Number of Cycles of Length Four in Sum Graphs G_n and

Integral Sum GraphsG_{m,n}

Department of Mathematics St.Jude's College, Thoothoor Kanyakumari District, Tamil Nadu, India. *vilfredkamal@gmail.com*

K. Rubin Mary

Department of Mathematics St.Jude's College, Thoothoor Kanyakumari District, Tamil Nadu, India. *rubyjudes@yahoo.com*

Abstract: A sum graph is a graph for which there is a labeling of its vertices with positive integers so that two vertices are adjacent if and only if the sum of their labels is the label of another vertex. Integral sum graphs are defined similarly, except that the labels may be any integers. These concepts were first introduced by Harary, who provided examples of such graphs of all orders. The family of integral sum graphs $G_{-n,n}$ was extended to $G_{-m,n}$ by Vilfred who calculated number of triangles in G_k , G_k^c , $G_{-m,n}$ and $G_{-m,n}^c$, $k \in \mathbb{N}$ and $m, n \in \mathbb{N}_0$. In this paper, we calculate number of cycles of length four, at first, in graphs G_k and G_k^c and then using these we obtain that of $G_{-m,n}$ and $G_{-m,n}^c$, $k \in \mathbb{N}$ and $m, n \in \mathbb{N}_0$. Also, we prove that for $n \in \mathbb{N}, G_{0,n} \cong G_{n+2} \setminus \{u_{n+2}\}$ and $G_{-1,n} \cong G_{n+4} \setminus \{u_{n+3}, u_{n+4}\}$ with-out vertex labels where u_j is the vertex with integral sum labeling j in G_m and anti-integral sum labeling j in G_m^c , m = n+2 or m = n+4 and $1 \leq j \leq m$ and obtain a few properties of natural numbers.

AMS Subject Classification: 05C75, 05C78.

Keywords: Integral sum graph, anti-integral sum graph, split graph, clique, stable set or independent set, $G^+(S)$, $G_{\Delta n}$, G_n , $G_{m,n}$, $/H/_G$.

^{*}Research supported in part by DST, Govt. of India, under grant SR/S4/MS: 679/10 (DST-SERB) and Lerroy Wilson Foundation, Nagercoil, India (Face Book: Lerroy Wilson Foundation, India).

1 INTRODUCTION

Harary introduced the concept of sum graph in [1]. A graph G = (V, E) is a sum graphor *N-graph* if the vertices of G can be labeled with distinct positive integers so that e = uv is an edge of G if and only if the sum of the labels on vertices u and v is also a label in G. Harary [2] extended the sum graph concept to allow any integers to be used as labels. He provided examples of graphs of this type. To distinguish between the two types, we refer to sum graphs that use only positive integers as *N*-sum graphs and those that use any integers as *Z*-sum graphs[3]. For any non-empty set of integers S, we let $G^+(S)$ denote the integral sum graph on the set S. For integers r and s with r < s we also let [r, s] denote the set of integers $\{r, r+1, ..., s\}$. Harary's examples of Nsum graphs are thus $G^+([1,n]) = G_n$ and his Z-sum graphs are $G^+([-r,r]) = G_{-r,r}$ for $r \in N$. (Note that his notation is modified and we write $G_{-r,r}$ for what he called $G_{r,r}$. See [3]). Beineke, Chen, Harary, Kala, Mary Florida, Nicholas, Rubin Mary, Suryakala and Vilfred [1]-[14] studied general properties of sum and integral sum graphs. The extension of Harary graphs to all intervals of integers was introduced by Vilfred and Mary Florida in [8]: for any integers r and s with r < s, let $G_{r,s} = G^+([r,s])$. We denote the sum graph $G^+([1,n])$ by G_n^+ when it is labeled and by G_n when it is unlabeled and [k] in $G^+(S)$ denotes the set of all edges of $G^+(S)$ whose edge sum value is k, $k \in S[9]$. See Figures 1 and 2.

Vilfred [7] introduced the concepts of anti-sum and anti-integral sum labeling and calculated the number of triangles in G_k , G_k^c , $G_{-m,n}$ and $G_{-m,n}^c$, $k \in N$ and $m, n \in N_0$ [6]. In this paper, we prove that for $n \in N$, $G_{0,n} \cong G_{n+2} \setminus \{u_{n+2}\}$ and $G_{-1,n} \cong G_{n+4} \setminus \{u_{n+3}, u_{n+4}\}$ with-out vertex labels where u_j is the vertex with integral sum labeling j in G_m , m = n+2 or m = n+4 and $1 \le j \le m$; $|C_4|_{G_{2n+2}} = 0$

 $\frac{(n-1)n(n+1)(7n-10)}{24} = |C_4|_{G_{2n+1}^c}; |C_4|_{G_{2n+3}^c} = \frac{(n-1)n(n+1)(7n+6)}{24} = |C_4|_{G_{2n+2}^c}; |C_4|_{G_{0,n}} = |C_4|_{G_{n+2}^c}; |C_4|_{G_{0,n}} = |C_4|_{G_{n+2}^c}; |C_4|_{G_{0,n}} = |C_4|_{G_{n+2}^c}; |C_4|_{G_{n+$

(mn+m+n)(2m+1)(2n+1) + 4mn(m+n) where $|H|_G$ denotes number of distinct sub-graphs, each isomorphic to H, in graph G, $2 \le m, n$. We obtain the following properties of natural numbers: for $2 \le n$ and $n \in N$, 6 divides n(n+1)(7n-4), n(n+1)(7n+8) and $n(7n^2+18n+5)$ and 24 divides n(n+1)(n+2)(7n-3), n(n+1)(n+2)(7n+1), n(n+1)(n+2)(7n+13), $n(n+1)(7n^2+15n-10)$ and $n(n+1)(7n^2+31n+22)$ [14].

All graphs in this paper are simple graphs. For all basic notation and definitions in graph theory, we follow [15] and for sum and integral sum graphs, we refer to [3], [16]. Now, we consider a few definitions and properties of sum and integral sum graphs.

A graphG is an *anti-sum graph* or *anti-N-sum graph* if the vertices of G can be labeled with distinct positive integers so that e = uv is an edge of G if and only if the sum of the labels on vertices u and v is not a vertex label in G [7]. An *anti-integral sum graph* or *anti-Z-sum graph* is also defined just as anti-sum graph, the difference being that the labels may be any distinct integers. Clearly, f is an integral sum labeling of graph G if and only if f is an anti-integral sum labeling of G^c .

A graph G is a *split graph* if its vertices can be partitioned into a clique and a stable set. A *clique* in a graph is a set of pair-wise adjacent vertices and an *independent set* or *stable set* in a graph is a set of pair-wise non-adjacent vertices [17]. G_n and G_n^c are split graphs. Clearly, [1,m], [1,m+1], [m+1,2m], [m+2,2m+1] are cliques and [m+1,2m], [m+2,2m+1], [1,m], [1,m+1] are stable sets in G_{2m} , G_{2m+1} , G_{2m}^c , G_{2m+1}^c , respectively.

Two vertices with label *j* and *k*, in a sum graph $G^+(S)$ with *n* as its maximum vertex label, are called *supplementary vertices* if j+k = n+1 and the corresponding labels are called *supplementary labels*, $1 \le j, k \le n, j \ne k$ and $n \ge 2$ **[3]**. In G_n , $|E(G_n)| = \frac{1}{2}(n(n-1)/2 - \lfloor n/2 \rfloor), d(v_j) = n-1-j$ if $1 \le j \le \lfloor \frac{n+1}{2} \rfloor$ and $d(v_j) = n-j$ if $\lfloor \frac{n+1}{2} \rfloor + 1 \le j \le n$ where $\lfloor x \rfloor$ is the floor of *x*, $V(G_n) = \{v_1, v_2, ..., v_n\}$ and *j* is the vertex sum label of v_j in G_n , $1 \le j \le n$ and $2 \le n$.

Theorem 1.1 [8] If $-r, s \in N$ with r < 0 < s, then $G_{r,s} = K_1 + (G_{-r} + G_s)$. \Box

Theorem 1.2 [12] *Every integral sum graph G of order n, except K*₃*, has at the most two vertices of degree n*-1. \Box

Theorem 1.3 [12] For every $n \ge 4$, there is an integral sum graph of order n with exactly two vertices of degree n-1. This graph is unique up to isomorphism and is denoted by $G_{\Delta n}$. \Box

Theorem 1.4 [8] Form, $n \ge 2$, $G_{0,n}$ and $G_{-m,n}$ contain exactly one vertex of degree n and m+n, respectively. For $2 \le n$, $G_{-1,n}$ has exactly two vertices of degree n+1. $G_{-1,1}$ is the only integral sum graph G having more than two vertices of degree 2. \Box

Theorem 1.5 [8] For $3 \le m+n$, $|E(G_{-m,n})| = \frac{1}{4}(m^2+n^2+3(m+n)+4mn)-\frac{1}{2}(\lfloor m/_2 \rfloor + \lfloor n/_2 \rfloor)$ where $\lfloor x \rfloor$ denotes the floor of x, $m, n \in N_0$. In particular, $|E(G_{0,n})| = \frac{n(n+3)}{4} - \frac{1}{2}(\lfloor n/_2 \rfloor)$, $|E(G_{-n,n})| = \frac{3n(n+1)/2}{2} - \lfloor n/_2 \rfloor$ and $|E(G_{-(n-1),n})| = \frac{n(3n-1)/2}{2}$, $n \in N$. \Box

Theorem 1.6 [3] Let k and n be such that $2 \le 2k < n$. If k pairs of supplementary vertices are removed from (i) Harary graph G_n , then the result is isomorphic to G_{n-2k} without the vertex labelsand (ii) the graph G_n^c , then the result is isomorphic to G_{n-2k}^c without the vertex labels. \Box

Theorem1.7 [3] Forn ≥ 3 , the underlying graphs of $G_{0,n} \setminus \{0,n\}$ and $G_{0,n-2}$ are isomorphic and forn $\geq 2r+3$ and $r \in N$, the underlying graphs of $G_{0,n} \setminus (\{0, n, n-1, n-2, ..., n-2r+1, n-2r\} \cup ([n] \cup [n-1] \cup ... \cup [n-2r+1]))$ and $G_{0,n-2r-2}$ are isomorphic. \Box

Theorem 1.8 [6] For $3 \le n$, $|C_3|_{G_n} = |C_3|_{G_{n-2}} + |E(G_{n-2})|$ and $|C_3|_{G_n^c} = |C_3|_{G_{n-2}^c} + |E(G_{n-2}^c)|$.

Corollary1.9 [6] For $n \in N$, $|C_3|_{G_{2n+2}} = \frac{(n-1)n(n+1)}{3} = |C_3|_{G_{2n+1}} and |C_3|_{G_{2n+3}} = \frac{n(n+1)(2n+1)}{6} = |C_3|_{G_{2n+2}}$. \Box

Theorem 1.10 [6] Form, $n \in N_0$, $|C_3|_{G_{-m,n}} = |C_3|_{G_m} + |C_3|_{G_n} + (n+1).|E(G_m)| + (m+1).|E(G_n)| + mnand |C_3|_{G_{-m,n}} = |C_3|_{G_m^c} + |C_3|_{G_n^c}$.

Corollary 1.11 [6] For $m, n \in N$,

(i) $|C_3|_{G_{-2m,2n}} = \frac{1}{3}(m+n)(m^2+5mn+n^2-1);$

(ii)
$$|C_3|_{G_{-2m,2n+1}} = \frac{1}{6}(2(m^3 + n^3) + 12mn(m + n) + 3(2m^2 + n^2 + 4mn) + 4m + n);$$

(iii)
$$|C_3|_{G_{-(2m+1),2n}} = \frac{1}{6}(2(m^3 + n^3) + 12mn(m+n) + 3(m^2 + 2n^2 + 4mn) + m + 4n);$$

(iv)
$$|C_3|_{G_{-(2m+1),2n+1}} = \frac{1}{6}(m+n)(2(m+n)^2 + 9(m+n) + 6mn + 13) + mn + 1;$$

(v)
$$|C_3|_{G_{-2m,2n}^c} = \frac{(m-1)m(2m-1)}{6} + \frac{(n-1)n(2n-1)}{6};$$

(vi)
$$|C_3|_{G_{-2m,2n+1}^c} = \frac{(m-1)m(2m-1)}{6} + \frac{(n-1)n(n+1)}{3};$$

(vii)
$$|C_3|_{G^c_{-(2m+1),2n}} = \frac{(m-1)m(m+1)}{3} + \frac{(n-1)n(2n-1)}{6}$$
 and

(viii)
$$|C_3|_{G^c_{-(2m+1),2n+1}} = \frac{(m-1)m(m+1)}{3} + \frac{(n-1)n(n+1)}{3}$$
.

2 COUNTING NUMBER OF C_4 S IN G_n and $G_{-m,n}$

We count the number of cycles of length four in G_{2k} , G_{2k+1} , G_{2k}^c and G_{2k+1}^c and using these, we obtain the number of cycles of length four in $G_{-m,n}$ and $G_{-m,n}^c$, $2 \le k$ and $m, n \in N_0$. We have $G_{-m,n} = K_1 + ((-G_m) + G_n)$, $G_{-m,n}^c = K_1(0) \cup (-G_m^c) \cup G_n^c$, $|E(G_n)| = \frac{1}{2}(nC_2 - \lfloor \frac{n}{2} \rfloor)$, $|E(G_n^c)| = \frac{1}{2}(nC_2 + \lfloor \frac{n}{2} \rfloor)$, $|E(G_{2n})| = n^2 - n = |E(G_{2n-1}^c)|$ and $|E(G_{2n})| = n^2 = |E(G_{2n}^c)|$ where $\lfloor x \rfloor$ denotes the floor of $x, m, n \in N_0[8]$.

Theorem 2.1 For $2 \le n$, $|C_4|_{G_{2n+2}} = |C_4|_{G_{2n}} + \frac{(n-1)n(7n-11)}{6} = \frac{(n-1)n(n+1)(7n-10)}{24}$ and $|C_4|_{G_{2n+2}} = |C_4|_{G_{2n}} + \frac{(n-1)n(7n+1)}{6} = \frac{(n-1)n(n+1)(7n+6)}{24}$.

Proof:Let $V(G_{2n+2}) = \{u_1, u_2, \dots, u_{2n+2}\} = V(G_{2n+2}^c)$ where u_j is the vertex with sum labeling j in G_{2n+2} and anti-sum labeling j in G_{2n+2}^c , $1 \le j \le 2n+2$ and $n \in N$. At first, let us to prove the result for G_{2n+2} , $n \in N$. $\{u_1, u_2, \dots, u_{n+1}\}$ is a clique and $\{u_{n+2}, u_{n+3}, \dots, u_{2n+2}\}$ is a stable set to G_{2n+2} . Using Theorem 1.6, graph $G_{2n+2} \setminus \{u_1, u_{2n+2}\}$ is isomorphic to G_{2n} , without the vertex labels. In G_{2n+2} , u_1 is adjacent to $u_2, u_3, \dots, u_{2n+1}$; u_{2n+2} is an isolated vertex and u_{2n+1} is a pendant vertex. Therefore, $|C_4|_{G_{2n+2}} = |C_4|_{G_{2n}}$ + number of cycles of length four, each with u_1 as a vertex in G_{2n+2} . Also, none of u_{2n+1} and u_{2n+2} is a vertex of any cycle of length 4 in G_{2n+2} .

Let $(u_1u_iu_ju_k)$ be any cycle of length 4 (with u_1 as a vertex) in G_{2n+2} , 1 < i,j,k < 2n+1 and i,j,k are all different. Under the above conditions, the following three types of C_4 s arise in G_{2n+2} . Type-1: $u_i, u_j, u_k \in \{u_2, u_3, \dots, u_{n+1}\}$, Type-2: $u_i, u_j \in \{u_2, u_3, \dots, u_{n+1}\}$ and $u_k \in \{u_{n+2}, u_{n+3}, \dots, u_{2n}\}$ and Type-3: $u_i \in \{u_2, u_3, \dots, u_{n+1}\}$ and $u_j, u_k \in \{u_{n+2}, u_{n+3}, \dots, u_{2n}\}$. Now, let us calculate number of C_4 s in G_{2n+2} under each type.

Number of C_4 s of Type-1: Here , $u_i u_j u_k \in \{u_2, u_3, \dots, u_{n+1}\}$ in G_{2n+2} . Number of ways of selecting 3 vertices u_i, u_j, u_k out of u_2, u_3, \dots, u_{n+1} is nC_3 . There are 3 different C_4 s with u_1, u_i, u_j, u_k as vertices under type-1, namely, $(u_1u_iu_ju_k)$, $(u_1u_iu_ku_j)$ and $(u_1u_ju_iu_k)$. Therefore, total number of C_4 s of type-1 in $G_{2n+2} = 3.nC_3 = \frac{n(n-1)(n-2)}{2}$.

Number of C_4 s of Type-2: Here, $u_i, u_j \in \{u_2, u_3, \dots, u_{n+1}\}$ and $u_k \in \{u_{n+2}, u_{n+3}, \dots, u_{2n}\}$. Consider all possible cycles, each of length 4 and with vertices u_1, u_i, u_j and u_k in G_{2n+2} .

When k = 2n, $u_k = u_{2n}$ is adjacent to u_1 and u_2 only. And under this case, $u_2 = u_i$ or $u_2 = u_j$. W.l.g., assume $u_2 = u_i$. This implies, $2 = i < 3 \le j \le n+1$. And any C_4 under this case is of the form $(u_1u_ku_iu_j) = (u_1u_2n_2u_2u_j), u_j \in \{u_3, u_4, \dots, u_{n+1}\}$ and number of such C_4 s is $|\{u_3, u_4, \dots, u_{n+1}\}| = n-1$.

When k = 2n-1, $u_k = u_{2n-1}$ is adjacent to u_1 , u_2 and u_3 only and thereby $d(u_k) = 3 = 2n+2-(2n-1)$. And any C_4 of type-2 is of the form $(u_1u_{2n-1}u_2u_x)$ or $(u_1u_{2n-1}u_3u_y)$, $u_x \in \{u_3, u_4, \dots, u_{n+1}\}$ and $u_y \in \{u_2, u_4, u_5, \dots, u_{n+1}\}$. Number of such C_4 s is 2(n-1).

When k = 2n-2, $u_k = u_{2n-2}$ is adjacent to u_1, u_2, u_3 and u_4 only and thereby $d(u_k) = 4 = 2n+2-(2n-2)$. Therefore, number of such C_4 s is (4-1)(n-1) = 3(n-1).

In general, when k = 2n+2-x and $2 \le x \le n$, $u_k = u_{2n+2-x}$ is adjacent to $u_1, u_2, ..., u_x$ only and thereby $d(u_k) = d(u_{2n+2-x}) = x$. And number of C_4 s of the form $(u_1u_{2n+2-x}u_iu_j)$ is (x-1)(n-1) where $u_i \in \{u_2, u_3, ..., u_k\}$ and $u_j \in \{u_2, u_3, ..., u_{n+1}\} \setminus \{u_i\}$.

Total number of C₄s of type-2 in $G_{2n+2} = \sum_{x=2}^{n} (x-1)(n-1) = (n-1)(\sum_{x=1}^{n-1} x) = \frac{n(n-1)^2}{2}$.

Number of C_4 s of Type-3: In this type, $u_i \in \{u_2, u_3, \dots, u_{n+1}\}$ and $u_j, u_k \in \{u_{n+2}, u_{n+3}, \dots, u_{2n}\}$ in G_{2n+2} , $j \neq k$. Here, u_j and u_k are adjacent to u_1 for every $j, k \in \{n+2, n+3, \dots, 2n+1\}$ in $G_{2n+2}, j \neq k$. W.l.g., assume, j < k. If u_j and u_k are adjacent to u_i , then $j+i \leq 2n+2$ and $k+i \leq 2n+2$ which implies, $j+i < k+i \leq 2n+2$.

For $1 \le x \le n$, u_{n+1+x} is adjacent to $u_1, u_2, \dots, u_{n+1-x}$ in G_{2n+2} and hence $d(u_{n+1+x}) = n+1-x$. In G_{2n+2} , u_{n+1} is non-adjacent to u_{n+2} and u_{2n+1} is a pendant vertex and hence neither u_{n+1} nor u_{2n+1} is a vertex of any C_4 of type-3 in G_{2n+2} .

When k = 2n+2-x, $u_k = u_{2n+2-x}$ and $2 \le x \le n-1$, different possibilities of u_i in C_4 s of type-3 in G_{2n+2} are $u_2, u_3, ..., u_x$. And corresponding to each pair of u_i and u_k , different possible u_j s are $u_{k-1}, u_{k-2}, ..., u_{n+2}$ in G_{2n+2} . Therefore, number of C_4 s of type-3 in G_{2n+2} with $u_k = u_{2n+2-x}$ is (x-1)(k-1-(n+1)) = (x-1)(n-x). Hence, total number of C_4 s of type-3 in $G_{2n+2} = \sum_{x=2}^{n-1} (n-x)(x-1) = \sum_{x=1}^{n-2} (n-1-x)x = (n-1)(\sum_{x=1}^{n-2} x) - \sum_{x=1}^{n-2} x^2 = \frac{n(n-1)(n-2)}{6}$.

When $u_i, u_j, u_k \in \{u_{n+2}, u_{n+3}, \dots, u_{2n}\}$, cycle C_4 of the form $(u_1 \ u_i u_j u_k)$ doesn't exist in G_{2n+2} since $\{u_{n+2}, u_{n+3}, \dots, u_{2n+2}\}$ is a stable set to split graph G_{2n+2} .

Adding all C_4 s in the three types, we obtain, total number of C_4 s in G_{2n+2} with u_1 as a vertex = $\frac{n(n-1)(n-2)}{2} + \frac{n(n-1)^2}{2} + \frac{n(n-1)(n-2)}{6} = \frac{(n-1)n(7n-11)}{6}, 2 \le n$. Therefore, for $2 \le n$,

$$\begin{aligned} |C_4|_{G_{2n+2}} &= |C_4|_{G_{2n}} + \frac{1}{6}(7n^3 \cdot 18n^2 + 11n) \\ &= \frac{1}{6}((7n^3 \cdot 18n^2 + 11n) + (7(n-1)^3 \cdot 18(n-1)^2 + 11(n-1))) + |C_4|_{G_{2n-2}} \\ &= \frac{1}{6}((7n^3 \cdot 18n^2 + 11n) + (7(n-1)^3 - 18(n-1)^2 + 11(n-1)) + \dots + (7(n^2 \cdot 13n^2 - 18n^2 + 11n^2)) + |C_4|_{G_4} \\ &= \frac{1}{6}((7n^3 \cdot 18n^2 + 11n) + (7(n-1)^3 - 18(n-1)^2 + 11(n-1)) + \dots + (7(n^2 \cdot 13n^2 - 18n^2 + 11n^2)) + 0 \\ &= \frac{(n-1)n(n+1)(7n-10)}{24}. \end{aligned}$$

Now, let us to prove the result on G_{2n+2}^c . Consider, graph G_{2n+2}^c , $n \in N$. $\{u_1, u_2, \dots, u_n\}$ is a stable set and $\{u_{n+1}, u_{n+2}, \dots, u_{2n+2}\}$ is a clique to split graph G_{2n+2}^c . Using Theorem 1.8, graph

 $G_{2n+2}^{c} \setminus \{u_1, u_{2n+2}\}$ is isomorphic to G_{2n}^{c} , without the vertex labels. In G_{2n+2}^{c} , u_{2n+2} is adjacent to $u_1, u_2, \dots, u_{2n+1}$ and u_1 is a pendant vertex. Hence, u_1 is not a vertex in any cycle of length 4 in G_{2n+2}^{c} . Therefore, $|C_4|_{G_{2n+2}^{c}} = |C_4|_{G_{2n}^{c}} +$ number of cycles of length four, each with u_{2n+2} as a vertex in G_{2n+2}^{c} .

Let $(u_{2n+2} u_k u_j u_i)$ be any cycle of length 4 in G_{2n+2}^c , $2 \le i, j, k \le 2n+1$ and i, j, k are all different. Under the above conditions, the following three types of C_4 s arise in G_{2n+2}^c . Type-1: $u_i u_j u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$, Type-2: $u_j u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$ and $u_i \in \{u_2, u_3, \dots, u_n\}$ and Type-3: $u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$ and $u_i u_j \in \{u_2, u_3, \dots, u_n\}$. Now, let us calculate number of C_4 s in G_{2n+2}^c in each type. W.l.g. assume that i < j < k.

Number of C_4 s of Type-1: Here, $u_i, u_j, u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$ in G_{2n+2}^c . Number of ways of selecting 3 vertices u_i, u_j, u_k out of $u_{n+1}, u_{n+2}, \dots, u_{2n+1}$ is $(n+1)C_3$. There are 3 different C_4 s in G_{2n+2}^c with u_{2n+2} , u_i , u_j , u_k as vertices under type-1, namely, $(u_{2n+2}u_ku_ju_i)$, $(u_{2n+2}u_ku_iu_j)$ and $(u_{2n+2}u_ju_ku_i)$. Hence, total number of C_4 s of type-1 in $G_{2n+2}^c = 3.(n+1)C_3 = \frac{(n+1)n(n-1)}{2}$.

Number of C_{4s} of Type-2: Here, $u_k, u_j \in \{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$ and $u_i \in \{u_2, u_3, \dots, u_n\}$. Consider all possible cycles, each of length 4 and with the vertices u_{2n+2}, u_i, u_j and u_k in G_{2n+2}^c .

When i = 2, $u_i = u_2$ is adjacent to u_{2n+2} and u_{2n+1} only. And under this case, $d(u_i) = 2$, $u_k = u_{2n+1}$ and $u_j = u_{2n}, u_{2n-1}, \dots, u_{n+1}$. Number of such C_4 s is $|\{u_{2n}, u_{2n-1}, \dots, u_{n+1}\}| = n$.

When i = 3, $u_i = u_3$ is adjacent to u_{2n+2} , u_{2n+1} and u_{2n} only and thereby $d(u_i) = 3$. And any C_4 of type-2 is of the form $(u_{2n+2}u_3u_{2n+1}u_x)$ or $(u_{2n+2}u_3 u_{2n}u_y)$ where $u_x \in \{u_{2n}, u_{2n-1}, ..., u_{n+1}\}$ and $u_y \in \{u_{2n+1}, u_{2n-1}, u_{2n-2}, ..., u_{n+1}\}$. Number of such C_4 s is 2n.

In general, when i = x and $2 \le x \le n$, $u_i = u_x$ is adjacent to u_{2n+2} , $u_{2n+1},...,u_{2n+2-(x-1)}$ only and thereby $d(u_i) = x$ and number of C_4 s of the form $(u_{2n+2}u_iu_yu_z)$ is (x-1)n where $u_y \in \{u_{2n+1}, u_{2n}, ..., u_{n+1}\}$ and $u_z \in \{u_{2n+1}, u_{2n}, ..., u_{n+1}\} \setminus \{u_y\}$.

Total number of
$$C_{4s}$$
 of type-2 in $G_{2n+2}^c = \sum_{x=2}^n (x-1)n = n(\sum_{x=1}^{n-1} x) = \frac{(n-1)n^2}{2}$.

Number of C_4 s of Type-3: Here, $u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$ and $u_i, u_j \in \{u_2, u_3, \dots, u_n\}$, $i \neq j$. Consider all possible cycles, each of length 4 and with the vertices u_{2n+2} , u_k , u_j and u_i in G_{2n+2}^c . For a given i, $2 \leq i \leq n-1$, j takes values $i+1, i+2, \dots, n$ and possible values of k are $2n+2-1, 2n+2-2, \dots, 2n+2-(i-1)$. Therefore, total number of C_4 s of type-3 in $G_{2n+2}^c = \sum_{i=2}^{n-1} (n-i)(i-1) = \sum_{i=1}^{n-2} i(n-1-i) = (n-1)(\sum_{i=1}^{n-2} i) - \sum_{i=1}^{n-2} i^2 = \frac{(n-2)(n-1)n}{6}$.

When $u_i, u_j, u_k \in \{u_2, u_3, \dots, u_n\}$, cycle C_4 of the form $(u_{2n+2}u_ku_ju_i)$ doesn't exist in G_{2n+2}^c since $\{u_2, u_3, \dots, u_n\}$ is a stable set to split graph G_{2n+2}^c .

Adding all C_4 s in the three types, we obtain, total number of C_4 s with u_{2n+2} as a vertex in $G_{2n+2}^c = \frac{(n-1)n(n+1)}{2} + \frac{(n-1)n^2}{2} + \frac{(n-2)(n-1)n}{6} = \frac{(n-1)n(7n+1)}{6}$, $2 \le n$. Therefore, for $2 \le n$,

$$\begin{aligned} |C_4|_{G_{2n+2}^c} &= |C_4|_{G_{2n}^c} + \frac{1}{6}(7n^3 - 6n^2 - n) \\ &= \frac{1}{6}((7n^3 - 6n^2 - n) + (7(n-1)^3 - 6(n-1)^2 - (n-1))) + |C_4|_{G_{2n-2}^c} \\ &= \frac{1}{6}((7n^3 - 6n^2 - n) + (7(n-1)^3 - 6(n-1)^2 - (n-1)) + \dots + (7.2^3 - 6.2^2 - 2)) + |C_4|_{G_4^c} \\ &= \frac{1}{6}((7n^3 - 6n^2 - n) + (7(n-1)^3 - 6(n-1)^2 - (n-1)) + \dots + (7.1^3 - 6.1^2 - 1)). \end{aligned}$$

 $=\frac{(n-1)n(n+1)(7n+6)}{24}, 2 \le n$. Hence the result.

Theorem 2.2 For $2 \le n$, $|C_4|_{G_{2n+3}} = |C_4|_{G_{2n+1}} + \frac{(n-1)n(7n+1)}{6} = \frac{(n-1)n(n+1)(7n+6)}{24} = |C_4|_{G_{2n+2}}$

Proof: Let $V(G_{2n+3}) = \{u_1, u_2, \dots, u_{2n+3}\} = V(G_{2n+3}^c)$ where u_j is the vertex with sum labeling j in G_{2n+3} and anti-sum labeling j in G_{2n+3}^c , $1 \le j \le 2n+3$ and $n \in N$. At first, let us to prove the result for G_{2n+3} , $n \in N$. $\{u_1, u_2, \dots, u_{n+2}\}$ is a clique and $\{u_{n+3}, u_{n+4}, \dots, u_{2n+3}\}$ is a stable set to G_{2n+3} . Using Theorem 1.6, graph $G_{2n+3} \setminus \{u_1, u_{2n+3}\}$ is isomorphic G_{2n+1} , without the vertex labels. Also, in G_{2n+3} , u_1 is adjacent to $u_2, u_3, \dots, u_{2n+2}$; u_{2n+3} is an isolated vertex and u_{2n+2} is a pendant vertex. Therefore, $|C_4|_{G_{2n+3}} = |C_4|_{G_{2n+1}} +$ number of cycles of length four, each with u_1 as a vertex in G_{2n+3} . Also, none of u_{2n+2} and u_{2n+3} is a vertex of any cycle of length 4 in G_{2n+3} .

Let $(u_1 u_i u_j u_k)$ be any cycle of length 4 (with u_1 as a vertex) in G_{2n+3} , 1 < i, j, k < 2n+2 and i, j, k are all different. Under the above conditions, the following three types of C_4 s arise in G_{2n+3} . Type-1: $u_i, u_j, u_k \in \{u_2, u_3, \dots, u_{n+2}\}$, Type-2: $u_i, u_j \in \{u_2, u_3, \dots, u_{n+2}\}$ and $u_k \in \{u_{n+3}, u_{n+4}, \dots, u_{2n+1}\}$ and Type-3: $u_i \in \{u_2, u_3, \dots, u_{n+2}\}$ and $u_j, u_k \in \{u_{n+3}, u_{n+4}, \dots, u_{2n+1}\}$. Now, let us calculate number of C_4 s in G_{2n+3} in each type.

Number of C_4 **s of Type-1:**Here , $u_i, u_j, u_k \in \{u_2, u_3, \dots, u_{n+2}\}$ in G_{2n+3} . Number of ways of selecting 3 vertices u_i, u_j, u_k out of u_2, u_3, \dots, u_{n+2} is $(n+1)C_3$. There are 3 different C_4 s with u_1, u_i, u_j, u_k as vertices under Type-1, namely, $(u_1u_iu_ju_k)$, $(u_1u_iu_ku_j)$ and $(u_1u_ju_iu_k)$. Therefore, total number of C_4 s of type-1 in $G_{2n+3} = 3.(n+1)C_3 = \frac{n(n-1)(n-2)}{2}$.

Number of C_4 s of Type-2: Here, $u_i, u_j \in \{u_2, u_3, \dots, u_{n+2}\}$ and $u_k \in \{u_{n+1}, u_{n+4}, \dots, u_{2n+1}\}$. Consider all possible cycles, each of length 4 and with vertices u_1, u_i, u_j and u_k in G_{2n+3} .

When k = 2n+1, $u_k = u_{2n+1}$ is adjacent to u_1 and u_2 only. And under this case, $u_2 = u_i$ or $u_2 = u_j$. W.l.g., assume $u_2 = u_i$. This implies, $2 = i < 3 \le j \le n+2$. And any C_4 under this case is of the form $(u_1u_{2n+1}u_2u_j), u_j \in \{u_3, u_4, \dots, u_{n+2}\}$ and number of such C_4 s is n.

When k = 2n, $u_k = u_{2n}$ is adjacent to u_1 , u_2 and u_3 only. And any C_4 of type-2 is of the form $(u_1u_{2n}u_2u_x)$ or $(u_1u_{2n}u_3u_y)$, $u_x \in \{u_3, u_4, \dots, u_{n+2}\}$ and $u_y \in \{u_2, u_4, u_5, \dots, u_{n+2}\}$. Number of such C_4 s is 2n.

When k = 2n-1, $u_k = u_{2n-1}$ is adjacent to u_1, u_2 , u_3 and u_4 only and thereby $d(u_k) = 4$. Therefore, number of such C_4 s is (4-1)n = 3n.

In general, when k = 2n+3-x and $2 \le x \le n$, $u_k = u_{2n+3-x}$ is adjacent to u_1, u_2, \ldots, u_x and thereby $d(u_k) = d(u_{2n+3-x}) = x$ and number of C_{4s} of the form $(u_1u_{2n+3-x}u_iu_j)$ in G_{2n+3} is (x-1)n where $u_i \in \{u_2, u_3, \ldots, u_x\}$ and $u_j \in \{u_2, u_3, \ldots, u_{n+2}\} \setminus \{u_i\}$. Therefore, total number of C_{4s} of type-2 in $G_{2n+3} = \sum_{x=2}^{n} (x-1)n = n(\sum_{x=1}^{n-1} x) = \frac{(n-1)n^2}{2}$.

Number of C_4 s under Type-3: Here, $u_i \in \{u_2, u_3, \dots, u_{n+2}\}$ and $u_j, u_k \in \{u_{n+3}, u_{n+4}, \dots, u_{2n+1}\}$ and u_j and u_k are adjacent to u_1 for every $j,k \in \{n+3,n+4,\dots,2n+2\}$ in $G_{2n+3}, j \neq k$. W.l.g., assume, j < k. If u_j and u_k are adjacent to u_i , then $j+i < k+i \le 2n+3$.

In G_{2n+3} , u_{n+2+x} is adjacent to $u_1, u_2, \dots, u_{n+1-x}$, $1 \le x \le n$ and thereby $d(u_{n+2+x}) = n+1-x$. Also, u_{n+1} and u_{n+2} are non-adjacent to u_{n+3} and u_{2n+2} is a pendant vertex. Hence, none of u_{n+1} , u_{n+2} and u_{2n+2} is a vertex of any C_4 of type-3 in G_{2n+3} .

When $u_k = u_{2n+3-x}$ and $2 \le x \le n-1$, different possibilities of u_i in C_4 s of type-3 in G_{2n+3} are u_2, u_3, \ldots . u_x . And corresponding to each pair of u_i and u_k , different possibilities of u_j are $u_{k-1}, u_{k-2}, \ldots, u_{n+3}$ in G_{2n+3} . Therefore, number of C_4 s of type-3 in G_{2n+3} with $u_k = u_{2n+3-x}$ is (x-1)(k-1-(n+2)) = (x-1)(n-x). Hence, total number of C_4 s of type-3 in $G_{2n+3} = \sum_{x=2}^{n-1} (n-x)(x-1) = \sum_{x=1}^{n-2} (n-1-x)x = \frac{n(n-1)(n-2)}{2}$.

Cycle C_4 of the form $(u_1u_iu_ju_k)$ with $u_i, u_j, u_k \in \{u_{n+3}, u_{n+4}, \dots, u_{2n+3}\}$ doesn't exist in G_{2n+3} since $\{u_{n+3}, u_{n+4}, \dots, u_{2n+3}\}$ is a stable set to split graph G_{2n+3} .

Adding all C_4 s in the three types, we obtain, total number of C_4 s in G_{2n+3} with u_1 as a vertex = $\frac{(n+1)n(n-1)}{2} + \frac{n^2(n-1)}{2} + \frac{n(n-1)(n-2)}{6} = \frac{(n-1)n(7n+1)}{6}, 2 \le n$. Therefore, for $2 \le n$,

$$|C_4|_{G_{2n+3}} = |C_4|_{G_{2n+1}} + \frac{1}{6}(7n^3 - 6n^2 - n)$$

Number of Cycles of Length Four in Sum Graphs G_n and Integral Sum GraphsG_{m,n}

$$= \frac{1}{6} ((7n^3 - 6n^2 - n) + (7(n - 1)^3 - 6(n - 1)^2 - (n - 1))) + |C_4|_{G_{2n-1}}$$

$$= \frac{1}{6} ((7n^3 - 6n^2 - n) + (7(n - 1)^3 - 6(n - 1)^2 - (n - 1)) + \dots + (7.2^3 - 6.2^2 - 2)) + |C_4|_{G_4}$$

$$= \frac{1}{6} ((7n^3 - 6n^2 - n) + (7(n - 1)^3 - 6(n - 1)^2 - (n - 1)) + \dots + (7.2^3 - 6.2^2 - 2)) + 0$$

$$= \frac{(n - 1)n(n + 1)(7n + 6)}{24}.$$

Now, let us prove the result on G_{2n+1}^c . Consider graph G_{2n+1}^c , $n \in N$. $\{u_1, u_2, \dots, u_n\}$ is a stable set and $\{u_{n+1}, u_{n+2}, \dots, u_{2n+1}\}$ is a clique to G_{2n+1}^c . Using Theorem 1.6, graph $G_{2n+1}^c \setminus \{u_1, u_{2n+1}\}$ is isomorphic to G_{2n-1}^c , without the vertex labels. In G_{2n+1}^c , u_{2n+1} is adjacent to u_1, u_2, \dots, u_{2n} and u_1 is a pendant vertex. Hence, u_1 is not a vertex in any cycle of length 4 in G_{2n+1}^c . Therefore, $|C_4|_{G_{2n+1}^c} = |C_4|_{G_{2n-1}^c} + n$ unber of cycles of length four, each with u_{2n+1} as a vertex in G_{2n+1}^c .

Let $(u_{2n+1}u_ku_ju_i)$ be any cycle of length 4 with u_{2n+1} as a vertex in G_{2n+1}^c , $2 \le i, j, k \le 2n$ and i, j, k are all different. Under the above conditions, the following three types of C_4 s with u_{2n+1} as a vertex arise in G_{2n+1}^c . Type-1: $u_{i,b}u_{j,b}u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$, Type-2: $u_{j,b}u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$ and $u_i \in \{u_2, u_3, \dots, u_n\}$ and Type-3: $u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$ and $u_i, u_j \in \{u_2, u_3, \dots, u_n\}$. Now, let us calculate number of C_4 s in G_{2n+1}^c in each type. W.l.g., assume that i < j < k.

Number of C_4 s under Type-1: Here, $u_{i}, u_{j}, u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$ in G_{2n+1}^c . Number of ways of selecting 3 vertices u_{i}, u_{j}, u_k out of $u_{n+1}, u_{n+2}, \dots, u_{2n}$ is nC_3 . There are 3 different C_4 s with u_{2n+1}, u_i, u_j, u_k as vertices under type-1, namely, $(u_{2n+1}u_ku_ju_i)$, $(u_{2n+1}u_ku_iu_j)$ and $(u_{2n+1}u_ju_ku_i)$. Hence, total number of C_4 s of type-1 in $G_{2n+1}^c = 3.nC_3 = \frac{n(n-1)(n-2)}{2}$.

Number of C_4 s under Type-2: Here, $u_k, u_j \in \{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$ and $u_i \in \{u_2, u_3, \dots, u_n\}$. Consider all possible cycles $(u_{2n+1}u_iu_ju_k)$ in G_{2n+1}^c .

When i = 2, $u_i = u_2$ is adjacent to u_{2n+1} and u_{2n} only. And under this case, $d(u_i) = 2$, $u_k = u_{2n}$ and $u_j = u_{2n-1}, u_{2n-2}, \dots, u_{n+1}$. Number of such C_4 s is $|\{u_{2n-1}, u_{2n-2}, \dots, u_{n+1}\}| = n-1$.

When i = 3, $u_i = u_3$ is adjacent to u_{2n+1} , u_{2n} and u_{2n-1} only and $d(u_i) = 3$. And any C_4 of type-2 is of the form $(u_{2n+1}u_3u_{2n}u_x)$ or $(u_{2n+1}u_3u_{2n-1}u_y)$, $u_x \in \{u_{2n-1}, u_{2n-2}, \dots, u_{n+1}\}$ and $u_y \in \{u_{2n}, u_{2n-2}, u_{2n-3}, \dots, u_{n+1}\}$. Number of such C_4 s is 2(n-1).

In general, when i = x and $2 \le x \le n$, $u_i = u_x$ is adjacent to u_{2n+1} , $u_{2n+1-(x-1)}$ only and thereby $d(u_i) = x$ and u_k takes values $u_{2n}, u_{2n-1}, \dots, u_{2n+1-(x-1)}$ and $u_j \in \{u_{2n}, u_{2n-1}, \dots, u_{n+1}\} \setminus \{u_k\}$. Therefore, number of C_4 s of the form $(u_{2n+1}u_iu_ku_j)$ is (x-1)(n-1), $2 \le x \le n$. Here, *j* need not be less than *k*.

Total number of C_{48} of type-2 in $G_{2n+1}^c = \sum_{x=2}^n (x-1)(n-1) = (n-1)(\sum_{x=1}^{n-1} x) = \frac{(n-1)^2 n}{2}$.

Number of C_4 s under Type-3: Here, $u_k \in \{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$ and $u_i, u_j \in \{u_2, u_3, \dots, u_n\}$, $i \neq j$. Consider all possible cycles $(u_{2n+1}u_iu_ju_k)$ in G_{2n+1}^c . For a given $i, 2 \leq i \leq n-1, j$ takes values $i+1, i+2, \dots, n$ and possible values of k are $2n1, 2n-1, \dots, 2n-(i-2)$. Hence, total number of C_4 s of type-3 in $G_{2n+1}^c = \sum_{i=2}^{n-1} (n-i)(i-1) = \sum_{i=1}^{n-2} i(n-1-i) = \frac{(n-2)(n-1)^2}{6} - \frac{(n-2)(n-1)(2n-3)}{6} = \frac{(n-2)(n-1)n}{6}$.

Cycle C_4 of the form $(u_{2n+1}u_ku_ju_i)$ with $u_i, u_j, u_k \in \{u_2, u_3, \dots, u_n\}$ doesn't exist in G_{2n+1}^c since $\{u_2, u_3, \dots, u_n\}$ is a stable set to split graph G_{2n+1}^c .

Adding all
$$C_4$$
s in the three types, we obtain, total number of C_4 s with u_{2n+1} as a vertex in $G_{2n+1}^c = \frac{(n-2)(n-1)n}{2} + \frac{(n-2)(n-1)n}{6} = \frac{(n-1)n(7n-11)}{6}, 2 \le n$. Therefore, for $2 \le n$,
 $|C_4|_{G_{2n+1}^c} = |C_4|_{G_{2n-1}^c} + \frac{1}{6}(7n^3 - 18n^2 + 11n)$
 $= \frac{1}{6}((7n^3 - 18n^2 + 11n) + (7(n-1)^3 - 18(n-1)^2 + 11(n-1))) + |C_4|_{G_{2n-2}^c}$
 $= \frac{1}{6}((7n^3 - 18n^2 + 11n) + (7(n-1)^3 - 18(n-1)^2 + 11(n-1))) + ... + (7.2^3 - 18.2^2 + 11(2))) + |C_4|_{G_4^c}$

$$=\frac{1}{6}((7n^{3}-18n^{2}+11n)+(7(n-1)^{3}-18(n-1)^{2}+11(n-1)))+...+(7.1^{3}-18.1^{2}+11)).$$

$$=\frac{(n-1)n(n+1)(n-10)}{24}$$
. The rest of the result follows from Theorem 2.1.

Lemma 2.3 Let $V(G_n) = \{v_1, v_2, ..., v_n\} = V(G_n^c)$ where v_j is the vertex with integral sum labeling j in G_n and anti-integral sum labeling j in G_n^c , $1 \le j \le n$ and $n \in N$. Then, $(i)G_{0,n} \cong G_{n+2} \setminus \{v_{n+2}\}, (ii) \ G_{n+2} \cong (G_n + \{v_{n+1}\}) \cup \{v_{n+2}\}, (iii) \ G_{n+2}^c \cong (G_n^c \cup \{v_{n+1}\}) + \{v_{n+2}\}$ and $(iv) \ G_{-1,n} \cong G_{n+4} \setminus \{v_{n+3}, v_{n+4}\}$, without the vertex labels.

Proof :(i) We have $G_{-m,n} = K_1 + ((-G_m) + G_n)$, $m, n \in N_0$. Therefore, $G_{0,n} = K_1 + G_n$, $n \in N$. Let $V(G_{0,n}) = \{u_0, u_1, u_2, \dots, u_n\}$ and $V(G_{n+2}) = \{v_1, v_2, \dots, v_{n+2}\}$ where u_i is the vertex with integral sum labeling i for $i = 0, 1, \dots, n$ and v_j is the vertex of G_{n+2} with integral sum labeling j, $1 \le j \le n+2$. Define f: $V(G_{0,n}) \rightarrow V(G_{n+2} \setminus \{v_{n+2}\})$ such that $f(u_i) = v_{i+1}$ and f((u,v)) = (f(u), f(v)) for every $(u,v) \in E(G_{0,n})$, $i = 0, 1, \dots, n$. Now, $(u_x, u_y) \in E(G_{0,n})$ if and only if 0 < x+y < n+1 if and only if 2 < (x+1)+(y+1) < n+3 if and only if $(v_{x+1}, v_{y+1}) = (f(u_x), f(u_y)) \in E(G_{n+2}) = E(G_{n+2} \setminus \{v_{n+2}\})$. This implies, f is a bijective mapping and preserves adjacency. Hence, $G_{0,n} \cong G_{n+2} \setminus \{u_{n+2}\}$, without the vertex labels.

(ii) Using (i), we obtain, $G_{n+2} \cong G_{0,n} \cup \{v_{n+2}\} \cong (G_n + K_1) \cup \{v_{n+2}\} \cong (G_n + \{v_{n+1}\}) \cup \{v_{n+2}\}$, without the vertex labels, $n \in N$.

(iii) Using (ii), we obtain, $G_{n+2}^c \cong ((G_n + \{v_{n+1}\}) \cup \{v_{n+2}\})^c \cong (G_n + \{v_{n+1}\})^c + \{v_{n+2}\}$ $\cong (G_n^c \cup \{v_{n+1}\}) + \{v_{n+2}\}$, without the vertex labels, $n \in N$.

(iv) We have $G_{-1,n} = K_1 + ((-K_1) + G_n) = K_1 + G_{0,n} \cong K_1 + (G_{n+2} \setminus \{u_{n+2}\})$, without the vertex labels, using (i), $n \in N$. Let $V(G_{-1,n}) = \{u_{0,u_1,u_2,...,u_{n+1}}\}$ and $V(G_{n+4}) = \{v_1, v_2, ..., v_{n+4}\}$ where u_i is the vertex with integral sum labeling *i* for i = 0, 1, ..., n and u_{n+1} is the vertex with integral sum labeling -1 in $G_{-1,n}$ and v_j is the vertex of G_{n+4} with integral sum labeling *j*, $1 \le j \le n+4$. Using Theorem 1.6, graph $G_{n+4} \setminus \{v_{1,v_2,v_{n+3},v_{n+4}}\}$ is isomorphic to G_n , without the vertex labels. And so $((G_{n+4} \setminus \{v_{n+4}, v_{n+3}, v_{2,v_1}\}) + K_1) + K_1 \cong G_{-1,n}$ without the vertex labels. Define $f : V(G_{-1,n}) \rightarrow V(G_{n+4} \setminus \{v_{n+4}, v_{n+3}\})$ such that $f(u_0) = v_1, f(u_{n+1}) = v_2, f(u_i) = v_{i+2}$ for i = 1, 2, ..., n and f((u, v)) = (f(u), f(v)) for every $(u, v) \in E(G_{-1,n})$. Now, let us consider images of edges incident at each point u_0 and u_{n+1} are adjacent and each one is adjacent to u_j for j = 1, 2, ..., n. Now, $f((K_1(0), u_i)) = f((u_0, u_i)) = (f(u_0), f(u_0))$, $f(u_i)) = (v_1, v_{i+1}) \in E(G_{n+4} \setminus \{v_{n+3}, v_{n+4}\})$ for every *i* since $1+(i+1) \le n+2$, i = 1, 2, ..., n; $f((K_1(0), u_{n+1})) = f((u_0, u_{n+1})) = (f(u_0), f(u_{n+1})) = (v_1, v_2) \in E(G_{n+4} \setminus \{v_{n+3}, v_{n+4}\})$ and $f((u_{n+1}, u_j)) = (f(u_{n+1}, f(u_j)) = (v_2, v_{j+2}) \in E(G_{n+4} \setminus \{v_{n+3}, v_{n+4}\})$ for every *j*, j = 1, 2, ..., n. Therefore, *f* is a bijective mapping preserving adjacency and hence, $G_{-1,n} \cong G_{n+4} \setminus \{v_{n+3}, v_{n+4}\}$, without the vertex labels. \Box

Result 2.4 [Algorithm to generate G_n and G_n^c]

Starting with either $G_0 \text{ or } G_1$ and using results (ii) and (iii) of Lemma 2.3 for n = 2, 4, ... or n = 3, 5, ..., one can generate sum graphs G_n and anti-sum graphs G_n^c of any order without using definitions of sum and anti-sum labeling.

Theorem 2.5 $Forn \in N$, $|E(G_{0,n})| = |E(G_{n+2})| = n + |E(G_n)|$, $|E(G_{-1,n})| = |E(G_{n+4})| - 1 = 2n + 1 + |E(G_n)|$, $|C_3|_{G_{0,n}} = |C_3|_{G_{n+2}}$, $|C_3|_{G_{-1,n}} = |C_3|_{G_{n+4}}$, $|C_4|_{G_{0,n}} = |C_4|_{G_{n+2}}$ and $|C_4|_{G_{-1,n}} = |C_4|_{G_{n+4}}$.

Proof: Result follows from Lemma 2.3.

Theorem 2.6 $Forn \in N$, $|C_4|_{G_{0,2n}} = |C_4|_{G_{2n+2}} = \frac{(n-1)n(n+1)(7n-10)}{24}$, $|C_4|_{G_{0,2n+1}} = |C_4|_{G_{2n+3}} = \frac{(n-1)n(n+1)(7n-6)}{24}$, $|C_4|_{G_{-1,2n}} = |C_4|_{G_{2n+3}} = \frac{n(n+1)(n+2)(7n-3)}{24}$ and $|C_4|_{G_{-1,2n+1}} = |C_4|_{G_{2n+5}} = \frac{n(n+1)(n+2)(7n-3)}{24}$.

Proof: Result follows from Theorems 2.2 and 2.5. \Box

Theorem 2.7 Number of P_3s in G_{2n} such that each $P_3 = uvwwithuw \notin E(G_{2n})$ is $\frac{(n-1)n(2n-1)}{6}$, $u, v, w \in V(G_{2n})$ and number of P_3s in G_{2n+1} such that each $P_3 = uvw$ with $uw \notin E(G_{2n})$ is $\frac{(n-1)n(n+1)}{3}$, $u, v, w \in V(G_{2n+1})$ and $n \in N$.

Proof: Let $V(G_{2n}) = \{u_1, u_2, \dots, u_{2n}\}$ where u_j is the vertex of G_{2n} with sum labeling $j, j = 1, 2, \dots, 2n$. $\{u_1, u_2, \dots, u_n\}$ is a clique and $\{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$ is a stable set to split graph G_{2n} and vertex u_n is non-adjacent to $u_{n+1}, u_{n+2}, \dots, u_{2n}$. Each required P_3 in G_{2n} contains at least one element of $\{u_{n+1}, u_{n+2}, \dots, u_{2n}\}$. In G_{2n} , counting of P_3 s such that each $P_3 = uvw$ and $uw \notin E(G_{2n})$ is done as follows, $u, v, w \in V(G_{2n})$. W.l.g., assume that $1 \le i < j < 2n - k \le 2n - 1$. For $1 \le k \le n - 1$, vertex $u_{2n - k}$ is adjacent to v_i for $i = 1, 2, \dots, k$ and $P_3 = u_{2n - k} u_i u_j$ is a required path on the 3 vertices for $j = k+1, k+2, \dots, 2n - k - 1$. Therefore, in G_{2n} , number of P_3 s such that each $P_3 = uvw$ with $uw \notin E(G_{2n})$ and $u, v, w \in V(G_{2n}) = \sum_{k=1}^{n-1} (\sum_{i=1}^k (2n - 2k - 1)) = \sum_{k=1}^{n-1} k(2n - 1 - 2k) = \frac{(n-1)n(2n-1)}{2} - \frac{(n-1)n(2n-1)}{2} = \frac{(n-1)n(2n-1)}{2}$.

Similarly, let $V(G_{2n+1}) = \{u_1, u_2, \dots, u_{2n}\}$ where u_j is the vertex of G_{2n+1} with sum labeling j, $j = 1, 2, \dots, 2n+1$. $\{u_1, u_2, \dots, u_{n+1}\}$ is a clique and $\{u_{n+2}, u_{n+3}, \dots, u_{2n+1}\}$ is a stable set to split graph G_{2n+1} and vertex u_{n+1} is non-adjacent to $u_{n+2}, u_{n+3}, \dots, u_{2n+1}$. Each required P_3 in G_{2n+1} contains at least one element of $\{u_{n+2}, u_{n+3}, \dots, u_{2n+1}, \dots, u_{2n+1}\}$. Each required P_3 such that each $P_3 = uvw$ and $uw \notin E(G_{2n+1})$ is done as follows, $u, v, w \in V(G_{2n+1})$. W.l.g., assume that $1 \le i < j < 2n - k \le 2n$. For $1 \le k \le n-1$, vertex u_{2n+1-k} is adjacent to v_i for $i = 1, 2, \dots, k$ and $P_3 = u_{2n+1-k}u_iu_j$ is a required path on the 3 vertices for $j = k+1, k+2, \dots, 2n+1-k-1$. Therefore, in G_{2n+1} , number of P_3 s such that each $P_3 = uvw$ with $uw \notin E(G_{2n+1})$ and $u, v, w \in V(G_{2n+1}) = \sum_{k=1}^{n-1} (\sum_{i=1}^k (2n-2k)) = \sum_{k=1}^{n-1} k(2n-2k) = \frac{2n(n-1)n}{2} - \frac{2(n-1)n(2n-1)}{6} = \frac{(n-1)n(n+1)}{3}$. Hence the result. \Box

Theorem 2.8 For $2 \le m, n$, (i) $|C_4|_{G_{-m,n}} = |C_4|_{G_m} + |C_4|_{G_n} + mC_2.nC_2 + number of C_4s$ with K_1 as a vertex in $G_{-m,n} = |C_4|_{G_m} + |C_4|_{G_n} + 3(|C_3|_{G_m} + |C_3|_{G_n}) + 2(n, |E(-G_m)| + m, |E(G_n)|) + mC_2.nC_2 + n.mC_2 + (number of P_3s in -G_m, each P_3 = uvwith uw \notin E(-G_m)) + (number of P_3s in G_n, each P_3 = uvwith uw \notin E(G_n))$ and (ii) $|C_4|_{G_m^c} = |C_4|_{G_m^c} + |C_4|_{G_n^c}$.

Proof: We have $G_{-m,n} = K_1 + ((-G_m) + G_n) = K_1 + ((-G_m) \cup G_n \cup K_{m,n})$ and $G_{-m,n}^c = K_1(0) \cup ((-G_m^c) \cup G_n^c) \cup G_n^c)$ where the vertices of $K_{m,n}$ are vertices of $(-G_m) \cup G_n$, $m, n \in N_0$. Here, K_1 is the vertex with integral sum label 0 and adjacent to all other vertices in $G_{-m,n}$ and an isolated vertex in $G_{-m,n}^c$. Clearly, $|C_4|_{G_{-m,n}^c} = |C_4|_{G_{-m}^c} + |C_4|_{G_n^c}$ since G_{-m}^c and G_n^c are disjoint subgraphs in $G_{-m,n}^c$. Now, C_4 s in $(-G_m \cup G_n \cup K_{m,n}) = (C_4 \text{s in } -G_m) \cup (C_4 \text{s in } G_n) \cup (C_4 \text{s in } K_{m,n})$ and $|C_4|_{G_{-m,n}^c} = n$ number of C_4 s, each C_4 with K_1 as a vertex in $G_{-m,n} + n$ number of C_4 s, each C_4 without K_1 as a vertex in $G_{-m,n} = |C_4|_{G_m} + |C_4|_{G_n} + |C_4|_{K_{m,n}} + n$ muber of C_4 s with K_1 as a vertex in $G_{-m,n} = |C_4|_{G_n} + |C_4|_{G_n} + |C_4|_{K_{m,n}} + n$ since $K_{m,n}$ since $K_{m,n}$ is a complete bipartite graph and number of C_4 s in $K_{m,n}$ is $mC_2 \cdot nC_2$, $2 \le m, n$.

Let $V(G_{-m,n}) = \{u_0, u_1, u_2, \dots, u_{m+n}\}$ where, in $G_{-m,n} = K_1 + ((-G_m) + G_n)$, u_0 is the vertex K_1 with integral sum labeling 0, u_i is the vertex of $-G_m$ with integral sum labeling *-i* for $i = 1, 2, \dots, m$ and u_{m+j} is the vertex of G_n with integral sum labeling *j*, $j = 1, 2, \dots, n$. Let $1 \leq |i| < |j| < |k| \leq m+n$ and $(u_0u_iu_ju_k)$ be any cycle of length 4 with u_0 as a vertex in $G_{-m,n}$. The following types of C_4 s with u_0 as a vertex arise. Type-1: $u_i, u_j, u_k \in V(-G_m)$; Type-2: $u_i, u_j, u_k \in V(G_n)$; Type-3: $u_i, u_j \in V(-G_m)$ and $u_k \in V(G_n)$ and Type-4: $u_i \in V(-G_m)$ and $u_j, u_k \in V(G_n)$. Let us obtain number of C_4 s with K_1 as a vertex in $G_{-m,n}$ in each type.

Number of C_4 **s under Type-1:** Here, $u_i, u_j, u_k \in V(-G_m)$. In this case, C_4 is formed in $G_{-m,n}$ with vertices u_0, u_i, u_j and u_k , either $(u_i u_j u_k)$ is a cycle of length 3 in $-G_m$ or $u_i u_j u_k$ is a path of length 2 in G_{-m} with $u_i u_k \notin E(-G_m)$. When $(u_i u_j u_k)$ is a cycle of length 3 in $-G_m$, possible type-1 C_4 s in $G_{-m,n}$ with vertices u_0, u_i, u_j, u_k are $(u_0 u_i u_j u_k)$, $(u_0 u_i u_k u_j)$ and $(u_0 u_j u_i u_k)$. Hence, number of C_4 s in $G_{-m,n}$ with vertices u_0, u_i, u_j, u_k when $(u_i u_j u_k)$ is a cycle of length 3 in $-G_m$ and $u_i u_k \notin E(-G_m)$, then

the only possible type-1 C_4 in $G_{-m,n}$ with vertices u_{0,u_i,u_j,u_k} is $(u_0u_iu_ju_k)$. Thus, number of C_{4s} in $G_{-m,n}$ with vertices u_{0,u_i,u_j,u_k} when $u_iu_ju_k$ is a path of length 2 in $-G_m$ but u_iu_k is not an edge of $-G_m =$ number of P_{3s} in $-G_m$, each P_3 is not a subgraph of any C_3 of $-G_m$. Hence, number of C_{4s} of type-1 in $G_{-m,n} = 3$. $|C_3|_{G_m} +$ number of P_{3s} in $-G_m$ such that each P_3 is not a subgraph of any C_3 of $-G_m$.

Number of C_4 **s under Type-2:** Here, $u_i, u_j, u_k \in V(G_n)$. Similar to type-1 and we obtain, number of C_4 s of type-2 in $G_{-m,n} = 3$. $|C_3|_{G_n}$ + number of P_3 s in G_n such that each P_3 is not a subgraph of any C_3 of G_n .

Number of C_4 s under Type-3: Here, $u_i, u_i \in V(-G_m)$ and $u_k \in V(G_n)$. In this case, C_4 is formed in $G_{-m,n}$ with vertices u_0, u_i, u_j, u_k such that either u_i and u_j are adjacent or u_i and u_j are non-adjacent whereas u_k takes all vertices of G_n . When u_i and u_j are adjacent, possible C_4 s of type-3 in $G_{-m,n}$ with vertices u_0, u_i, u_j, u_k are $(u_0 u_i u_j u_k)$, $(u_0 u_i u_k u_j)$ and $(u_0 u_j u_i u_k)$. Therefore, number of C_4 s of type-3 in $G_{-m,n}$ with vertices $u_{0,u_{i},u_{j},u_{k}}$ when u_{i} and u_{j} are adjacent = 3. $|E(-G_{m})|$ (number of vertices of G_n = 3n. $|E(-G_m)|$. Similarly, when u_i and u_j are non-adjacent, the only possible type-3 C_4 in $G_{-m,n}$ with vertices is u_0, u_i, u_j, u_k $(u_0 u_i u_k u_j)$. Number of non-adjacent pair of vertices in $-G_m = mC_2$ -number of adjacent pair of vertices in $-G_m = mC_2 - |E(G_m)|$. Hence, number of C_4 s of type-3 in $G_{-m,n}$ with vertices u_0, u_i, u_j, u_k when u_i and u_j are non-adjacent = $n(mC_2 - |E(-G_m)|)$. Therefore, number of C_4 s of type-3 in $G_{-m,n}$ = number of C_{4s} of type-3 in $G_{-m,n}$ with vertices $u_{0}, u_{b}, u_{b}, u_{k}$ when u_{i} and u_{j} are adjacent + number of C₄s of type-3 in $G_{-m,n}$ with vertices u_0, u_i, u_j, u_k when u_i and u_j are nonadjacent = $n(mC_2 + 2.|\mathbf{E}(-G_m)|)$.

Number of C_4 s under Type-4: Here, $u_i \in V(-G_m)$ and $u_j, u_k \in V(G_n)$. Similarly, we obtain, number of C_4 s of type-4 in $G_{-m,n} = m(nC_2 + 2.|E(G_n)|)$. Therefore, for $2 \le m, n$,

Number of C_4 s in $G_{-m,n} = |C_4|_{G_{-m,n}}$

= number of C_{48} of type-1 in $G_{-m,n}$ + number of C_{48} of type-2 in $G_{-m,n}$ + number of C_{48} of type-3 in $G_{-m,n}$ + number of C_{48} of type-4 in $G_{-m,n}$

 $= |C_{4}|_{G_{m}} + |C_{4}|_{G_{n}} + mC_{2}.nC_{2} + 3|C_{3}|_{G_{m}} + 3|C_{3}|_{G_{n}}$

+ number of P_3 s in $-G_m$ such that each P_3 is not a subgraph of any C_3 of $-G_m$

+ number of P_3 s in G_n such that each P_3 is not a subgraph of any C_3 of G_n

+ $n(mC_2 + 2|E(G_m)|) + m(nC_2 + 2|E(G_n)|)$. Hence the result. \Box

Corollary 2.9 For $m, n \in N$,

(i)
$$|C_4|_{G_{-2m,2n}} = \frac{(m-1)m(7m^2+m-18)}{24} + \frac{(n-1)n(7n^2+n-18)}{24} + mn(4mn+6(m+n)-11);$$

(ii)
$$|C_4|_{G_{-2m,2n+1}} = \frac{(m-1)m(7m^2+m-18)}{24} + \frac{(n-1)n(7n^2+17n-2)}{24} + m(4m-3)(2n+1) + mn(4mn+2m+6n+1);$$

(iii)
$$|C_4|_{G_{-(2m+1),2n}} = \frac{(m-1)m(7m^2+17m-2)}{24} + \frac{(n-1)n(7n^2+n-18)}{24} + (2m+1)n(4n-3) + mn(4mn+6m+2n+1);$$

(iv)
$$|C_4|_{G_{-(2m+1),2n+1}} = \frac{(m-1)m(7m^2+17m-2)}{24} + \frac{(n-1)n(7n^2+17n-2)}{24} + (mn+m+n)(2m+1)(2n+1) + 4mn(m+n) + 2(m^2+n^2);$$

(v)
$$|C_4|_{G_{-2m,2n}^c} = \frac{(m-2)(m-1)m(7m-1)}{24} + \frac{(n-2)(n-1)n(7n-1)}{24};$$

(vi) $|C_4|_{G_{-2m,2n+1}^c} = \frac{(m-2)(m-1)m(7m-1)}{24} + \frac{(n-1)n(n+1)(7n-10)}{24};$
(vii) $|C_4|_{G_{-(2m+1),2n}^c} = \frac{(m-1)m(m+1)(7m-10)}{24} + \frac{(n-2)(n-1)n(7n-1)}{24}and$

Number of Cycles of Length Four in Sum Graphs \boldsymbol{G}_n and $\,$ Integral Sum Graphs $\boldsymbol{G}_{m,n}$

$$\begin{aligned} \text{(viii)} & | C_{4}| c_{c_{(2m+1),2m+1}}^{c} = \frac{(m-1)m(m+1)(2m-10)}{24} + \frac{(n-1)n(n+1)(2m-10)}{24} \\ \text{Proof: For } m, m \in \mathcal{N}, \text{ using Theorems 15, 2, 1, 2, 2, 2, 7, 2, 8 and Corollary 1, 11, we obtain, (i)} \\ & | C_{4}|_{G_{-2m,2n}} = | C_{4}|_{G_{2m}} + | C_{4}|_{G_{2n}} + | S|_{G_{2n}}| + 2mC_{2}2nC_{2} + 2n.2mC_{2} + 2m.2nC_{2} \\ & + number of P_{3} \text{ sin } G_{2n} \text{ such that each } P_{3} \text{ is not a subgraph of any } C_{3} \text{ of } G_{2m} \\ & + number of P_{3} \text{ sin } G_{2n} \text{ such that each } P_{3} \text{ is not a subgraph of any } C_{3} \text{ of } G_{2n} \\ & = \frac{(m-1)m(7m^{2}-31m+34)}{24} + \frac{(n-1)n(2n^{2}-31n+34)}{24} + 3(\frac{(m-2)(m-1)m}{6} + \frac{(n-2)(m-1)m}{2}) + 4mm(m-1) \\ & + 4mn(n-1) + mn(2m-1)(2n-1) + 2mn(2m-1) + 2mn(2n-1) + \frac{(m-1)m(2m-1)}{6} + \frac{(m-1)m(2m-1)}{6} \\ & = \frac{(m-1)m(7m^{2}+m-16)}{24} + \frac{(n-1)n(7n^{2}+n-18)}{24} + mn(4mn + 6(m+n) - 11). \\ \\ & \text{(ii)} \quad | C_{4}|_{G_{-2m,2n+1}} = | C_{4}|_{G_{2m}+1}| C_{4}|_{G_{2n+1}+3}(| C_{3}|_{G_{2m}} + | C_{3}|_{G_{2m+1}}) + 2((2n+1)|| E(-G_{2m})| \\ & + 2m.||E(C_{2n+1})||) + 2mC_{2}(2n+1)C_{2}(2n+1)C_{2}(2n+1)C_{2} \\ & + number of P_{3} \text{ sin } G_{2m} \text{ subth that each } P_{3} \text{ is not a subgraph of any } C_{3} \text{ of } -G_{2m} \\ & + number of P_{3} \text{ sin } G_{2m} \text{ subth that each } P_{3} \text{ is not a subgraph of any } C_{3} \text{ of } G_{2n+1} \\ & = \frac{(m-2)(m-1)m(7m-17)}{24} + \frac{(n-2)(n-1)n(7n-1)}{24} + (m-2)(m-1)m + \frac{(n-1)m(2m-1)}{6} \\ & + 2(2n+1)(m-1)m + 4mn^{2} + m(2m-1)(2n+1)m + (2n+1)m(2m-1) \\ & + 2m(2n+1)m + \frac{(m-1)m(2m-1)}{24} + \frac{(n-1)m(2m-1)}{24} + \frac{(n-1)m(2m-1)}{6} \\ & = \frac{(m-1)m(7m^{2}+m-16)}{24} + \frac{(n-1)m(7m^{2}+17m-2)}{24} + m(4m-3)(2n+1) + mn(4mn+6m+2n+1). \end{aligned}$$
Similarly, we obtain,
(iii) $| C_{4}|_{G_{-(2m+1),2m}} = \frac{(m-1)m(7m^{2}+17m-2)}{24} + \frac{(n-1)m(7m^{2}+n-16)}{24} \\ & + (2m+1)n(4n-3) + mn(4mn+6m+2n+1). \\ \\ (iv) | C_{4}|_{G_{-(2m+1),2m}} = \frac{(m-1)m(7m^{2}+17m-2)}{24} + \frac{(n-1)m(7m^{2}+1}+1) \\ & + (2n+1)C_{2}(2n+1) + 1) (2n+1)n^{2} + (2m+1)n(2n+1) \\ \\ & + (2n+1)C_{2}(2n+1) + 1) (2n+1)n^{2} + \frac{(n-1)m(2m-1)}{3} \\ \\ & = \frac{($

Any property of natural numbers is interesting and important. From Theorems 2.1, 2.2, 2.6 and Corollary 2.9, we obtain the following simple properties of natural numbers.

Theorem 2.10 For $2 \le n$, n(n+1)(7n-4), n(n+1)(7n+8) and $n(7n^2+18n+5)$ are divisible by 6 and n(n+1)(n+2)(7n-3), n(n+1)(n+2)(7n+1), n(n+1)(n+2)(7n+13), $n(n+1)(7n^2+15n-10)$ and $n(n+1)(7n^2+31n+22)$ are divisible by 24, $m, n \in N$.

Proof: Result follows from Theorems 2.1,2.1,2.9, 2.1, 2.1, 2.1, 2.9 and 2.9, respectively.□

Acknowledgement I express my sincere thanks to Prof. Lowel W. Beineke, Indiana-Purdue University, USA, Prof. V. Mohan, Thiyagarajar College of Engineering, Madurai, India, Prof. M.I. Jinnah, University of Kerala, Thiruvananthapuram, India and Dr. A. P. Santhakumaran, Professor, Department of Mathematics, Hindustan University, Chennai, India for their valuable help and guidance.

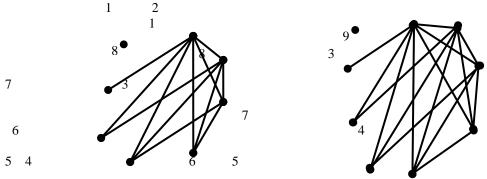


Fig. 1.G₈.Fig. 2. G₉.

REFERENCES

- [1] Harary F., Sum graphs and difference graphs, Cong. Num., 72 (1990), pp.101-108.
- [2] Harary F., Sum graphs over all integers, Discrete Math., 124 (1994), pp. 99-105.
- [3] Vilfred V., Beineke L. and Suryakala A., More properties of sum graphs, Graph Theory Notes of New York, MAA, 66 (2014), pp. 10-15.
- [4] Chen Z., Harary's conjecture on integral sum graphs, Discrete Math., 160 (1990), pp. 241-244.
- [5] Nicholas T., Somasundaram S. and Vilfred V., Some results on sum graphs, J. Comb. Inf. & System Sci., 26 (2001), pp. 135–142.
- [6] Vilfred V., Kala R. and Suryakala A., Number of Triangles in Integral Sum Graphs G_{m,n}, IJ of Algorithms, Computing and Mathematics, 4 (2011), pp. 16-24.
- [7] Vilfred V. and Mary Florida L., Anti-integral sum graphs and decomposition of G_n, G^c_n and K_n, Proc. Int. Conf. on App. Math. and Theoretical Comp. Sci., St. Xavier's College of Engg., Nagercoil, TN, India, pp. 129-133, (2013).
- [8] Vilfred V. and Mary Florida L., Integral sum graphs and maximal integral sum graphs, Graph Theory Notes of New York, MAA, 63 (2012), pp. 28-36.
- [9] Vilfred V. and Mary Florida L., Integral sum graphs $H_{X,Y}^{R,T}$, edge sum class and edge sum color number, Proc. Int. Conf. on Math. in Engg. and Business Management, Stella Maris College, Chennai, India, pp. 88 94, (2012).
- [10] Vilfred V. and Nicholas T., Amalgamation of integral sum graphs, Fan and Dutch M-Windmill are integral sum graphs, Graph Theory Notes of New York, MAA, 58 (2010), pp. 51-54.
- [11] Vilfred V. and Nicholas T., Banana trees and union of stars are integer sum graphs, Ars Comb., 102 (2011), pp. 79-85.
- [12] Vilfred V. and Nicholas T., The integral sum graph G_{∆n}, Graph Theory Notes of New York, MAA, 57 (2009), pp. 43-47.
- [13] Vilfred, V. and Rubin Mary K., Number of Cycles of Length Four in the Integral Sum Graphs Gm,n, Proc. Int. Conf. on App. Math. and Theoretical Comp. Sci., St. Xavier's College of Engg., Nagercoil, TN, India, pp. 134 – 141, (2013).
- [14] Vilfred V., Suryakala A. and Rubin Mary K., More on integral sum graphs, Proc. Int. Conf. on App. Math. and Theoretical Comp. Sci., St. Xavier's College of Engg., Nagercoil, TN, India, pp. 173 – 176, (2013).
- [15] Douglas B. West, Introduction to graph theory, Pearson Education, 2005.