S.N. : Viscous 
Dissipation and Thermal Radiation Effects on Mixed Convection from a Vertical Place in a 

Non-Darcy Porous Mediu, Transp Porous Med., 96, pp. 419-428 (2013). 

[8] Mihirsen and Torrance.  K.  E :Int.  J.  Heat and Mass Transfer , V.  30, No.  4, p.  729(1987) 

[9] Nanda, R.  S and Purushotham, R : Int.  Dedication seminar on recent advances on maths  

and applications, Vaeanasi(1976) 

[10] Neeraja, G: Ph. D thesis, S.  P.  Mahila University, Tirupathi, India(1993) 

[11] Nguyen, T.  H , Saish, M.  G, Robillard and Vasseur, P:ASME, The American Society of 

Mechanical Engineers, Paper No.  85-WA/HT-8, New York(1985) 

[12] Osterle, J.  F and Young, F.  J :J.  Fluid Mech.  , V.  11, p.  512(961) 

[13] Padmavathi,A: “Finite element analysis of non – darcian convective heat transfer through a 

porous medium in cylindrical& rectangular ducts with heat generating sources and radiation” 

Ph.D thesis, S.  K.  University, Anantapur, India (2009) 

[14] Philip, J. R: Axisymmetric free convection at small Rayleigh numbers in porous cavities .  , 

Int.  J.  Heat and Mass Transfer, V.  25, pp.  1689-1699(1982) 

[15] Poots, G:Int.  J.  Heat and Mass Transfer , V.  3, p.  1(1961) 

[16] Prasad .  V, Kulacki.  F.  A and Keyhari.  M:J.  Fluid Mech., V.150, p.  89(1985) 

[17] Prasad, V :Natural convection in porous media , Ph.D thesis , S.  K.  University,    

Anantapur, India(1983) 

[18] Prasad, V and Kulacki, F.  A :Int.  J.  Heat and Mass Transfer, V.  27, p.  207, (1984) 

[19] Rani, A :Unsteady convection heat and mass transfer flow through a porous medium in wavy 

channels , Ph.  D thesis, S.  K.  University, Anantapur, India(2003) 

[20] Robillard, L Ngugen, T, H, Sathish, M.  G ans Vasseur, P:Heat transfer in porous media  and 

particulate flows, HTD-V.  46, p.  41.  ASME , (1985) 

[21] Sastri, V.  U.  K and Bhadram, C.  V.  V :App, Sci.  Res, V.  34, 2/3.  p.  117(1978) 

[22] Shaarawi, El.  M.  A.  I and Al-Nimir, M.  A :Fully developed laminar natural convection in 

open ended vertical concentric annuli.  , Int.  J.  Heat and Mass Transfer , pp.  1873-
1884(1999) 

[23] Singh, K.  R and Cowling, T.  J : Quart.  J.  Maths.  Appl.  Maths, V.  16.p.1(1963) 

[24] Sivanjaneya Prasad , P :Effects of convection heat and mass transfer in unsteady 
hydromagnetic channels flow, Ph.  D thesis, S.  K.  University, Anantapur, India(2001) 

[25] Sreenivas Reddy, B:Thermo-diffusion effect on convection heat and mass transfer through a 

porous medium, Ph.  D thesis, S.  K.  University, Anantapur, India(2006) 

[26] Sreevani, M: Mixed convection heat and mass transfer through a porous medium in  

channels with dissipative effects, Ph.  D thesis , S, K.  University, Anantpur, India(2003) 

[27] Sudha Mathew: Hydro magnetic mixed convective heat and mass transfer through a porous 

medium in a vertical channel with thermo-diffusion effect. Ph.D thesis, S,K. University, 
Anantapur, India(2009). 

[28] Sudheer Kumar, Dr.M.P.Singh, Dr.Rajendra Kumar : Radiation effect on natural convection 

over a vertical cylinder in porous media., Acta Ciencia Indica, V.XXXII M , No.2 (2006) 

[29] Vassuer.  P.  Nguyen, T.  H , Robillard and Thi, V.  K.  T :Int.  Heat and mass transfer , V.  

27,  p.  337(1984) 

[30] Whitehead, J.  A :Observations of rapid means flow produced mercury by a  moving heater, 

Geophys Fluid dynamics, V.  3, pp.  161-180(1972) 

[31] Yu, C.  P and Yong, H : Appl.  Sci.  Res, V.  20, p.  16(1969) 

[32] Yu, C.  P:Appl.  Sci.  Res, V.  22, p.  127(1970). 


