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Abstract: Finite difference solution based on an iterative scheme is obtained to study the effects of Hall 

current and rotation on MHD free convection flow in a vertical rotating channel filled with porous medium. 

A uniform magneti field is applied in the direction normal to the planes of the plates. The system rotates 

about an axis normal to the planes of the plates with uniform angular velocity. The problem is solved 

assuming the temperature difference of the plates to be high to induce radiation and the temperature of one 

plate vary periodically. Viscous dissipation is also considered. The effects of various parameters on the 

velocity profiles and temperature field are shown graphically and the skin friction and rate of heat transfer 

are presented in tabular form . 
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1. INTRODUCTION 

The study of unsteady hydro magnetic flow with radiation in rotating porous media, has 

considerable practical applications in geophysics and engineering. Among the applications of 
rotating flow in porous media are food processing industry, chemical process industry, 

centrifugation filtration processes and rotating machinery. In geophysics, it is applied to measure 

the positions and velocities with respect to a fixed frame of reference on the surface of earth, 
which rotate with respect to an inertial frame in the presence of its magnetic field. The subject of 

geophysical dynamics has become an important branch of fluid dynamics for study of 

environment. From the technological point of view and due to practical applications, free 

convective flow and heat transfer problems are always important. This process of heat transfer is 
encountered in cooling of nuclear reactors, providing heat sinks in turbine blades and 

aeronautics. In astrophysics, it is applied to study the stellar and solar structure, inter planetary 

and inter stellar matter, solar storms etc. In engineering, it applied in MHD generators, ion 
propulsion, MHD bearings, MHD pumps, MHD boundary layer control of re- entry vehicles etc. 

Several researcher viz. Crammer[ and Pai[1], Ferraro and Plumpton[2], Shercliff[3] have 

studied such flows due to its varied importance. Chang and Lundgren[4] have studied a 
hydromagnetic flow in a duct. Yen and Chang[5] studied the effect of wall electrical 

conductance on the magneto hydrodynamic Couette flow. Ostrach[6] studied the combined 

effects of natural and forced convection laminar flow and heat transfer with and without heat 

sources in channels with linearly varying wall temperature. Jain and Gupta[7] studied three 
dimensional free convection Couette flow with transpiration cooling. 

There are many other applications of channel flows through porous medium, in the fields of 

agricultural engineering for channel irrigation and to study the underground water resources, in 
petroleum technology to study the movement of natural gas, oil and water through the oil 

channels/reservoirs. Transient natural convection between two vertical walls with a porous 

material having variable porosity has been studied by Paul et a1[8]• Sahin[9] investigated the 
three-dimensional free convective channel flow through porous medium. 

In recent years, Attia and Kotb[10] studied MHD flow between two parallel plates with heat 

transfer. When the strength of the magnetic field is strong, one cannot neglect the effects of Hall 
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current. The rotating flow of an electrically conducting fluid in the presence of a magnetic field 
is encountered in geophysical and cosmical fluid dynamics. Soundalgekar[11] studied the Hall 

effects in MHD Couette flow with heat transfer. Mazumder et al.[12.13] have studied the effects of 

Hall current on MHD Ekman layer flow and heat transfer over porous plate and on free and 

forced convective hydro magnetic flow through a channel. Hall effects on unsteady MHD free 

and forced convection flow in a porous rotating channel has been investigated by Sivaprasad et 

al[14]. Singh and Kumar[15] studied the combined effects of Hall current and rotation on free 

convection MHD flow in a porous channel. Ghosh et al[16] studied the Hall effects on MHD flow 

in a rotating system with heat transfer characteristics. 

 Radiation plays a vital role in many engineering, environment and industrial processes e.g. 

heating and cooling chambers, fossil fuel combustion energy processes astrophysical flows and 

space vehicle re-entry. Raptis[17] studied the radiation and free convection flow through a porous 
medium. Alagoa et al[18] analysed the effects of radiation on free convective MHD flow through a 

porous medium between infinite parallel plates in the presence of time-dependent suction. 

Mebine[19] studied the radiation effects on MHD Couette flow with heat transfer between two 
parallel plates. Singh and Kumar [20] have studied radiation effects on the exact solution of free 

convective oscillatory flow through porous medium in a rotating vertical porous channel. Singh 

and Pathak[21] investigated the effect of Hall current on mixed convection MHD flow in presence 

of radiation in a vertical channel. Hazarika[22] has studied the Hall effects in a rotating system of 
transient unsteady Hydromagnetic coquette flow. 

I n the present paper the MHD free convective flow in a rotating channel filled with porous 

medium studied by Hazarika[22] has been investigated numerically with viscous dissipation. The 
transverse magnetic field applied is strong enough so that the Hall currents are induced. Viscous 

dissipation is considered and assumed that the temperature difference between the walls of the 

channel is sufficiently high to radiate the heat. The governing partial differential equations of the 

motion are solved by using an iterative method based on Crank-Nicolson finite difference scheme. 
The results are presented in graphs and tables.  

2. BASIC EQUATIONS 

The equations governing the unsteady free convective flow of an incompressible, viscous and 

electrically conducting fluid in a rotating vertical channel filled with porous medium in the 

presence of magnetic field are: 

Equation of Continuity: 

div  = 0                   (1) 

Momentum Equation: 

ρ  = -   + gβ                        (2) 

Energy Equation: 

ρ =k -∇q +                (3) 

Kirchhoff’s First Law: 

div  = 0                   (4) 

General Ohm’s Law: 

 +  (  X ) = σ               (5) 

Gauss’s law of Magnetism: 

div  = 0                  (6) 

where  the velocity vector,  angular velocity of the fluid, P the pressure, p the 

density,  magnetic induction vector,  current density, 
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μ the coefficient of viscosity, t* the time, g the acceleration due to gravity, β the coefficient of 

volume expansion, K* is the permeability of the porous medium, Cp the specific heat at constant 
pressure, T* the temperature, To the reference temperature of the left plate, k the thermal 

conductivity, Φ is the viscous dissipation, q the radiative heat, σ the electrical conductivity, Bo the 

strength of the applied magnetic field, e the electron charge, e the electron frequency, τe the 

electron collision time, pe the electron pressure,  electric field and ηe is the number density 

of electron. 

2.1 Formulation of the Problem 

Consider an unsteady MHD f r ee  convective flow of an electrically conducting, viscous, 
incompressible fluid through a porous medium bounded between two insulated infinite vertical 

plates in the presence of Hall current and thermal radiation. The plates are at a distance 'd' apart. 

A Cartesian coordinate system with x*-axis oriented vertically upward along the center line of the 
channel is introduced. The z*-axis taken perpendicular to the planes of the plates is the axis of 

the rotation and the entire system rotates about this axis with uniform angular velocity Ω*. Since 

the plates of the channel are of infinite extent, all the physical quantities depend only on z* and 

t* only. The temperature T*wcos
*
t* of the right plate at z*=d/2 is considered to be varying 

periodically with time and the temperature T*=To=O of the left plate at z*=d/2 is taken to be 

zero. Let (u *, v*, w*) be the components of velocity in the directions (x*, y*, z"), respectively. 

Since the plates are non-porous, therefore equation of continuity (1) on integration gives w* = O. 
A strong transverse magnetic field of uniform strength Bo is applied along the z*-axis. So Eg. (6) 

for the magnetic field  (B
*

x, B
*

y, B
*

z) gives B
*

z = Bo (constant).  

If (j
*

x, j
*

y,j
*

z) are the components of electric current density  The equation of conservation of 

electric charge in Eg.(4) gives j
*

z = constant. . 

For non-conducting plates 

J
*

z = 0.                                                                                                                    (7) 

at the plates and hence zero everywhere in the fluid. 

Under the usual assumptions that the electron pressure ( for a weakly ionized gas), the 

thermoelectric pressure, ion slip and the external electric field arising due to polarization of 
charges are negligible. 

It is assumed that no applied and polarization voltage exists. This corresponds to the case where 

no energy is being added or extracted from the fluid by electrical means (Meyer[21]) i.e. 

electrical field  0 . 

Therefore, Eq. (5) takes the form: 
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Where, m = eτe is the Hall parameter. 

Under the foregoing assumptions and the reference temperature To=0, Eq. (2) in Cartesian 
components reduces to: 

+ gβ     (11) 

 

       (12) 

And Eq
n
 (3) becomes: 

ρ k            (13) 

The boundary conditions for the flow problem are: 

             (14) 

 

               (15) 

where T w  is the mean temperature of the plate at z*d/2and * is the frequency of oscillations. 

Following Cogley et al[22]. the last term in the energy Eq.(13) 

 = 4α
2
 (T* - To) 

stands for radiative heat flux modifies to: 

 = 4α
2
 T*                                         (16) 

In view of the reference temperature T0=0, where α is the mean radiation absorption coefficient.  

Introducing the following non-dimensional quantities 

η= , x= , y= , u= , v= , T= , t= , = , p= , 

into Eqs (11-13) and using Eq. (16), we get: 

            (17) 

             (18) 

             (19) 

Where U is the mean axial velocity,  

Re = (Reynolds number), 

Ω = (Rotation parameter), 

K =  (The permeability of the porous medium), 
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Gr =  (Grashoff number), 

Pe =  (Peclet number), 

N =  (radiation parameter), 

Ec =  (Eckert Number) 

The transformed boundary conditions are: 

u = v = T = 0 at η =                                                                                          (20) 

u = v = 0, T= cos t at η =                                                                                         (21) 

For the oscillatory internal flow, we shall assume that the fluid flows only under the influence of a 
non-dimensional pressure gradient oscillating in x- direction with the following form: 

                                                                              (22) 

3. SOLUTION OF THE PROBLEM 

The boundary value problem (17)-(21) is solved by using Crank-Nicholson finite difference 

scheme.  The scheme for an independent variable f is given by,  

 =   

 =  (fi, j+1 – 2fij + fi, j+1) 

The boundary value problem is then reduced to a system of finite difference equation which is 

then solved numerically by an iterative scheme. 

The co-efficient of skin –frictions Cf at the left plate is given by 

Cf =    

Where,  = μ )η= . 

The rate of heat transfer Nu (Nusselt number) at the left plate is 

Nu =  

4. DISCUSSION 

Finite difference method was applied to obtain numerical solution of the problem in order to study 

the effect of different parameters on velocity field, skin- friction and temperature field. The 

numerical values of different parameters are taken as Ec=0.1,Gr=1.00 N=1.00 Re=1.00 Pe=0.50 ω 

=5.00 P=1.00 M=1.00 m=1.00 K=1.00 T=0.25 unless otherwise stated.  

Velocity profile against dissipation parameter Ec is plotted in Fig- 1. It is evident from the figure 
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that the velocity decreases with the increase of dissipation parameter Ec.  

Fig.- 2 to Fig.- 6 depict the variation of velocity with Grashoff number G r ,  Hartman number 

M, Hallcurrent parameter m and radiation parameter N. It is seen that velocity decreases with 

increase of all these parameters.  

It is seen from fig-5 that velocity slightly increased with increase of N. In the left half of the 

channel, the effect of N on velocity is insignificant while in the right half of the channel velocity 

decreases with increase of N.  

From figure 2 it is seen that for increasing Grashof number the maximum of the velocity profiles 

shifts towards right half of the channel due to the greater buoyancy force in this part of the 

channel due to the presence of hotter plate. In the right half there lies hot plate at η= 1/2 and heat 

is transferred from the hot plate to the fluid and consequently buoyancy force enhances the flow 

velocity further. In the left half of the channel, the transfer of heat takes place from the fluid to the 

cooler plate at η = -1/2. Thus, the effect of Grashof number on the velocity is reversed i.e. 

velocity decreases with increasing Gr. 

It is evident from the Fig- 3 that the velocity decreases with the increase of Hartmann number 

M. This is because of the reason that effects of a transverse magnetic field on an electrically 

conducting fluid gives rise to a resistive type force (called Lorentz force) similar to drag force 

and upon increasing the values of M increases the drag force which has tendency to slow down 

the motion of the fluid.  

The temperature profile is shown in Fig- 7 to Fig- 12 against the dissipation parameter Ec, 

buoyancy parameter Gr, Hartman number M, Hall parameter m, radiation parameter N and 

rotation parameter Ω. The temperature decreases with the increase of Gr, Hartmann number M, 

Hall parameter m and rotation parameter Ω but it increases with radiation parameter N and the 

dissipation parameter Ec. 

The c o e f f i c i e n t  o f  skin-friction Cf and the rate of heat transfer Nu at the left  plate (i.e at 

η=  ) are also obtained and presented in Table-1 and Table-2. The skin friction Cf at the left 

plate decreases while heat transfer Nu increases with increase of Hartmann number M , Hall 

parameter m and dissipation parameter Ec. Both the skin friction and rate of heat transfer decrease 

with increase of buoyancy parameter Gr. 

From the above analysis we may conclude that all the parameters have significant effect on the 

Hall current with radiation in presence of an applied magnetic field in a porous channelwith 

viscous dissipation and the finite difference method can be effectively used to obtain the 

numerical solution.  

5. CONCLUSION  

1. Rotation tends to retard primary velocity throughout the channel whereas it tends to 

accelerate secondary velocity. 

2. Hall current, Magnetic field, radiation and dissipation have tendency to retard both the 

primary and secondary velocities throughout the channel. 

3. Hall current as well as magnetic field have tendency to reduce the shear stress at the left 

plate but enhance the rate of heat transfer. 

4. Dissipation to reduce the shear stress at the left plate as well as the rate of heat transfer  

whereas Grashoff number reduce the shear stress but enhance the heat transfer rate. 

5. Radiation and dissipation enhance the temperature whereas Grashof number, magnetic field, 

Hall current and rotation toreduce it.       

6. Viscous dissipation is to enhance the temperature but reduced the velocity. 
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              Fig- 1 Velocity profile for different Ec           Fig- 2 Velocity profile for different Gr 
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         Fig- 7 Temperature profile for different Ec            Fig- 8 Temperature profile for Gr 
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          Fig- 9 Temperature profile for different M        Fig- 10 Temperature profile for different m 

 

 

         Fig- 11 Temperature profile for small N       Fig- 12 Temperature profile for different Ω 

Table 1 

Gr=1.00 N=1.00 Re=1.00 Pe=0.50 Ω =10.00 ω =5.00 P=1.00 K=1.00 T=0.25 

  Ec=.05  Ec=.10  Ec=.15   Ec=.20 

 M  Cf  Nu Cf  Nu Cf Nu  Cf  Nu 

0.50 0.1003 0.3603 0.0991 0.4644 0.0984 0.5533 0.0979 0.6299  

1.00 0.1008 0.3547 0.0996 0.4548 0.0989 0.5411 0.0984 0.6160 

1.50 0.1009 0.3463 0.0998 0.4405 0.0990 0.5228 0.0985 0.5951 

2.00 0.1002 0.3363 0.0992 0.4234 0.0983 0.5005 0.0977 0.5694 

 m  

0.05 0.1016 0.3541 0.1004 0.4541 0.0994 0.5403 0.0988 0.6154 

1.00 0.1008 0.3547 0.0996 0.4548 0.0989 0.5411 0.0984 0.6160 

1.50 0.1004 0.3560 0.0993 0.4570 0.0986 0.5437 0.0981 0.6190 

2.00 0.1002 0.3571 0.0991 0.4589 0.0984 0.5461 0.0980 0.6217 

Table 2 

Ec=0.10 N=1.00 Re=1.00 Pe=0.50 Ω =10.00 ω =5.00 P=1.00 K=1.00 T=0.25 

  Gr=.25  Gr=.50   Gr=.75  Gr=1.0  Gr=1.50 

 m  Cf  Nu Cf  Nu Cf Nu  Cf  Nu Cf Nu 

 0.50 0.1024 0.5848 0.1012 0.5340 0.1006 0.4908 0.1004 0.4541 0.1006 0.3970 

 1.00 0.1008 0.5866 0.1000 0.5353 0.0996 0.4918 0.0996 0.4548 0.1003 0.3976 

 1.50 0.1001 0.5908 0.0994 0.5387 0.0991 0.4944 0.0993 0.4570 0.1002 0.3991 

 2.00 0.0998 0.5945 0.0991 0.5416 0.0989 0.4968 0.0991 0.4589 0.1001 0.4003 

 M  

 0.50 0.1024 0.5848 0.1012 0.5340 0.1006 0.4908 0.1004 0.4541 0.1006 0.3970 

 1.00 0.1008 0.5866 0.1000 0.5353 0.0996 0.4918 0.0996 0.4548 0.1003 0.3976 

 1.50 0.1001 0.5908 0.0994 0.5387 0.0991 0.4944 0.0993 0.4570 0.1002 0.3991 

 2.00 0.0998 0.5945 0.0991 0.5416 0.0989 0.4968 0.0991 0.4589 0.1001 0.4003 
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