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1. INTRODUCTION 

The concept of a uniformly convex 2-normed space is introduced by A. Khan. For our further 

investigation, we will introduce the definition of the uniformly convex 2-normed space in its 

equivalent form, as follows.  

Definition 1 ([1]). A 2-normed space ( ,|| , ||)L  is uniformly convex if for every 0  there exists 

( ) 0  such that || , || || , || 1x z y z , || , ||x y z  and ( , )z V x y  implies  

|| , || 2(1 ( ))x y z , 

where ( , )V x y  is the subspace generated by the vectors x  and y .  

Example 1 ([1]). A 2-pre-Hibert space is a 2-normed space in which the norm is introduced by 
2|| , || ( , | )x y x x y  and the parallelepiped law is satisfied  

2 2 2 2|| , || || , || 2(|| , || || , || )x y z x y z x z y z .                                                    (1) 

If 0  is given and || , || || , || 1x z y z , || , ||x y z  and ( , )z V x y , then from the equality (1) 

it follows that for 2
2

( ) 1 1 ( ) 0  the following  

2 1/2 2 1/2|| , || (4 || , || ) (4 ) 2(1 ( ))x y z x y z  

holds. It means, that ( ,( , | ))L  is uniformly convex space.  

Let z  be a fixed nonzero element in L , ( )V z  be the subspace of L  generated by z  and let zL  be 

the quotient space / ( )L V z . For x L  by zx  we denote the class of equivalence of x  over ( )V z . 

Clearly, zL  is a linear space with the operations of adding the two vectors and multiplying a 
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vector by scalar given respectively with ( )z z zx y x y  and ( )z zx x . In [2] it is proved 

that by || || || , ||z zx x z  a norm on zL
 is defined. For the 2-normed space ( ,|| , ||)L  and the normed 

space ( ,|| || )z zL  the following result holds.  

Theorem 1 ([1]). Let ( ,|| , ||)L  be a 2-normed space. Then L  is uniformly convex if and only if 

for every ј \{0}z L  the space ( ,|| || )z zL  is uniformly convex.  

Definition 2 ([2]). Let ,x y L  be non-zero elements and let ( , )V x y  be the subspace of L  

generated by the vectors x  and y . The linear 2-normed space ( ,|| , ||)L  is strictly convex if 

2
|| , || || , || || , || 1

x y
x z y z z  and ( , )z V x y , for , ,x y z L , implies that x y .  

More characterizations of the strictly convex 2-normed spaces can be found in [3] – [12], and 

some of them are given in the next theorem. 

Theorem 2. Let ( ,|| , ||)L  be a 2-normed space. The following statements are equivalent:  

1) ( ,|| , ||)L  is a strictly convex space. 

2) For every nonzero element z L  the space ( ,|| || )z zL  is strictly convex space..  

3) If || , || || , || || , ||x y z x z y z  and ( , )z V x y , for , ,x y z L  than y x  for some 0 .  

4) If || , || || , ||x u z x y z , || , || (1 ) || , ||y u z x y z , (0,1)  and ( , )z V x u y u , 

then (1 )u x y .  

5) If || , || || , || 1x z y z , x y  and ( , )z V x y , for , ,x y z L , then 
2

|| , || 1
x y

z .  

Example 2. Let ( , )Y M  be measurable space and  is a positive measure on M , then 

( )pX L , 1p  is the following space  

{ : : , | | }p

Y

X f f Y f dC .  

In [13] it is proved that the function || , ||: ( ) ( )p pL L R  given by:  

1( ) ( )
|| , || { | | ( )}

( ) ( )
pp

Y Y

f x f y
f g d

g x g y
, 

is a 2-norm on ( )pX L . Let || , || || , || 1f h g h , f g  and ( , )h V f g . Then because of the 

Minkowski’s inequality it follows that 

1( ) ( ) ( ) ( )
|| , || ( | | ( ))

( ) ( ) ( ) ( )
pp

Y Y

f x f y g x g y
f g h d

h x h y h x h y
 

1 1( ) ( ) ( ) ( )
               ( | | ( )) ( | | ( ))

( ) ( ) ( ) ( )

               || , || || , || 1 1 2,

p pp p

Y Y Y Y

f x f y g x g y
d d

h x h y h x h y

f h g h

 

And the equality holds if and only if there exists 0  such that  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f x f y g x g y

h x h y h x h y
,  

almost everywhere. But, because || , || || , || 1f h g h  we get  
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1 1

1

( ) ( ) ( ) ( )
1 || , || { | | ( )} { | | ( )}

( ) ( ) ( ) ( )

( ) ( )
{ | | ( )} || , || 1 .

( ) ( )

p p

p

p p

Y Y Y Y

p

Y Y

f x f y g x g y
f h d d

h x h y h x h y

g x g y
d g h

h x h y

 

The last one contradics the f g , so || , || 2f g h , that is 
2

|| , || 1
f g

h , and by Theorem 2 

means that 2-normed space ( )pX L  is strictly convex space.  

2. THE MAIN RESULTS  

Let ( ,|| , ||)L  be a 2-normed space and { , }a b  be linearly independent subspace of L . In Theorem 

1 and Theorem 2, [14] it is proved that  

1/|| || (|| , || || , || )p p px x a x b , x L , 1p ,                                                   (2) 

|| || max{|| , ||,|| , ||}x x a x b , x L                                                     (3) 

are norms on L , which are denoted by , ,|| ||a b p  and , ,|| ||a b , respectively. Naturally, the 

following question arise: If the strict convexity of the space ( ,|| , ||)L  implies strong convexity of 

the spaces , ,( ,|| || )a b pL , 1p  and , ,( ,|| || )a bL . In the following, we will give the answer. 

Theorem 3. Let ( ,|| , ||)L  be is strictly convex 2-normed space, 1p  and let { , }a b  be a linearly 

independent subset of L . Then, the normed space , ,( ,|| || )a b pL  is a strictly convex space. 

Proof. Let ( ,|| , ||)L  be a strictly convex space, 1p  and let { , }a b  be a linearly independent 

subspace of L . If the following holds  

, , , , , ,|| || || || || ||a b p a b p a b px y x y , , 0x y . 

then from (2), the parallelepiped law for 2-norm and the Minkowski’s inequalities are also 

satisfied  

1/ 1/ 1/

1/

1/ 1/

(|| , || || , || ) (|| , || || , || ) (|| , || || , || )

[(|| , || || , ||) (|| , || || , ||) ]

(|| , || || , || ) (|| , || || , || ) .

p p p p p p p p p

p p p

p p p p p p

x a x b y a y b x y a x y b

x a y a x b y b

x a x b y a y b

 

Because of that, in the above sequence of inequalities acctually the equality holds, which means 

that in the parallelepiped law and in Minkowski’s inequality equality holds, that is 

|| , || || , || || , ||x y a x a y a , || , || || , || || , ||x y b x b y b ,                                      (4) 

|| , || || , || || , || || , ||x a y b x b y a .                                          (5) 

There are two cases:  

1) ( , )a V x y  or ( , )b V x y  and  

2) , ( , )a b V x y .  

Let ( , )a V x y  or ( , )b V x y . But, ( ,|| , ||)L  is strictly convex space, so Theorem 2 and (4) 

gives that y x  for some 0 , which means that , ,( ,|| || )a b pL  is strictly convex space.  

The second case, , ( , )a b V x y  contradicts the linear independence of the set { , }a b . That is, if 

,a mx ny b rx qy , for some , , ,m n r q R , then  

|| , || | | || , ||, || , || | | || , ||, || , || | | || , ||,

|| , || | | || , ||, || , || | | || , ||, || , || | | || , ||,

x a n x y y a m x y x y a n m x y

x b q x y y b r x y x y b q r x y
                                    (6) 
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and from the equalities (4) and (5) the following holds  

(| | | |) || , || | | || , ||,

(| | | |) || , || | | || , ||,

n m x y n m x y

q r x y q r x y
                                        (7) 

2 2| | || , || | | || , || .nr x y mq x y                                          (8) 

Further, if || , || 0x y , then dim ( , ) 1V x y , meaning that the { , }a b  is linearly dependent, and this 

is a contradiction. If || , || 0x y , then from the last three equalities the following is true 

| | | | | |, | | | | | |,n m n m q r q r                                         (9) 

| | | | .nr mq                                                      (10) 

From the equalities (9) it follows that 0mn  and 0qr , so from the equality (10) nr mq  

holds. But, it means that ( ) 0ra mb nr mq y  and if 0r  or 0m , follows that the set 

{ , }a b  is linearly dependent, and if 0r m , then ,a ny b qy , which again is in the 

contradiction with the independence of the set { , }a b .  

In the next example we will show that, if ( ,|| , ||)L  is a strictly convex 2-normed space and { , }a b  

is linearly independent subset of L , then the normed space , ,( ,|| || )a bL  is not necessarily strictly 

convex.  

Example 3. Let 
3

R  be a Hilbert space with the usual inner product. Then by  

( , ) ( , )
( , | )

( , ) ( , )

x y x z
x y z

y z z z
,  , ,x y z L                                                  (11) 

a 2-inner product is defined and by  

2 2 2|| , || || || || || ( , )x y x y x y                                                    (12) 

a 2-norm in 
3

R  is defined. Also the 2-normed space 3( ,|| , ||)R  is strictly convex space (see [2]). 

The vectors (1,1,3)a  and (1,2,0)b  are linearly independent, meaning that by (3), a norm 

, ,|| ||a b  is given on 
3

R . Let (1,1,1)x  and (1,1,0)y . From (12) it follows that  

|| , || 2 2, || , || 6, || , || 3 2, || , || 1, || , || 5 2, || , || 3x a x b y a y b x y a x y b . 

So, from (3) it follows that  

, , , , , ,|| || 2 2, || || 3 2, || || 5 2a b a b a bx y x y , 

which means, that  

, , , , , ,|| || || || || ||a b a b a bx y x y . 

But, for every 0  the it is true that y x , so the space 3
, ,( ,|| || )a bR  is not strictly convex 

spaced. On the other side, according to the Theorem 2.4.4, pp. 53, [15] every uniformly convex 

space is strictly convex, and because 3
, ,( ,|| || )a bR  is not a strictly convex space, we can come to 

a conclusion that it is not a uniformly convex space although the 2-normed space 3( ,|| , ||)R  is 

uniformly convex.  

Theorem 4. Let ( ,|| , ||)L  be a 2-normed space. If L  is uniformly convex space then it is strictly 

convex one. 
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Proof. Let ( ,|| , ||)L  be a uniformly convex space and let for , ,x y z L , ( , )z V x y  

|| , || || , || 1x z y z  and x y  holds. Then, for 
|| , ||

2

x y z
, follows that 0  and because L  

uniformly convex space it follows that there exist ( ) 0  such that from || , || || , || 1x z y z , 

|| , ||x y z  and ( , )z V x y  the following  

|| , || 2(1 ( )) 2x y z , 

that is 
2

|| , || 1
x y

z
 
holds. Finally, from Theorem 2 the result that L  is strictly convex space 

follows.  

Example 4. In [16] it is proved that in the set consisting of all bounded sequences of real numbers 

l  by  

,

|| , || sup
i j

i ji j
i j

x x
x y

y yN

, 1 1( ) , ( )i i i ix x y y l  

a 2-norm is defined, which means that ( ,|| , ||)l  is a real 2-normed space and also it is proved 

that l  is not strictly convex 2-normed space. From the Theorem 4 it follows that l  is not a 

uniformly convex space.  

The notion of convergent sequence in a 2-normed space is introduced by A. White, who proved 

some results concerning this. Namely, the sequence 1{ }n nx  in the linear 2-normed space is 

convergent if there exists x L  such that  

lim || , || 0n
n

x x y , for every y L . 

The vector x L  is the limit of the sequence 1{ }n nx  and we denote lim n
n

x x  or nx x , 

n , ([17]).  

Theorem 5. A 2-normed space ( ,|| , ||)L  is uniformly convex if and only if for every two 

sequences 1 1{ } ,{ }n n n nx y  such that  

1) || , || || , || 1n nx z y z  and ( , )n nz V x y  

2) lim || , || 2n n
n

x y z  and ( , )n nz V x y  

the following holds lim ( ) 0n n
n

x y .  

Proof. Let the conditions 1) and 2) be satisfied, and let we assume that the sequence 1{ }n n nx y  

doesn’t converge to 0. Then there exists 0 0 , z L  and a sequence of natural numbers 

1{ }k kn  such that 0|| , ||
k kn nx y z , ( , )

k kn nz V x y . But, L  is uniformly convex space, so for 

this 0  there exists 0( ) 0  such that  

0|| , || 2(1 ( ))
k kn nx y z , ( , )

k kn nz V x y , 

which, is a contradiction with 2). Finally, it follows that lim ( ) 0n n
n

x y .  

Let L  is such that for some sequences 1 1{ } ,{ }n n n nx y  satisfying conditions 1) and 2), 

lim ( ) 0n n
n

x y
 
holds, but let L  is not a uniformly convex space. Then, for some 0  and for 

1
n

 there exists ,n nx y L  such that  
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i) || , || || , || 1n nx z y z  and ( , )n nz V x y ,  

ii) 1|| , || 2(1 )n n n
x y z  and ( , )n nz V x y  

iii) || , ||n nx y z .  

But, iii) is in contradiction with the assumptions, because from ii) it follows that 

lim || , || 2n n
n

x y z  and ( , )n nz V x y . Finally, from the above contradiction, it follows that L  

is uniformly convex space  

Theorem 4 has the following equivalent form.  

Theorem 5’. A 2-normed space ( ,|| , ||)L  is uniformly convexif and only if for some sequences 

1 1{ } ,{ }n n n nx y  satisfying  

1) lim || , || lim || , || 1n n
n n

x z y z  and ( , )n nz V x y  

2) lim || , || 2n n
n

x y z  and ( , )n nz V x y  

the following holds lim ( ) 0n n
n

x y .  

Theorem 6. If a 2-normed space ( ,|| , ||)L  is uniformly convex and  is strictly convex and 

strictly increasing function on (0,1]  such that (1) 1. Then for the function 

( ) inf{ (|| , ||) (|| , ||) 2, || , || || , || 1, ( , )}h t x ty z x ty z x z y z z V x y  

holds ( ) 0h t , for every (0,1]t .  

Proof. Let L  is a uniformly convex space and let  is strictly convex and strictly increasing 

function on (0,1]  such that (1) 1. Also let there is some 0 (0,1]t  such that 0( ) 0h t . From 

the definition of the function ( )h t  it follows that there are sequences 1{ }n nx  and 1{ }n ny  such 

that || , || || , || 1n nx z y z , ( , )n nz V x y  and  

0 0lim ( (|| , ||) (|| , ||) 2n n n n
n

x t y z x t y z .                                                    (2) 

But, the function  is strictly increasing with (1) 1, meaning that it is bounded. So because  

is convex it follows that it is a continuous function. So, there exists inverse function 1 , also 

continuous and strictly increasing. Now, taking into consideration the definition of ( )h t , the 

properties of the function  and the equality (2) it follows that  

0 0|| , || || , ||
0 02

2 2 ( ) (|| , ||) (|| , ||) 2n n n nx t y z x t y z
n n n nx t y z x t y z , n ,  

or  

0 0|| , || || , ||

2
1 ( ) 1n n n nx t y z x t y z

, n .                                                    (3) 

Further on, because the function  is strictly convex and because of the previous consideration it 

follows that  

0 0lim | || , || || , || | 0n n n n
n

x t y z x t y z .                                                        (4) 

But, the function 
1

 is continuous, strictly increasing and 
1(1) 1, so from (3) it follows that  

0 0lim (|| , || || , ||) 2n n n n
n

x t y z x t y z .                                                    (5) 

Finally, from (4) and (5) it follows that  
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0 0lim || , || lim || , || 1n n n n
n n

x t y z x t y z  and ( , )n nz V x y  and  

0 0lim || ( ), || lim 2 || , || 2n n n n n
n n

x t y x t y z x z  and ( , )n nz V x y ,  

and because ( ,|| , ||)L  is uniformly convex from Theorem 5’ the following is true 

0 0 0 02 lim 2 || , || lim || ( ), || 0n n n n n
n n

t t y z x t y x t y z , 

which is a contradiction, so ( ) 0h t , for every (0,1]t .  

3. CONCLUSION  

 In Theorem 3 we have proved that, if  ( ,|| , ||)L  is strictly convex 2-normed space, then for 1p  

and { , }a b  linearly independent subset of L , the normed space , ,( ,|| || )a b pL  is strictly convex, 

and in Example 3,  it is proven that the normed space 3
, ,( ,|| || )a bR  is not strictly convex space.  

The question, if the normed space , ,1( ,|| || )a bL  is strictly convex, arises. Also, it is natural to ask if 

the opposite of Theorem 6 holds and what kind of other results for uniformly convex normed 

spaces can be generalized for 2-normed spaces.  
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