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1. INTRODUCTION 

In 1963, Levine [1] introduced the concepts of semi-open sets and semi-continuity in topological 

spaces. Crossley and Hildebrand [2] defined and studied irresolute functions and semi-

homeomorphisms. Caldas [3] introduced contra-irresolute and ap-irresolute maps and investigated 

their properties. In 1980, Jain [4] introduced the concept of totally continuous functions. Nour [5] 

defined totally semi-continuous and strongly semi-continuous functions. Benchalli et al.[6] 

introduced and studied semi-totally continuous and semi-totally open functions. 

Quite recently, the authors [7, 8, 9] introduced and studied some new concepts, namely semi*-

open sets, semi*-closed sets, semi*-Derived set and semi*-Frontier of a set. We have also defined 

semi*-continuous, semi*-open, semi*-closed, pre-semi*-open and pre-semi*-closed functions and 

their contra versions [10]. In this paper we define the semi*-irresolute, contra-semi*-irresolute, 

totally semi*-continuous, semi*-totally continuous, semi*-totally-open functions and semi*-

homeomorphisms and investigate their properties.  

2. PRELIMINARIES 

Throughout this paper X, Y and Z will always denote topological spaces on which no separation 

axioms are assumed, unless explicitly stated. If A is a subset of a space X, Cl(A), Int(A) and D[A] 

respectively denote the closure, the interior and the derived set of A in X . 

Definition 2.1[11]: A subset A of a topological space (X, τ) is called   

(i) generalized closed (briefly g-closed) if Cl(A)⊆U whenever A⊆U and U is open  in X. 

(ii) generalized open (briefly g-open) if X\A is g-closed in X. 

Definition 2.2: Let A be a subset of X. Then 

(i) generalized closure [12] of A is defined as the intersection of all g-closed sets containing A and 

is denoted by Cl*(A). 

(ii) generalized interior of A is defined as the union of all g-open subsets of A and is denoted by 

Int*(A). 

Definition 2.3: A subset A of a topological space (X, τ) is called   

(i) semi-open [1] (resp. semi*-open[7]) if A⊆Cl(Int(A)) (resp. A⊆Cl*(Int(A)).  

(ii) semi-closed [13] (resp. semi*-closed[8]) if Int(Cl(A))⊆A (resp. Int*(Cl(A))⊆A). 

(iii) semi*-regular [8] if it is both semi*-open and semi*-closed. 
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The class of all semi*-open (resp. semi*-closed) sets is denoted by S*O(X, τ) (resp. S*C(X,τ))  

Definition 2.4:  Let A be a subset of X. Then  

(i) The semi*-interior [7] of A is defined as the union of all semi*-open subsets of A and is  

denoted by s*Int(A). 

(ii) The semi*-closure [8] of A is defined as the intersection of all semi*-closed sets containing A 

and is denoted by s*Cl(A). 

Definition 2.5: A function f :X⟶Y is said to be  

(i)  semi*-continuous [10] if  f 
-1

(V) is semi*-open in X  for every open set V in Y. 

(ii) pre-semi*-open [10] (resp. pre-semi*-closed [10]) if  f(U) is semi*-open (resp. semi*- closed) 

in Y for every semi*-open (resp. semi*-closed) set U in X. 

(iii) totally continuous [4] (resp. totally semi-continuous [5]) if f 
-1

(V) is clopen (resp. semi 

regular) in X for every open set V in Y. 

(iv) semi-totally continuous [6] if f 
-1

(V) is clopen in X for every semi-open set V in Y. 

(v) semi-totally open if f(V) is clopen in Y for every semi-open set V in X. 

(vi) strongly-continuous if f 
-1

(V) is clopen in X for every subset V of Y. 

Theorem 2.6[7]: (i) Every open set is semi*-open. 

               (ii) Every semi*-open set is semi-open. 

Theorem 2.7 [7]:  

(i) If {Aα} is a collection of semi*-open sets in X, then ∪Aα is also semi*-open in X. 

(ii) If A is semi*-open in X and B is open in X, then A∩B is semi*-open in X. 

Theorem 2.8: A subset A of a space X is  

            (i) semi*-open if and only if s*Int(A)=A.[7] 

(ii) semi*-closed if and only if s*Cl(A)=A.[8] 

Lemma 2.9 [10]: Let A be a subset of a space X. Then  

(i) A is semi*-open in X if and only if Cl*(Int(A))=Cl*(A).  

            (ii) A is semi*-closed in X if and only if Int*(Cl(A))=Int*(A). 

Definition 2.10: If A is a subset of X, the semi*-frontier [9] of A is defined by  

s*Fr(A)=s*Cl(A)\s*Int(A). 

Theorem 2.11[9]: If A is a subset of X, then s*Fr(A)=s*Cl(A)∩s*Cl(X\A). 

Definition 2.12:  Let A be a subset of X. A point x in X is a semi*-limit point [8] of A if every 

semi*-open set containing x intersects A in a point different from x. 

Definition 2.13: The set of all semi*-limit points of A is called the semi*-Derived set [8] of A and 

is denoted by Ds*[A]. 

Definition 2.14: A topological space X is said to be 

(i) T1/2 if every g-closed set in X is closed.[11] 

(ii) Locally indiscrete if every open set is closed.[14] 

Definition 2.15: A space X is said to be  

(i) T1 [14] if for every pair of distinct points x and y in X there exist open sets U and V such that 

x∈U but y U and y∈V but x V. 

(ii) an Alexandroff space if for every point x in X has a smallest neighborhood.  
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Remark 2.16: A topological space X is  

(i) T1 if and only if singletons are closed in X.[14] 

(ii) Alexandroff space if and only if arbitrary intersection of open sets in X is open or 

equivalently if arbitrary union of closed sets is closed.  

3. SEMI*-IRRESOLUTE FUNCTIONS 

Definition 3.1: A function f :X⟶Y is said to be semi*-irresolute at x∈X if for each semi*-open 

set V of Y containing f(x), there is a semi*-open set U in X such that x∈U and f(U)⊆V. 

Definition 3.2: A function f :X⟶Y is said to be semi*-irresolute if f 
-1

(V) is semi*-open in X for 

every semi*-open set V in Y. 

Definition 3.3: A function f :X⟶Y is said to be contra-semi*-irresolute if f 
-1

(V) is semi*-closed 

in X for every semi*-open set V in Y. 

Definition 3.4: A bijection  f :X⟶Y is said to be a semi*-homeomorphism if f is semi*-irresolute 

and pre-semi*-open. 

Definition 3.5: A function  f :X⟶Y is said to be totally semi*-continuous if f 
-1

(V) is semi*-

regular in X for every open set V in Y. 

Definition 3.6: A function f :X⟶Y is said to be semi*-totally continuous if f 
-1

(V) is clopen  in X 

for every semi*-open set V in Y. 

Definition 3.7: A function f :X⟶Y is said to be semi*-totally open if f(V) is clopen in Y for every 

semi*-open set V in X. 

Definition 3.8: A function f :X⟶Y is said to be strongly-semi*-continuous if f 
-1

(V) is semi*-

regular in X for every subset V of Y. 

Theorem 3.9: Every semi*-irresolute function is semi*-continuous. 

Proof: Let f :X⟶Y be semi*-irresolute. Let V be open in Y. Then by Theorem 2.6(i), V is semi*-

open. Since f is semi*-irresolute, f 
-1

(V) is semi*-open in X. Thus f is semi*-continuous.  

Remark 3.10: (i) It is not true that every semi*-continuous function is semi*-irresolute as shown 

by the following example. 

(ii) The converse of the above theorem is true if the co-domain is a locally indiscrete space. 

Example 3.11: Let X={a, b, c, d} and τ1=τ2={ϕ, {a}, {b}, {a, b}, {a, b, c}, X}.  

Let f :(X, τ1)⟶(X, τ2) be defined by f(a)=a, f(b)=b, f(c)=d, f(d)=b. Then f is semi*-continuous. 

Here {a, d} is semi*-open in (X, τ2) but f 
-1

({a, d})={a, c} is not semi*-open in (X, τ1). Therefore f 

is not semi*-irresolute. 

Theorem 3.12: Every constant function is semi*-irresolute. 

Proof:  Let f :X⟶Y be a constant function defined by f(x)=y0 for all x in X, where y0 is a fixed 

point in Y. Let V be a semi*-open set in Y. Then f 
-1

(V)=X or ϕ  according as y0∈V or y0 V. Thus 

 f 
-1

(V) is semi*-open in X. Hence f is semi*-irresolute.  

Theorem 3.13: Let f :X⟶Y be a function. Then the following are equivalent: 

(i) f is semi*-irresolute.  

(ii) f is semi*-irresolute at each point of X.  

(iii)  f -1(F) is semi*-closed in X for every semi*-closed set F in Y. 

(iv)  f(s*Cl(A))⊆s*Cl(f(A)) for every subset A of X. 

(v) s*Cl(f 
-1

(B))⊆ f 
-1

(s*Cl(B)) for every subset B of Y. 

(vi)  Int*(Cl(f 
-1

(F)))=Int*(f 
-1

(F)) for every semi*-closed set F in Y. 

(vii) Cl*(Int(f 
-1

(V)))=Cl*(f 
-1

(V)) for every semi*-open set V in Y.   
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(viii) f 
-1

(s*Int(B)) ⊆s*Int(f 
-1

(B)) for every subset B of Y. 

Proof: (i)⇒(ii): Let f :X⟶Y be semi*-irresolute. Let x∈X and V be a semi*-open set in Y 

containing f(x). Then x∈f 
-1

(V). Since f is semi*-irresolute, U= f 
-1

(V) is a semi*-open set 

containing x such that f(U)⊆V. This proves (ii). 

(ii)⇒(iii): Let F be a semi*-closed set in Y. Then V=Y\F is semi*-open in Y. Let x∈ f 
-1

(V), then 

f(x)∈V. By assumption, there is a semi*-open set Ux in X containing x such that f(x)∈f(Ux)⊆V. 

This implies that Ux⊆f 
-1

(V). Hence f 
-1

(V)=∪{Ux : x∈ f 
-1

(V)}. By Theorem 2.7(i), f 
-1

(V) is semi*-

open in X. Therefore f 
-1

(F)=f 
-1

(Y\V)=X\f 
-1

(V) is semi*-closed. This proves (iii). 

(iii)⇒(iv): Let A⊆X. Let F be a semi*-closed set containing f(A). Then by (iii), f 
-1

(F) is a semi*-

closed set that contains A. This implies that s*Cl(A)⊆f 
-1

(F)⇒f(s*Cl(A))⊆F. This implies that 

f(s*Cl(A))⊆s*Cl(f(A)).  

(iv)⇒(v): Let B⊆Y and let A= f 
-1

(B). By assumption, f(s*Cl(A))⊆s*Cl(f(A))⊆s*Cl(B). This 

implies that s*Cl(A)⊆f 
–1

(s*Cl(B)). Hence s*Cl(f 
-1

(B))⊆f 
-1

(s*Cl(B)). 

(v)⇒(vi): Let F be a semi*-closed set in Y. Then by Theorem 2.8(ii), s*Cl(F)=F and hence  

by (v), s*Cl(f 
-1

(F))⊆ f 
-1

(s*Cl(F))=f 
-1

(F). But always f 
-1

(F)⊆s*Cl(f 
-1

(F)). Therefore  

s*Cl(f 
-1

(F))= f 
-1

(F). Hence by Theorem 2.8(ii), f 
-1

(F) is semi*-closed. By invoking Lemma 

2.9(ii), Int*(Cl(f 
-1

(F)))=Int*(f 
-1

(F)). 

(vi)⇒(vii): Let V be a semi*-open set in Y. Then Y\V is semi*-closed in Y. By assumption, 

Int*(Cl(f 
-1

(Y\V)))=Int*(f 
-1

(Y\V)). This implies that, Cl*(Int(f 
-1

(V)))=Cl*(f 
-1

(V)). 

(vii)⇒(i): Let V be any semi*-open set in Y. Then by assumption, Cl*(Int(f 
-1

(V)))=Cl*(f 
-1

(V)). 

Now by invoking Lemma 2.9(i), f 
-1

(V) is semi*-open in X. Hence f is semi*-irresolute. 

(i)⇒(viii): Let B be a subset of Y. Then by Theorem 2.8(i), s*Int(B) is semi*-open in Y. By 

semi*-irresoluteness of f, f 
-1

(s*Int(B)) is semi*-open in X and it is contained in f 
-1

(B). Therefore 

f 
-1

(s*Int(B)) ⊆s*Int(f 
-1

(B)). 

(viii)⇒(i): Let V be any semi*-open set in Y. Then s*Int(V)=V. By our assumption, f 
-1

(V) 

⊆s*Int(f 
-1

(V)) and hence f 
-1

(V)=s*Int(f 
-1

(V)). Therefore by Theorem 2.8(i), f 
-1

(V) is semi*-open 

in X. Thus f is semi*-irresolute.  

Theorem 3.14: Let f :X⟶Y be a bijection. Then the following are equivalent: 

(i) f is semi*-irresolute. 

(ii) f 
-1

 is pre-semi*-open. 

(iii) f 
-1

 is pre-semi*-closed. 

Proof: Follows from the definitions and Theorem 3.13. 

Theorem 3.15: Let f :X⟶Y be a function. Then f is not semi*-irresolute at a point x in X if and 

only if x belongs to the semi*-frontier of the inverse image of some semi*-open set in Y 

containing f(x). 

Proof: Suppose f is not semi*-irresolute at x. Then there is a semi*-open set V in Y containing 

f(x) such that f(U) is not a subset of V for every semi*-open set U in X containing x. Hence  

U⋂(X\f 
-1

(V))≠ϕ  for every semi*-open set U containing x. Therefore x∈s*Cl(X\f 
-1

(V)). We also 

have x∈f 
-1

(V)⊆s*Cl(f 
-1

(V)). Thus x∈s*Cl(f 
-1

(V))⋂s*Cl(X\f 
-1

(V)). Hence by Theorem 2.11, 

x∈s*Fr(f 
-1

(V)). On the other hand, let f be semi*-irresolute at x. Let V be a semi*-open set in Y 

containing f(x). Then f 
-1

(V) is a semi*-open set in X containing x. Hence x∈s*Int(f 
-1

(V)). 

Therefore x s*Fr(f 
-1

(V)) for every open set V containing f(x).This proves the theorem.  
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Theorem 3.16: Let X be a topological space and Y be a space in which every semi*-open set is 

open. If f :X⟶Y is a semi*-continuous map, then f is semi*-irresolute. 

Proof: Let V be a semi*-open set in Y. Then by assumption, V is open. By semi*-continuity of f, 

f
 -1

(V) is semi*-open in Y. Hence f is semi*-irresolute.  

Theorem 3.17: Every contra-semi*-irresolute function is contra-semi*-continuous. 

Proof: Follows directly from definitions and Theorem 2.6(i). 

Remark 3.18: The converse of the above theorem is not true as shown in the following example. 

Example 3.19: Let X={a, b, c, d}; τ1=τ2={ϕ, {a, b}, {a, b, c}, X}. Let f :(X, τ1)⟶(X, τ2) be 

defined by f(a)=f(b)=d, f(c)=a, f(d)=c. Then f is contra-semi*-continuous. But f 
-1

({a, b, d})= 

{a, b, c} which is not semi*-closed. Therefore f is not contra-semi*-irresolute. 

Theorem 3.20: For a function f :X⟶Y, the following are equivalent:  

(a) f is contra-semi*-irresolute. 

(b) the inverse image of each semi*-closed set in Y is semi*-open in X. 

(c) for each x∈X and each semi*-closed set F in Y with f(x)∈F, there exists a semi*-open set     

      U in X such that x∈U and f(U)⊆F. 

(d)Cl*(Int(f 
-1

(F)))=Cl*(f 
-1

(F)) for every semi*-closed set F in Y. 

(e)Int*(Cl(f 
-1

(V)))=Int*(f 
-1

(V)) for every semi*-open set V in Y. 

Proof: (a)⇒(b): Let F be a semi*-closed set in Y. Then Y\F is semi*-open in Y. Since f is contra -

semi*-irresolute, X\ f 
-1

(F)=f 
-1

(Y\F) is semi*-closed in X. Hence f 
-1

(F) is semi*-open in X. 

 (b)⇒(c): Let F be a semi*-closed set in Y containing f(x).Then U= f 
-1

(F) is a semi*-open set. 

containing x such that f(U)⊆F. This proves (c). 

(c)⇒(d): Let F be a semi*-closed set in Y and x∈ f 
-1

(F), then f(x)∈F. By assumption, there is a 

semi*-open set Ux in X containing x such that f(x)∈f(Ux)⊆F⇒Ux⊆f 
-1

(F). This follows that 

f 
-1

(F)=∪{Ux : x∈ f 
-1

(F)}. By Theorem 2.7(i), f 
-1

(F) is semi*-open in X. By Lemma 2.9(i), 

Cl*(Int(f 
-1

(F)))=Cl*(f 
-1

(F)). This proves (d). 

(d)⇒(e): Let V be a semi*-open set in Y. Then Y\V is semi*-closed in Y. By assumption, 

Cl*(Int(f 
-1

(Y\V)))=Cl*(f 
-1

(Y\V)). This implies that, Int*(Cl(f 
-1

(V)))=Int*(f 
-1

(V)). 

(e)⇒(a): Let V be any semi*-open set in Y. Then by assumption, Int*(Cl(f 
-1

(V)))=Int*(f 
-1

(V)). 

Now by invoking Lemma 2.9(ii), f 
-1

(V) is semi*-closed in X. Hence f is contra-semi*- irresolute. 

Theorem 3.21: Let f :X⟶Y be semi*-irresolute and h:Y⟶Z be semi*-continuous. Then  

h∘f :X⟶Z  is semi*-continuous. 

Proof: Let V be an open set in Z. Since h is semi*-continuous, h
-1

(V) is semi*-open in Y. Since f 

is semi*-irresolute, (h∘f )-1
(V)=f 

-1
(h

-1
(V)) is semi*-open in X. Hence h∘f is semi*-continuous.                                 

Theorem 3.22: If f :X⟶Y and h:Y⟶Z are semi*-irresolute, then so is h∘f: X⟶Z. 

Proof: Let V be a semi*-open set in Z. Since h is semi*-irresolute, h
-1

(V) is semi*-open in Y. 

Since f is semi*-irresolute, (h∘f )
-1

(V)=f 
-1

(h
-1

(V)) is semi*-open in X. Hence h∘f is semi*-

irresolute.           

Theorem 3.23: Let f :X⟶Y be semi*-irresolute and h:Y⟶Z be contra-semi*-continuous. Then 

h∘f: X⟶Z is contra-semi*-continuous. 
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Proof: Let V be an open set in Z. Since h is contra-semi*-continuous, h
-1

(V) is semi*-closed in 

Y. Since f is semi*-irresolute, by invoking Theorem 3.13, (h∘f )-1
(V)=f 

-1
(h

-1
(V)) is semi*-closed 

in X. Hence h∘f is contra-semi*-continuous.                                             

Theorem 3.24: Let f :X⟶Y be semi*-irresolute and h:Y⟶Z be contra-semi*-irresolute. Then 

h∘f: X⟶Z is contra-semi*-irresolute. 

Proof: Let V be a semi*-open set in Z. Since h is contra-semi*-irresolute, h
-1

(V) is semi*-closed 

in Y. Since f is semi*-irresolute, by invoking Theorem 3.13, (h∘f )
-1

(V)=f 
-1

(h
-1

(V)) is semi*-

closed in X. Hence h∘f is contra-semi*-irresolute                                                    

Theorem 3.25: Let f :X⟶Y be contra-semi*-irresolute and h:Y⟶Z be semi*-irresolute. Then 

h∘f : X⟶Z  is contra-semi*-irresolute. 

Proof: Let V be a semi*-open set in Z. Since h is semi*-irresolute, h
-1

(V) is semi*-open in Y. 

Since f is contra-semi*-irresolute, (h∘f )
-1

(V)=f 
-1

(h
-1

(V)) is semi*-closed in X. Hence h∘f is 

contra-semi*-irresolute.            

Theorem 3.26: Let f :X⟶Y be contra-semi*-irresolute and h:Y⟶Z be contra-semi*-irresolute. 

Then h∘f : X⟶Z  is semi*-irresolute. 

Proof: Let V be a semi*-open set in Z. Since h is contra-semi*-irresolute, h
-1

(V) is semi*-closed 

in Y. Since f is contra-semi*-irresolute, by Theorem 3.20, (h∘f )-1
(V)=f 

-1
(h

-1
(V)) is semi*-open in 

X. Hence h∘f is semi*-irresolute.              

Theorem 3.27: Let f :X⟶Y be a semi*-irresolute injection and A⊆X. If x∈Ds*[A], then 

 f(x)∈Ds* [f(A)]. 

Proof: Let x be a semi*-limit point of A. Let V be a semi*-open set in Y containing f(x). Then 

 f
 -1

(V) is a semi*-open set in X containing x. Since x is a semi*-limit point of A, f
 -1

(V) intersects 

A in a point other than x. Hence V intersects f(A) in a point other than f(x). Therefore f(x) is a 

semi*-limit point of f(A).    

Theorem 3.28: Let f :X⟶Y be a function where X is an Alexandroff space and Y is any 

topological space. Then the following are equivalent: 

(i) f is semi*-totally continuous. 

      (ii) for each x∈X and each semi*-open set V in Y with f(x)∈V, there exists a clopen set    

            U in X such that x∈U and f(U)⊆V. 

Proof: (i)⇒(ii): Suppose f :X⟶Y is semi*-totally continuous. Let x∈X and let V be a semi*-open 

set containing f(x). Then U=f 
-1

(V) is a clopen set in X containing x and hence f(U)⊆V. 

(ii)⇒(i): Let V be a semi*-open set in Y. Let x∈f 
-1

(V). Then V is a semi*-open set containing 

f(x). By hypothesis there exist a clopen set Ux containing x such that f(Ux)⊆V which implies that  

Ux⊆f 
-1

(V). Therefore we have f 
-1

(V)=∪{Ux : x∈f 
-1

(V)}. Since each Ux is open, f 
-1

(V) is open. 

Since each Ux is a closed set in the Alexandroff space X, f 
-1

(V) is closed in X. Hence f 
-1

(V) is 

clopen in X. Thus f is semi*-totally continuous. 

Theorem 3.29: Every semi*-totally continuous function into a T1 space which is either finite or 

an Alexandroff space is strongly-continuous. 

Proof: Suppose f :X⟶Y is semi*-totally continuous. If Y is a T1 space which is either finite or an 

Alexandroff space, then Y is a discrete space. Let B be a subset of Y. Then B is open and hence 

semi*-open in Y. Since f is semi*-totally continuous, f 
-1

(B) is clopen in X. Thus f is strongly-

continuous. 

Theorem 3.30: A function f :X⟶Y is semi*-totally continuous if and only if  f 
-1

(F) is clopen in 

X for every semi*-closed set F in Y. 

Proof: Let F be a semi*-closed set in Y. Then Y\F is semi*-open in Y. Since f is semi*-totally 

continuous, f 
-1

(Y\F) =X\ f 
-1

(F) is clopen in X. Hence f 
-1

(F) is clopen in X. Conversely, let V be a 
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semi*-open set in Y. Then Y\V is semi*-closed in Y. By hypothesis, f 
-1

(Y\V)=X\ f 
-1

(V) is clopen 

in X. Hence f 
-1

(V) is clopen in X. Therefore f is semi*-totally continuous. 

Theorem 3.31: (i) Every semi*-totally-continuous function is totally continuous. 

 (ii) Every strongly continuous function is semi*-totally continuous. 

 (iii) Every semi*-totally continuous function is totally semi*-continuous. 

 (iv) Every semi*-totally continuous function is semi*-continuous. 

 (v) Every strongly semi*-continuous function is totally semi*-continuous. 

 (vi) Every totally semi*-continuous function is semi*-continuous. 

(vii) Every semi-totally continuous function is semi*-totally continuous. 

(viii) Every totally semi*-continuous function is totally semi-continuous. 

Proof: (i) Suppose f :X⟶Y is semi*-totally continuous. Let V be an open set in Y. Then by 

Theorem 2.6(i), V is semi*-open in Y. Since f is semi*-totally continuous, f 
-1

(V) is clopen in X. 

Therefore f is totally continuous. 

(ii) Suppose f :X⟶Y is strongly continuous. Let V be a semi*-open set in Y. Since f is strongly 

continuous, f 
-1

(V) is clopen in X.  Therefore f is semi*-totally continuous. 

(iii) Suppose f :X⟶Y is semi*-totally-continuous. Let V be an open set in Y. Then by invoking 

Theorem 2.6(i), V is semi*-open in Y. Since f is semi*-totally continuous, f 
-1

(V) is clopen in X 

and hence f 
-1

(V) is semi*-regular. Therefore f is totally semi*-continuous. 

(iv) Suppose f :X⟶Y is semi*-totally continuous. Let V be an open set in Y. Then by Theorem 

2.6(i), V is semi*-open in Y. Since f is semi*-totally continuous, f 
-1

(V) is clopen in X. Therefore 

 f 
-1

(V) is open and hence semi*-open. Thus f is semi*-continuous. 

(v) Suppose f :X⟶Y is strongly semi*-continuous. Let V be an open set in Y. Since f is strongly 

semi*-continuous, f 
-1

(V) is semi*-regular in X.  Therefore f is totally semi*-continuous. 

(vi) Suppose f :X⟶Y is totally-semi*-continuous. Let V be an open set in Y. Since f is totally-

semi*-continuous, f 
-1

(V) is semi*-regular in X and hence semi*-open in X. Therefore f is semi*-

continuous. 

(vii) Suppose f :X⟶Y is semi-totally continuous. Let V be a semi*-open set in Y. Then by 

Theorem 2.6(ii), V is semi-open. Since f is semi-totally continuous, f 
-1

(V) is clopen in X. 

Therefore f is semi*-totally continuous. 

(viii) Suppose f :X⟶Y is totally semi*-continuous. Let V be an open set in Y. Since f is totally 

semi*-continuous, f 
-1

(V) is semi*-regular in X and hence semi-regular in X. Therefore f is totally 

semi-continuous. 

Theorem 3.32: Every totally semi*-continuous function into a T1 space which is either finite or 

an Alexandroff space is strongly-semi*-continuous. 

Proof: Suppose f :X⟶Y is totally semi*-continuous. If Y is a T1 space which is either finite or an 

Alexandroff space, then Y is a discrete space. Let B be a subset of Y. Then B is open in Y. Since f 

is totally semi*-continuous, f 
-1

(B) is semi*-regular in X. Thus f is strongly-semi*-continuous. 

Theorem 3.33: Let f :X⟶Y be semi*-totally continuous and A is a clopen subset of Y. Then the 

restriction f A : A⟶Y is semi*-totally continuous.  

Proof: Let V be a semi*-open set in Y. Then f
 -1

(V) is clopen in X and hence (f A)
-1

(V)= 

A∩f
 -1

(V) is clopen in A. Therefore  f A is semi*-totally continuous. 

Theorem 3.34: The composition of two semi*-totally continuous functions is semi*-totally-

continuous. 

Proof:  Let f :X⟶Y and h:Y⟶Z be semi*-totally continuous functions. Let V be a semi*-open 

set in Z. Since h is semi*-totally continuous, h
-1

(V) is clopen in Y and hence semi*-open in Y. 
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Since f is semi*-totally continuous, (h∘f )
-1

(V)=f 
-1

(h
-1

(V)) is clopen in X. Hence h∘f is semi*-

totally-continuous. 

Theorem 3.35: Let f :X⟶Y be semi*-totally continuous and h:Y⟶Z be semi*-irresolute. Then 

h∘f : X⟶Z  is semi*-totally continuous. 

Proof:  Let V be a semi*-open set in Z. Since h is semi*-irresolute, h
-1

(V) is semi*-open in Y. 

Since f is semi*-totally-continuous, (h∘f )
-1

(V)=f 
-1

(h
-1

(V)) is clopen in X. Hence h∘f is semi*-

totally-continuous. 

Theorem 3.36: Let f :X⟶Y be semi*-totally continuous and h:Y⟶Z be semi*-continuous. Then 

h∘f : X⟶Z is totally continuous. 

Proof:  Let V be an open set in Z. By semi*-continuity of h, h
-1

(V) is semi*-open in Y. Since f is 

semi*-totally-continuous, (h∘f )-1
(V)=f 

-1
(h

-1
(V)) is clopen in X. Hence h∘f is totally continuous.  

Theorem 3.37: Let f: X⟶Y be continuous and h:Y⟶Z be semi*-totally continuous. Then  

h∘f : X⟶Z  is semi*-totally continuous. 

Proof:  Let V be a semi*-open set in Z. Since h is semi*-totally continuous, h
-1

(V) is clopen in Y. 

Since f is continuous, (h∘f )-1
(V)=f 

-1
(h

-1
(V)) is clopen in X. Hence h∘f is semi*-totally continuous. 

Theorem 3.38: A bijective function f :X⟶Y is semi*-totally open if and only if f 
-1

:Y⟶X is 

semi*-totally continuous. 

Proof: Suppose f 
-1

:Y⟶X is semi*-totally continuous. Let U be semi*-open in X. Then by semi*-

totally continuity of f 
-1

, f (U)=(f 
-1

)
-1

(U) is clopen in Y. Therefore f :X⟶Y is semi*-totally open. 

Conversely, suppose f :X⟶Y is semi*-totally open. Let U be semi*-open in X. Then  

(f 
-1

)
-1

(U)=f(U) is clopen in Y. Therefore f 
-1

:Y⟶X is semi*-totally continuous. 

Theorem 3.39: The composition of two semi*-totally open functions is semi*-totally open. 

Proof:  Let f:X⟶Y and h:Y⟶Z be semi*-totally open. Let V be a semi*-open set in X. Then 

f(V) is clopen in Y and hence semi*-open in Y. Since h is semi*-totally-open, (h∘f )(V)=h(f(V)) is 

clopen in Z. Hence h∘f is semi*-totally open. 

Theorem 3.40: Let f: X⟶Y be pre-semi*-open and h:Y⟶Z be semi*-totally open. Then  

h∘f : X⟶Z  is semi*-totally open. 

Proof:  Let V be a semi*-open set in X. Since f is pre-semi*-open, f(V) is semi*-open in Y. Since 

h is semi*-totally open, (h∘f )(V)=h(f(V)) is clopen in Z. Hence h∘f is semi*-totally open. 

Theorem 3.41: If f: X⟶Y and h:Y⟶Z are functions such that h∘f : X⟶Z  is semi*-totally open. 

Then (i) if f is semi*-irresolute and onto, then h is semi*-totally open. 

(ii) if h is continuous and one to one, then f is semi*-totally open. 

Proof: (i) Let V be semi*-open in Y. Since f is semi*-irresolute, U=f 
-1

(V) is semi*-open in X. 

This implies that (h∘f )(U)=h(f(U))=h(V) is clopen in Z. Therefore h is semi*-totally open. 

(ii) Let U be semi*-open in X. (h∘f )(U) is clopen in Z. Since h is continuous, h
-1

((h∘f)(U))=f(U) is 

clopen in Y. Therefore f is semi*-totally open. 

Theorem 3.42: Let f :X⟶Y and h:Y⟶Z be functions such that h∘f :X⟶Z is semi*-open. Then   

 f is semi*-open if h is a semi*-irresolute injection. 

Proof: Let U be an open set in X. Since h∘f is semi*-open, h∘f(U) is semi*-open in Z. Since h is 

semi*-irresolute, f
 
(U)=h

-1
(h∘f(U)) is semi*-open in Y.  Hence f is semi*-open. 

4. CONCLUSION  

In this paper we have introduced various functions associated with semi*α-open sets and 

investigated their properties in the light of concepts and results available in the literature. 
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