On Functions A_{f}^{s}, G_{f}^{s} and H_{f}^{s}

M. Ganeshwar Rao
Chaitanya Bharathi Institute of Technology
Gandipet, Hyderabad,
Andhra Pradesh, India
mganeshcbit@gmail.com

Abstract

In this paper we introduce the functions A_{f}^{S}, G_{f}^{S} and H_{f}^{S} for any multiplicative function f and for any regular convolution S and obtain a relation between them.

1. Introduction

For any arithmetic function f let functions A_{f}, G_{f} and H_{f} be

$$
\begin{align*}
& A_{f}(n)=\frac{1}{\tau(n)} \sum_{d \mid n} f(d) \tag{1.1}\\
& G_{f}(n)=\left[\prod_{d \mid n} f(d)\right]^{\frac{1}{\tau(n)}} \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{H_{f}(n)}=\frac{1}{\tau(n)} \sum_{d \mid n} \frac{1}{f(d)} \tag{1.3}
\end{equation*}
$$

where $\tau(n)$ is the number of positive divisors of n.
Note that the function $A_{f}(n), G_{f}(n)$ and $H_{f}(n)$ are respectively the arithmetic mean, geometric mean and harmonic mean of the function values of f at various positive divisors of n.

In 1974 A. C. Vasu [2] has considered these functions and proved the following
(1.4) If f is multiplicative so are $A_{f}(n), G_{f}(n)$ and $H_{f}(n)$
(1.5) If f is completely multiplicative then

$$
G_{f}^{2}(n)=A_{f}(n) \cdot H_{f}(n)=f(n)
$$

Let F be the set of all arithmetic functions
In this paper we introduce functions A_{f}^{S}, G_{f}^{S} and H_{f}^{S} for any $f \in F$ corresponding to regular divisors of S_{n} of n (defined below) and establish results which generalize (1.4) and (1.5)

2. Preliminaries

Let F be the class of all arithmetic functions. For any positive integer n let S_{n} denote a set of positive divisors of n. For $f, g \in F$ their S-product or S-convolution $f \bar{S} g$, is defined by

$$
(f \bar{S} g)(n)=\sum_{d \in S_{n}} f(d) g\left(\frac{n}{d}\right)
$$

where the sum is over the divisors $d \in S_{n}$.
2.1 The S-product is said to be regular if it satisfies the following conditions
(i) $(F,+, \bar{S})$ is a commutative ring with unity
(ii) $f \bar{S} g$ is multiplicative whenever f and g are.
(iii) The arithmetic function $u(n)=1$ for all n has inverse $\mu_{s} \in F$ relative to \bar{S} (that is, $u \bar{S} \mu_{s}=\varepsilon$) and $\mu_{s}(n)=0$ or -1 when n is a prime power. μ_{s} is called the S-analogue of the Mobius function μ.
NARKIEWICZ [1] has characterized regular convolutions as follows:
2.2 Theorem. A S-convolution is regular if and only if the sets S_{n} have the following properties:
(i) $d \in S_{m}, m \in S_{n} \Leftrightarrow d \in S_{n}, \frac{m}{d} \in S_{\frac{n}{d}}$
(ii) $d \in S_{n} \Rightarrow \frac{n}{d} \in S_{n}$
(iii) $\{1, n\} \subseteq S_{n}$ for every n
(iv) $S_{m n}=S_{m} S_{n}=\left\{a b: a \in S_{m}, b \in S_{n}\right\}$ whenever $\operatorname{gcd}(m, n)=1$
(v) For every prime power p^{α} we have
$S_{p^{\alpha}}=\left\{1, p^{t}, p^{2 t}, \ldots, p^{r t}\right\}, r t=\alpha$ for some positive integer t and $p^{t} \in S_{p^{2 t}}, p^{2 t} \in S_{p^{3 t}}, \ldots$.
2.3 Definition. If \bar{S} is a regular convolution the elements of S_{n} will be called regular divisors of n.The number of S - divisors of n is denoted by $\tau_{s}(n)$.

Since the Dirichlet convolution and the unitary convolution are both regular, the elements of D_{n} (the set of all positive divisors of n) and U_{n} (the set of all unitary divisors of n) are regular divisors of n.
(2.4): For any prime power p^{α}, the least positive integer t such that $p^{t} \in S_{p^{\alpha}}$ is called the type of p^{α} relative to S and is denoted by $t_{S}\left(p^{\alpha}\right)$
If $t=t_{s}\left(p^{\alpha}\right)$ it follows from the Theorem 2.2 (v) that $t \mid a$ whenever $p^{a} \in S_{p^{\alpha}}$. Clearly we have

$$
\begin{equation*}
\tau_{S}(n)=\sum_{d \in S n} 1 \tag{2.5}
\end{equation*}
$$

(2.6) $\tau_{S}=u \bar{S} u$ where u is as in Definition 2.1 (iii) and since u is multiplicative, it follows from 2.1 (ii) that τ_{s} is multiplicative.

Also

$$
\begin{equation*}
\tau_{s}\left(p^{\alpha}\right)=\frac{\alpha}{t_{s}\left(p^{\alpha}\right)}+1 \text { for any prime power } p^{\alpha} \tag{2.7}
\end{equation*}
$$

3. Main Results

Suppose S_{n} is a set of regular divisors of n. For any arithmetic function f we define A_{f}^{S}, G_{f}^{S} and H_{f}^{S} by

On Functions A_{f}^{S}, G_{f}^{S} and H_{f}^{S}

$$
\begin{align*}
& A_{f}^{S}(n)=\frac{1}{\tau_{s}(n)} \sum_{d \in S_{n}} f(d) \tag{3.1}\\
& G_{f}^{S}(n)=\left[\prod_{d \in S_{n}} f(d)\right]^{\frac{1}{\tau_{s}(n)}} \tag{3.2}
\end{align*}
$$

And whenever f is nowhere zero

$$
\begin{equation*}
\frac{1}{H_{f}^{s}(n)}=\frac{1}{\tau_{s}(n)} \sum_{d \in S_{n}} \frac{1}{f(d)} \tag{3.3}
\end{equation*}
$$

Note that $A_{f}^{D}(n)=A_{f}(n), G_{f}^{D}(n)=G_{f}(n)$ and $H_{f}^{D}(n)=H_{f}(n)$ where D_{n} denotes the set of all positive divisors of n.
3.4 Theorem: If f is multiplicative then A_{f}^{S}, G_{f}^{S} and H_{f}^{S} are all multiplicative.

Proof: By (2.6), τ_{s} is multiplicative. Again if f is multiplicative it follows by (2.1)(ii), that $f \bar{S} u$ is also multiplicative. Therefore $A_{f}^{S}(n)=\frac{1}{\tau_{S}(n)}(f \bar{S} u)(n)$ is also multiplicative. To prove the multiplicativity of G_{f}^{S}, note that for any n with $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$ we have

$$
\begin{equation*}
G_{f}^{S}(n)=\left[\prod_{d \in S_{p_{1}^{a_{1}} . p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}}} f(d)\right]^{\frac{1}{\tau_{s}\left(p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}\right)}} \tag{3.5}
\end{equation*}
$$

Now using 2.2 (iii) each $d \in S_{p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}}$ can be written uniquely as $d=d_{1} d_{2} \ldots d_{r}$ where $d_{i} \in S_{p_{i}^{a i}}$ for $i=1,2,3, \ldots, r$ and $\left(d_{i}, d_{j}\right)=1$ for $i \neq j$. Therefore (3.5) can be written as

$$
\begin{aligned}
G_{f}^{S}(n) & =\left[\prod_{i=1}^{r} \prod_{d_{i} \in S_{p_{i} \alpha_{i}}} f\left(d_{i}\right)\right] \frac{1}{\tau_{s}\left(p_{1}^{\left.a_{1}\right) \cdots \tau_{s}\left(p_{r}^{a_{r}}\right)}\right.} \\
& =\prod_{i=1}^{r} G_{f}^{S}\left(p_{i}^{a_{i}}\right)
\end{aligned}
$$

Thus $G_{f}^{S}(n)$ is multiplicative
Observe that $H_{f}^{S}(n)$ can be defined only for the function f which are nowhere zero. If f is nowhere zero and multiplicative then so is $\frac{1}{f}$. Hence $A_{\frac{1}{f}}^{S}=H_{f}^{S}$.

Therefore H_{f}^{S} is multiplicative
3.6 Theorem: If f is completely multiplicative then

$$
\begin{equation*}
\left[G_{f}^{s}(n)\right]^{2}=A_{f}^{s}(n) \cdot H_{f}^{s}(n)=f(n) \text { for all } n . \tag{3.7}
\end{equation*}
$$

Proof: By Theorem 3.4 either side of (3.7) is multiplicative and therefore it is enough to verify the identity (3.7) in the case $n=p^{\alpha}$.

By (3.3) and the complete mulplicativity of $f(n)$ and since a S-convolution is regular if and
only if the set S_{n} have the following the property, $d \in S_{n} \Rightarrow \frac{n}{d} \in S_{n}$
We have

$$
\begin{aligned}
\frac{1}{H_{f}^{S}\left(p^{\alpha}\right)} & =\frac{1}{\tau_{s}\left(p^{\alpha}\right)} \sum_{d \in S_{p^{\alpha}}} \frac{1}{f(d)} \\
& =\frac{1}{\tau_{s}\left(p^{\alpha}\right)_{d \in S_{p^{\alpha}}}} \frac{f\left(\frac{p^{\alpha}}{d}\right)}{f\left(p^{\alpha}\right)} \\
& =\frac{1}{f\left(p^{\alpha}\right)} \frac{1}{\tau_{s}\left(p^{\alpha}\right)} \sum_{d \in S_{p^{\alpha}}} f\left(\frac{p^{\alpha}}{d}\right) \\
& =\frac{1}{f\left(p^{\alpha}\right)} \frac{1}{\tau_{s}\left(p^{\alpha}\right)} \sum_{d \in S_{p^{\alpha}}} f(d) \\
& =\frac{1}{f\left(p^{\alpha}\right)} A_{f}^{S}\left(p^{\alpha}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
A_{f}^{S}\left(p^{\alpha}\right) \cdot H_{f}^{s}\left(p^{\alpha}\right)=f\left(p^{\alpha}\right) \tag{3.8}
\end{equation*}
$$

which gives the second part of the identity (3.7)
Again

$$
\begin{aligned}
G_{f}^{S}\left(p^{\alpha}\right) & =\left[\prod_{d \in S_{p^{\alpha}}} f(d)\right]^{\frac{1}{\tau_{s}\left(p^{\alpha}\right)}} \\
& =\left[\prod_{\substack{0 \leq \beta \leq \alpha \\
p^{\beta} \in S_{p^{\alpha}}}} f(p)^{\beta}\right]^{\frac{1}{\tau_{s}\left(p^{\alpha}\right)}},
\end{aligned}
$$

which gives

$$
\begin{equation*}
G_{f}^{S}\left(p^{\alpha}\right)=\left[\{f(p)\}_{\substack{S_{\beta \beta s} \alpha \\ p^{p} e_{S_{p}}}} \sum\right]^{\frac{1}{\tau_{s}\left(p^{\alpha}\right)}} \tag{3.9}
\end{equation*}
$$

But we have $S_{p^{\alpha}}=\left\{1, p^{t}, p^{2 t}, \ldots, p^{r t}\right\}$ where $r t=\alpha$ and $t=t_{S}\left(p^{\alpha}\right)$
Therefore by (3.4) we get

$$
\begin{align*}
\sum_{\substack{0 \leq \beta \leq \alpha \\
p^{\beta} \in S_{p^{\alpha}}}} \beta & =0+t+2 t+\ldots+r t \tag{3.10}\\
& =r\left(\frac{r+1}{2}\right) t \\
& =\frac{\alpha}{2}\left(\frac{\alpha}{t}+1\right)
\end{align*}
$$

On Functions A_{f}^{S}, G_{f}^{S} and H_{f}^{S}

$$
=\frac{\alpha}{2} \tau_{S}\left(p^{\alpha}\right)
$$

From (3.9) and (3.10) we get

$$
\begin{aligned}
G_{f}^{s}\left(p^{\alpha}\right) & =\left[f(p)^{\frac{\alpha}{2} \tau_{s}\left(p^{\alpha}\right)}\right]^{\frac{1}{\tau_{s}\left(p^{\alpha}\right)}} \\
& =[f(p)]^{\frac{\alpha}{2}}
\end{aligned}
$$

which gives (3.7)
3.11 Remark: In the case $S_{n}=D_{n}$, Theorem 3.4 and Theorem 3.6 respectively give (1.4) and (1.5)

We thank Professor V. Siva Rama Prasad for his helpful suggestions in the preparation of this paper.

References

[1] W.NARKIEWICZ, on a class of arithmetical convolution, Colloq. Math.10(1963) 81-94
[2] A.C. VASU, Notes on certain arithmetical functions, Math. Student. XLII No.1(1974) 17-20

