Laplacian Polynomial and Laplacian Energy of Some Cluster Graphs

Harishchandra . S. Ramane
Department of Mathematics,
Karnatak University,
Dharwad, India
haramane@yahoo.com

Shaila.B.Gudimani
Department of Mathematics University
Bhoomaraddi College of Engineering and Technology, Hubli, India
sbgudimani@gmail.com

Abstract: The graphs with large number of edges are referred as graph representation of inorganic clusters, so called cluster graphs. H . B. Walikar and H .S. Ramane introduced class of graph obtained from complete graph by deleting edges. In this paper, the Laplacian polynomial and Laplacian energy of this class of graph is obtained.

Keywords: Laplacian polynomial and Laplacian energy of graph, cluster graphs.

AMS Subject Classification: 05C50.

1. INTRODUCTION

The Laplacian matrix of a graph and its eigenvalues can be used in several areas of mathematical research and have a physical interpretation in various physical and chemical theories.

Let G be a simple graph with vertex set \(V(G) = \{v_1, v_2, \ldots, v_n\} \) where \(n \) is the number of vertices of G. The adjacency matrix of a graph G is \(A(G) = [a_{ij}] \), where \(a_{ij} = 1 \) if \(v_i \) is adjacent to \(v_j \) and \(a_{ij} = 0 \), otherwise. The characteristic polynomial of a graph G is defined as

\[
\phi(G; \lambda) = \det(\lambda I - A(G))
\]

where I is the identity matrix of order \(n \).

The degree matrix of a graph G is the diagonal matrix \(D(G) = \text{diag}[d_i] \) where \(d_i = d_G(v_i) \). The matrix \(C(G) = D(G) - A(G) \) is called Laplacian matrix. It is also called as matrix of admittance due to its role in electrical theory [1]. The Laplacian polynomial of graph G is defined as

\[
C(G; \mu) = \det(\mu I - C(G))
\]

where I is the identity matrix of order \(n \). The roots \(\mu_1, \mu_2, \ldots, -\mu_n \) of \(C(G; \mu) \) are called the Laplacian eigenvalues of G, where \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \).

Laplacian energy is defined as

\[
CE(G) = \sum_{i=1}^{n} |\mu_i - \frac{2m}{n}|
\]

Let \(K_n \) denote the complete graph on \(n \) vertices. The class of graphs defined [2] is as follows.

2. SOME CLUSTER GRAPHS

I.Gutman and L. Pavlovic [2] introduced four classes of graphs obtained from complete graph by deleting edges and analyzed their energies. For completeness we produce these here.

DEFINITION 1: Let \(v \) be a vertex of a complete graph \(K_n \), \(n \geq 3 \) and let \(e_i, i = 1, 2, \ldots, k \), \(1 \leq k \leq n-1 \), be its distinct edges, all being incident to \(v \). The graph \(K a_n(k) \) is obtained by deleting \(e_i, i = 1, 2, \ldots, k \) from \(K_n \). In addition \(K a_n(0) \cong K_n \).

DEFINITION 2: Let \(f_i, i = 1, 2, \ldots, k \), \(1 \leq k \leq \lfloor n/2 \rfloor \) be independent edges of the complete graph \(K_n \), \(n \geq 3 \). The graph \(K b_n(k) \) is obtained by deleting \(f_i, i = 1, 2, \ldots, k \) from \(K_n \). In addition \(K b_n(0) \cong K_n \).
DEFINITION 3: Let V_k be a k-element subset of the vertex set of complete graph K_n, $2 \leq k \leq n$, $n \geq 3$. The graph $Kc_n(k)$ is obtained by deleting from K_n all the edges connecting pairs of vertices from V_k. In addition $Kc_n(0) \equiv Kc_n(1) \equiv K_n$.

DEFINITION 4: Let $3 \leq k \leq n$, $n \geq 3$. The graph $Kd_n(k)$ is obtained from K_n, the edges belonging to a k-membered cycle.

H.S. Ramane and H.B. Walikar [3] has introduced another class of graph obtained from K_n and is denoted by $Ka_n(p, k)$ which is as follows.

DEFINITION 5: Let $(K_p)_i$, $i = 1, 2, \ldots, k$, $1 \leq k \leq \lfloor n/p \rfloor$, $1 \leq p \leq n$, be independent complete graphs with p vertices of the complete graph K_n, $n \geq 3$. The graph $Ka_n(p, k)$ is obtained from K_n by deleting all edges of $(K_p)_i$, $i = 1, 2, \ldots, k$. In addition

$Ka_n(p, 0) \equiv Ka_n(0, k) \equiv Ka_n(0, 0) \equiv K_n$.

In this paper Laplacian polynomial and energy of $Ka_n(p, k)$ is obtained.

Note that the Laplacian polynomial and Laplacian energy of $Kb_n(k)$ and $Kc_n(k)$ [4] are particular cases of the graph $Ka_n(p, k)$.

Theorem 1: For $n \geq 3$, $1 \leq k \leq \lfloor n/p \rfloor$, $1 \leq p \leq n$.

$$C(Ka_n(p, k)) = \mu(\mu - n)^{(n-k)(p-1)-1} (\mu - n + p)^{k(p-1)}$$ \hspace{1cm} (1)

Proof: Without loss of generality we assume that the vertices of $(K_p)_i$ are $v_{m(i-1)+1}, v_{m(i-1)+2}, \ldots, v_{m(i-1)+m}$, $i = 1, 2, \ldots, k$.

In order to make the following result more compact, the auxiliary quantity X is introduced

$X = \mu - n + p$.

Then the Laplacian polynomial of $Ka_n(p, k)$ is equal to the determinant

$$|X 0 0 \ldots 0 1 1 1 \ldots 1 1 1 1 \ldots 1 1 \ldots 1|
0 X 0 \ldots 0 1 1 1 \ldots 1 1 1 1 \ldots 1 1 \ldots 1
0 0 X \ldots 0 1 1 1 \ldots 1 1 1 1 \ldots 1 1 \ldots 1
\vdots \vdots
0 0 0 \ldots X 1 1 1 \ldots 1 1 1 1 \ldots 1 1 \ldots 1
1 1 1 \ldots 1 X 0 0 \ldots 0 1 1 1 \ldots 1 1 \ldots 1
1 1 1 \ldots 1 0 X 0 \ldots 0 1 1 1 \ldots 1 1 \ldots 1
1 1 1 \ldots 1 0 0 X \ldots 0 1 1 1 \ldots 1 1 \ldots 1
\vdots \vdots
1 1 1 \ldots 1 0 0 0 \ldots X 1 1 1 \ldots 1 1 \ldots 1
\vdots \vdots
1 1 1 \ldots 1 1 1 1 \ldots X 0 0 \ldots 0 1 \ldots 1
1 1 1 \ldots 1 1 1 1 \ldots 1 0 X 0 \ldots 0 1 \ldots 1
1 1 1 \ldots 1 1 1 1 \ldots 1 0 0 X \ldots 0 1 \ldots 1
\vdots \vdots
1 1 1 \ldots 1 1 1 1 \ldots 1 0 0 0 \ldots X 1 \ldots 1
1 1 1 \ldots 1 1 1 1 \ldots 1 0 0 0 \ldots X X - p + 1 \ldots 1
\vdots \vdots
1 1 1 \ldots 1 1 1 1 \ldots 1 1 1 1 \ldots 1 1 \ldots X - p + 1
\vdots \vdots
1 1 1 \ldots 1 1 1 1 \ldots 1 1 1 1 \ldots 1 1 \ldots X - p + 1$$

Subtract first column from 2, 3, \ldots, n columns of (2) to obtain (3)
Laplacian Polynomial and Laplacian Energy of Some Cluster Graphs

\[
\begin{pmatrix}
X - X & \cdots & -X & 1 - X & 1 - X & \cdots & 1 - X & 1 - X \cdots & 1 - X & 1 - X \\
0 & X & \cdots & 0 & 1 & 1 \cdots & 1 & 1 \cdots & 1 & 1 \\
0 & 0 & \cdots & X & 1 & 1 \cdots & 1 & 1 \cdots & 1 & 1 \\
1 & 0 & \cdots & 0 & X - 1 & -1 \cdots & -1 & 0 \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & -1 & X - 1 \cdots & -1 & 0 \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & -1 & -1 \cdots & X - 1 & 0 \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 & 0 \cdots & 0 & X - p \\
1 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 & 0 \cdots & 0 & X - p \\
\end{pmatrix} \quad (3)
\]

Add 2,3,…,n rows to first row of (3) to obtain (4)

\[
\begin{pmatrix}
X + n - p & 0 & \cdots & 0 & 0 & 0 \cdots & 0 & 0 & \cdots & 0 & 0 \\
0 & X & \cdots & 0 & 1 & 1 \cdots & 1 & 1 \cdots & 1 & 1 \\
0 & 0 & \cdots & X & 1 & 1 \cdots & 1 & 1 \cdots & 1 & 1 \\
1 & 0 & \cdots & 0 & X - 1 & -1 \cdots & -1 & 0 \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & -1 & X - 1 \cdots & -1 & 0 \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & -1 & -1 \cdots & X - 1 & 0 \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 & 0 \cdots & 0 & X - p \\
1 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 & 0 \cdots & 0 & X - p \\
\end{pmatrix} \quad (4)
\]

Evidently, expression (4) is equal to (5)

\[
(X + n - p) (X - p)^{n-pk} X^{p-1} = \begin{pmatrix}
X - 1 & -1 & -1 \cdots & -1 \\
-1 & X - 1 & -1 \cdots & -1 \\
-1 & -1 & X - 1 \cdots & -1 \\
\cdots & \cdots & \cdots & \cdots \\
-1 & -1 & -1 \cdots & X - 1 \\
\end{pmatrix}^{k-1} \quad (5)
\]

Subtract first column from 2,3,…,p columns of (5) to obtain (6)

\[
(X + n - p) (X - p)^{n-pk} X^{p-1} = \begin{pmatrix}
X - 1 & -X & -X \cdots & -X \\
-1 & X & 0 \cdots & 0 \\
-1 & 0 & X \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
-1 & 0 & 0 \cdots & X \\
\end{pmatrix}^{k-1} \quad (6)
\]

Add 2,3,…,p rows to first row of (6) to obtain (7)

\[
(X + n - p) (X - p)^{n-pk} X^{p-1} = \begin{pmatrix}
X - p & 0 & 0 \cdots & 0 \cdots & 0 \\
-1 & X & 0 \cdots & 0 \\
-1 & 0 & X \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
-1 & 0 & 0 \cdots & X \\
\end{pmatrix}^{k-1} \quad (7)
\]

Expression (7) is equal to

\[
(X + n - p) (X - p)^{n-pk} X^{p-1} (X - p)^{k-1} (X^{p-1})^{k-1} \quad (8)
\]
On simplification expression (8) reduces to (9)

\[(X + n - p)(X - p)^{n-p+k+1}X^{k(p-1)} \quad (9)\]

This leads to the expression (1).

This completes the proof.

3. **Laplacian Spectra and Laplacian Energy of \(K_{\alpha_n}(p, k)\)**

Corollary 2:

For \(1 \leq k \leq \lfloor n/p \rfloor\), \(1 \leq p \leq n\), the spectrum of \(C(K_{\alpha_n}(p, k))\) consists of \(0, n \{\text{(n-k(p-1)-1) times}\} \) and \(n-p \{\text{k(p-1) times}\} \)

Theorem 3:

For \(1 \leq k \leq \lfloor n/p \rfloor\), \(1 \leq p \leq n\),

\[CE(K_{\alpha_n}(p, k)) = \frac{2}{n}[n(n-1) - pk(p-1) + k(n-pk)(p-1)^2] \quad (10)\]

Proof: The Laplacian energy is given by

\[CE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|\]

Substituting the value of \(2m\) **in the equation (11) we straightforwardly obtain (10).**

Remarks:

1. If \(k = 0\) equation (1) reduces to
 \[C(K_{\alpha_n}(p, 0)) = \mu(\mu - n)^{n-1} \text{ which is a Laplacian polynomial of } K_n.\]

2. If \(p = 1\), then equation (1) reduces to
 \[C(K_{\alpha_n}(1, k)) = \mu(\mu - n)^{n-1} \text{ which is a Laplacian polynomial of } K_n.\]

3. If \(p = n\) and \(k = 1\) then equation (1) reduces to
 \[C(K_{\alpha_n}(n, 1)) = \mu^n \text{ which is a Laplacian polynomial of } K_p, \text{ the complement of } K_p.\]

4. If \(p = 2\), \(k = n/2\) then equation (1) reduces to
 \[C(K_{\alpha_n}(2, n/2)) = \mu(\mu - n)^{n-1}(\mu - n + 2)^{n/2} \text{ which is a Laplacian polynomial of Cocktail party graph}\]

5. If \(n = pk\) then equation (1) reduces to
 \[C(K_{\alpha_n}(p, k)) = \mu(\mu - pk)^{k(p-1)}(\mu - p(k - 1))^{k(p-1)} \text{ which is a Laplacian polynomial of complete multipartite graph } K_{n_1, n_2, \ldots, n_k} \text{ where } n_1 = n_2 = \ldots = n_k = n/k\]

6. If \(p = 2\) and \(k = 1\) then equation (1) reduces to
 \[C(K_{\alpha_n}(2, 1)) = \mu(\mu - n)^{n-2}(\mu - n + 2) \text{ which is a Laplacian polynomial of } K_{\alpha_n}(1)\]

7. If \(p = 2\) then equation (1) reduces to
 \[C(K_{\alpha_n}(2, k)) = \mu(\mu - n)^{n-k+1}(\mu - n + 2)^k \text{ which is a Laplacian polynomial of } K_{\alpha_n}(k) \text{ [4].}\]

8. If \(k = 1\) then equation (1) reduces to
Laplacian Polynomial and Laplacian Energy of Some Cluster Graphs

\[C(K_{n}(p, 1)) = \mu(\mu - n)^{n-p}(\mu - n + p)^{p-1} \] which is a Laplacian polynomial of \(K_{c_n}(k) \) [4].

9. If \(k = 1 \) and \(p = 3 \) then equation (1) reduces to

\[C(K_{d_n}(3, 1)) = \mu(\mu - n)^{n-3}(\mu - n + 3)^2 \] which is a Laplacian polynomial of \(K_{d_n}(3) \).

REFERENCES

AUTHOR’S BIOGRAPHY

Dr. H. S. Ramane, he is a professor in the Department of Mathematics, Karnataka University, Dharwad, India. His field of interest is Graph Theory. He got his Ph.D. in 2002. He has published 48 research papers. He is member of various professional bodies. He is a referee for scientific journals.

Shaila B. Gudimani, she is a Assistant professor in the department of mathematics, Bhoomaraddi College of Engineering and Technology, Hubli. India. Her field of interest is Graph theory. She has 2 research papers.