On a Generalized Summation Formula

M. Ganeshwar Rao
Chaitanya Bharathi Institute of Technology
Gandipet, Hyderabad
Andhra Pradesh, INDIA
mganeshcbit@gmail.com

Abstract: In this paper the generalize a well-known asymptotic formula in two different ways.

1. Introduction

Suppose $g(n)$ is an arithmetic function and $f(n)=\sum_{d \mid n} g(d)$.If the series $\sum_{n=1}^{\infty} g(n)$ converges absolutely it is well known that
$\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n)=\sum_{n=1}^{\infty} \frac{g(n)}{n}$
ECKFORD COHEN [1] has generalized (1.1) in the form given below:
If the series $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ is absolutely convergent and $g_{s}(n)=\sum_{d \mid n} g(d) \tau_{s}\left(\frac{n}{d}\right)$ where $\tau_{s}(n)$
Is defined by $\tau(n)=1, \tau_{s+1}(n)=\sum_{d \mid n} \tau_{s}(d)$, then
$\lim _{x \rightarrow \infty} \frac{1}{x \log ^{s-1}(x)} \sum_{n \leq x} g_{s}(n)=\frac{1}{s-1} \sum_{n=1}^{\infty} \frac{g(n)}{n}(s=1,2,3, \ldots)$
Later W.NARKIEWICZ [2] has given a simple proof of (1.2)
In the present paper we give generalizations of (1.1) in two different ways.

2. Main Results

In this section we prove the following.
Theorem Suppose $\mathrm{g}(\mathrm{n})$ is an arithmetic function and $f_{k}(n)=\sum_{d \mid n} g(d)\left(\frac{n}{d}\right)^{k}$
If $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ is absolutely convergent then
$\lim _{x \rightarrow \infty} \frac{1}{x^{k+1}} \sum_{n \leq x} f_{k}(n)=\frac{1}{k+1} \sum_{n=1}^{\infty} \frac{g(n)}{n^{k+1}}$ for any $k \geq 0$
Proof: For any $k \geq 0$ note that

$$
\begin{aligned}
f_{k}(n) & =\sum_{d \delta=n} g(d) \delta^{k} \\
& =\sum_{d \leq x} g(d)\left[\sum_{\delta \leq \frac{x}{d}} \delta^{k}\right]
\end{aligned}
$$

M. Ganeshwar Rao

$$
\begin{aligned}
& =\sum_{d \leq x} g(d)\left(\frac{1}{k+1}\left(\frac{x}{d}\right)^{k+1}+o\left(\frac{x}{d}\right)^{k}\right) \\
& =\frac{x}{k+1}^{k+1} \sum_{d \leq x} \frac{g(d)}{d^{k+1}}+o\left(x^{k} \sum_{d \leq x} \frac{|g(d)|}{d^{k}}\right)
\end{aligned}
$$

which gives
$\frac{1}{x^{k+1}} \sum_{n \leq x} f_{k}(n)=\frac{1}{k+1} \sum_{n \leq x} \frac{g(n)}{n^{k+1}}+O\left(\frac{1}{x} \sum_{n \leq x}\left|\frac{g(n)}{n^{k}}\right|\right)$
Now since $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ is absolutely convergent, the series $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ and $\sum_{n=1}^{\infty} \frac{|g(n)|}{n^{k+1}}$ are both convergent. Therefore taking limits as $x \rightarrow \infty$ in (2.3) we get
$\lim _{x \rightarrow \infty} \frac{1}{x^{k+1}} \sum_{n \leq x} f_{k}(n)=\frac{1}{k+1} \sum_{n=1}^{\infty} \frac{g(n)}{n^{k+1}}$,
proving the theorem.
Remark: In the case $\mathrm{k}=0$ Theorem 2.1 gives (1.1).
We can further generalize Theorem 2.1 in a different way as follows.
Theorem: Suppose that $h(n)$ is an arithmetic function such that

$$
\begin{equation*}
\sum_{n \leq x} h(n)=A \cdot x^{s}+B(x) \text { where } B(x)=o\left(x^{s}\right) \tag{2.5}
\end{equation*}
$$

Let $g(n)$ be an arithmetic function such that
$\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$ converges absolutely.
If $f(n)=\left(g^{*} h\right)(n)$ then
$\lim _{x \rightarrow \infty} \frac{1}{x^{s}} \sum_{n \leq x} f(n)=A \sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$
(2.8)

Proof: Since $f(n)=\sum_{d \delta=n} g(d) h(\delta)$ we get by (2.6),

$$
\begin{aligned}
\sum_{n \leq x} f(n) & =\sum_{d \delta \leq x} g(d) h(\delta) \\
& =\sum_{d \leq x} g(d)\left(\sum_{\delta \leq \frac{x}{d}} h(\delta)\right) \\
& =\sum_{d \leq x} g(d)\left[A\left(\frac{x}{d}\right)^{s}+B\left(\frac{x}{d}\right)\right] \\
& =\mathrm{A} x^{s} \sum_{d \leq x} \frac{g(d)}{d^{s}}+\sum_{d \leq x} B\left(\frac{x}{d}\right) g(d)
\end{aligned}
$$

which gives

$$
\begin{align*}
\frac{1}{x^{s}} \sum_{n \leq x} f(n) & =A \sum_{n \leq x} \frac{g(n)}{n^{s}}+\frac{1}{x^{s}} \sum_{n \leq x} B\left(\frac{x}{n}\right) g(n) \tag{2.9}\\
& =A \sum_{n \leq x} \frac{g(n)}{n^{s}}+o\left(\sum_{n \leq x} \frac{g(n)}{n^{s}}\right)
\end{align*}
$$

since $\frac{B(x)}{x^{s}} \rightarrow 0$ as $x \rightarrow \infty$. Now taking limits as $x \rightarrow \infty$ in (2.9), we get Theorem 2.8.
Remark: Taking $h(n)=1$ for all n in (2.8) we get (1.1). Also the case $h(n)=n^{k}$ gives the Theorem 2.1.

I thank Professor V. Siva Rama Prasad for his helpful suggestions in the preparation of this paper.

References

[1] ECKFORD COHEN; Arithmetical function associated with unitary Divisors of an integer, Math .Zeit ; 74 (1960),66-80.
[2] NARKIEWICZ.W. On a summation formula of E.COHEN, Colloq, Math; VOL XI. (1963), 85-86.

