On Left Quasi Noetherian Rings

Falih A.M. Aldosray
Department of mathematics
Umm AlQura University,
Makkah, P o Box 56199, Saudi Arabia
fadosary@uqu.edu.sa

Amani M. A. Alfadli
Department of mathematics
Umm AlQura University
Makkah, P.O.Box 56199 Saudi Arabia
tala5353@hotmail.com

Abstract: In this paper we prove; If R is a left quasi-Noetherian ring ,then every nil subring is nilpotent). Next we show that a commutative semi-prime quasi-Noetherian ring is Noetherian. Then we study the relationship between left Quasi-Noetherian and left Quasi-Artinian, in particular we prove that If R is a non-nilpotent left Quasi-Artinian ring. Then any left R-module is left Quasi-Artinian if and only if it is left Quasi-Noetherian. Finally we show that a commutative ring R is Quasi-Artinian if and only if R is Quasi-Noetherian and every proper prime ideal of R is maximal.

Keywords: Noetherian and Artinian, Left Quasi-Noetherian and Left Quasi-Artinian Rings.

1. INTRODUCTION

By a ring we mean an associative ring that need not have an identity. Following [1] we saythat a left R-Module M is left quasi-Noetherian if for every ascending chain $N_1 \subseteq N_2 \subseteq \cdots \subseteq N_n \subseteq \cdots$ of R-submodules of M,there exists $m \in \mathbb{Z}^+$ such that $Rm \cap (\bigcup_{i \in M} N_i) \subseteq N_m$. We say that the ring R is a left quasi-Noetherian ring if R is quasi-Noetherian. Note that any left Noetherian ring or module is a left quasi-Noetherian. Also any nilpotent ring is a left quasi-Noetherian, however $R = \left[\begin{array}{cc} \mathbb{Z} & 0 \\ 0 & \mathbb{Q} \end{array} \right]$ is a non-nilpotent ring which is a left quasi-Noetherian but not Noetherian.

Note that : if M is a left quasi-Noetherian module and N is a submodule of M, then M/N is a left quasi-Noetherian[1. Proposition 1.3]

Proposition 1.1:
Let R be a left quasi-Noetherian, $I \triangleleft R$. Then I is a left quasi-Noetherian.

Proof:
Let $J_1 \subseteq J_2 \subseteq \cdots$ be any ascending chain of left ideals of I, then $I_1 \subseteq J_2 \subseteq \cdots$ is an ascending chain of left ideals of R. But R is a left quasi-Noetherian so there exists $m \in \mathbb{Z}^+$ such that $I^m \cap (\bigcup_{i \in M} J_i) \subseteq J_m \subseteq J_{m+1}$. Hence I is a left quasi-Noetherian.

Now : If $I \triangleleft R$ and I, R/I are left quasi-Noetherian then R need not be a left quasi-Noetherian ring, as the following example shows: Let $R = \left[\begin{array}{cc} \mathbb{Z} & 0 \\ 0 & \mathbb{Q} \end{array} \right]$, $I = \left[\begin{array}{cc} 0 & \mathbb{Q} \\ 0 & 0 \end{array} \right] \triangleleft R$, hence I and $R/I = \mathbb{Z} \oplus \mathbb{Q}$ are left quasi-Noetherian but R is not, however we can prove the following :

Let $I \triangleleft R$, then R is a left quasi-Noetherian if one of the following holds:

(a) R/I is a left quasi-Noetherian and if $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots \subseteq I$ and $I_1 \triangleleft R$ then there exists $m \in \mathbb{Z}^+$ such that $R^m \cap (\bigcup_{i \in M} I_i) \subseteq I_m$.

(b) R/I is a left quasi-Noetherian and I is a left Noetherian.

Proof:
(a) Let $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ be an ascending chain of left ideals of R. Then $I_1 \cap I \subseteq I_2 \cap I \subseteq \cdots \subseteq I_n \cap I \subseteq \cdots \subseteq I$ then there exist $m \in \mathbb{Z}^+$ such that $R^m \cap (\bigcup_{i \in M} I_i) \subseteq I_m \cap I$. Also $\frac{I_1}{I} \subseteq \frac{I_2}{I} \subseteq \cdots \subseteq \frac{I_n}{I} \subseteq \cdots$ is an ascending chain of left ideals of R/I. But R/I is a left quasi-
Noetherian ring so there exists \(m \in \mathbb{Z}^+ \) such that \((R/I)^m(U_n \frac{I_m}{I}) \subseteq \frac{I_m^{t+1}}{I}\) which implies that \(R^m(U_n l_n + I) \subseteq l_m + I\). Now \(R^m(U_n l_n) \subseteq R^m(U_n l_n + I) \cap (U_n l_n) \subseteq (l_m + I) \cap (U_n l_n) = (U_n l_n \cap I) + l_m\) so \(R^m(U_n l_n) \subseteq R^m((U_n l_n \cap I) + l_m) = R^m(U_n l_n \cap I) + R^m l_m \subseteq (l_m \cap I) + l_m = l_m\). Therefore \(R^{2m}(U_n l_n) \subseteq l_m \subseteq l_{2m}\). Hence is a left quasi-Noetherian.

(b) Can be prove by the same way.

Proposition 1.3:

A finite direct sum of left quasi-Noetherian rings is a left quasi-Noetherian.

Proof:

By induction, it is enough to prove the result for \(t = 2 \). So let \(R_1 \oplus R_2 \) , \(R_1 \), \(R_2 \) are left Quasi-Noetherian. Now let \(I_1 \subseteq l_2 \subseteq \cdots \subseteq l_n \subseteq \cdots \) be any ascending chain of left ideals of \(R \). Then \(R_1 I_1 \subseteq R_1 l_2 \subseteq \cdots \subseteq R_1 l_n \subseteq \cdots \) is an ascending chain of left ideals of \(R_1 \) and \(R_2 I_1 \subseteq R_2 l_2 \subseteq \cdots \subseteq R_2 l_n \subseteq \cdots \) is an ascending chain of left ideals of \(R_2 \). But \(R_1 \) and \(R_2 \) are left Quasi-Noetherian rings, therefore there exists \(m \in \mathbb{Z}^+ \) such that \(R_1^m(U_n R_1 l_n) \subseteq R_1 l_m \subseteq l_m \) and \(R_2^m(U_n R_2 l_n) \subseteq R_2 l_m \subseteq l_m \). Hence \(R^{m+1}_1(U_n l_n) \subseteq R_1^m(U_n R_1 l_n) + R_2^m(U_n R_2 l_n) \subseteq l_m \subseteq l_{m+1} \). Therefore \(R \) is a left Quasi-Noetherian ring.

An ideal \(Q \) in a ring \(R \) is said to be a semi-prime ideal if and only if \(A^2 \subseteq Q \), \(A < R \), then \(A \subseteq Q \), it follows easily by induction that if \(Q \) is a semi-prime ideal in \(R \) and \(A^2 \subseteq Q \) for an arbitrary positive integer \(n \), then \(A \subseteq Q \{15, P.67\} \)

A ring \(R \) is said to be regular if for each element \(a \in R \) there exist some \(a' \in R \) such that \(aa'a = a \). Note that a commutative ring \(R \) is regular if and only if every ideal of \(R \) is semiprime [5, P.186].

By the nil radical \(N=N(R) \) of a ring \(R \) we mean the sum of all nilpotent ideals of \(R \), which is a nil ideal. It is well known [10. P.28. Theorem 2], that \(N \) is the sum of all nilpotent left ideals of \(R \) and it is the sum of all nilpotent right ideals of \(R \).

A ring \(R \) is said to be a left Goldie ring if:

(a) \(R \) satisfies the a.c.c on left annihilator ideals. (b) \(R \) has no infinite direct sum on left ideals. We can prove the following:

Proposition 1.4:

If \(R \) is a left quasi-Noetherian ring and \(r(R) = 0 \), then \(R \) is a left Goldie ring.

Proof:

First we show that any ascending chain of left annihilator idealterminates. Let \(I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots \) be any ascending chain of left annihilator ideals of \(R \). Suppose that \(I_i = l(I_i) \) for all \(i \). Since \(R \) is a left quasi-Noetherian ring then there exists \(m \in \mathbb{Z}^+ \) such that \(R^m(U_n l_n) \subseteq l(I_m) \), therefore \(R^m(U_n l_n)l_m = 0 \), and \(R^{m-1}(U_n l_n)l_m = 0 \) But \(r(R) = 0 \), hence \(R^{m-1}(U_n l_n)l_m = 0 \). Continuing in this way we have \(R(U_n l_n)l_m = 0 \), therefore \((U_n l_n)l_m = 0 \), and \(U_n l_n \subseteq l(I_m) = l_m \). Hence \(I_m = I_{m+1} = \cdots \) and the chain terminates.

Now let \(l_1 \subseteq l_2 \subseteq \cdots \subseteq l_n \subseteq \cdots \) be any ascending chain of complement left ideals of \(R \). Since \(R \) is a left Quasi-Noetherian ring then there exists \(m \in \mathbb{Z}^+ \) such that \(R^m(U_n l_n) \subseteq l(I_m) \). Now suppose that \(I_m \) is a complement of \(J_m \), then \(R^m(U_n l_n) \cap J_m \subseteq l(I_m) = J_m \). But \((U_n l_n) \cap J_m \subseteq U_n l_n \) and \((U_n l_n) \cap I_m \subseteq I_m \). Hence \(R^m((U_n l_n) \cap J_m) \subseteq R^m(U_n l_n) \) and \(R^m(U_n l_n) \cap J_m \subseteq (U_n l_n) \cap J_m \subseteq l_m \). Therefore \(R^m(U_n l_n) \cap J_m \subseteq (R^m(U_n l_n)) \cap J_m = 0 \) and \(R(R^{m-1}(U_n l_n)) = 0 \). But \(r(R) = 0 \), hence \(R^{m-1}(U_n l_n) \cap J_m = 0 \). Continuing in this way we have \((U_n l_n) \cap J_m = 0 \), and by maximality of \(I_m \) we have \(U_n l_n = l_m \). Hence \(I_m = I_{m+1} = \cdots \). Therefore \(R \) is a left Goldie ring.
Following [2] we say that a left R-Module M is left quasi-Artinian if for every descending chain $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$ of R-submodules of M, there exists $m \in \mathbb{Z}^+$ such that $R^m N_m \subseteq N_n$ for all n. We say that the ring R is a left quasi-Artinian ring if R is quasi-Artinian. Now we prove the following:

Proposition 1.5:
Any semi-prime left quasi-Artinian ring is a semi-simple left Artinian.

Proof:
By [2, Theorem 2.4] every non-zero left ideal of R is generated by a non-zero idempotent e, say. But we know that e acts as right identity for the left ideal $I = Re$, and since R is itself an ideal, hence R has an identity element. Therefore R is left Artinian. Now, $J(R)$ is nilpotent, and R is a semi-prime ring, implies that $J(R) = 0$. Hence R is a semi-simple.

2.
In this section we prove the following:

Theorem 2.1:
Let R be a left quasi-Noetherian ring. Then every nil subring of R is nilpotent.

Proof:
Since $R \supseteq R^2 \supseteq \cdots \supseteq R^n \supseteq \cdots$, it follows that $r(R) \subseteq r(R^2) \subseteq \cdots \subseteq r(R^n) \subseteq \cdots$ is an ascending chain of ideals of R. But R is a left quasi-Noetherian ring hence there exists $m \in \mathbb{Z}^+$ such that $R^m r(R^t) \subseteq r(R^{tm})$ for all t. Therefore $R^{2m} r(R^{2m}) \subseteq R^{m} r(R^{m}) = 0$, and $r(R^t) \subseteq r(R^{2m})$ so that $r(R/r(R^{2m})) = 0$. But $\overline{R} = R/r(R^{2m})$ is a left quasi-Noetherian hence \overline{R} is a left Goldie ring. By Lanski Theorem [14] any nil subring \overline{S} of \overline{R} is nilpotent so there exists $n \in \mathbb{Z}^+$ such that $\overline{S}^n = 0$ and then $S^n \subseteq r(R^{2m})$ so $S^{n+2m} = 0$. Hence S is nilpotent subring of R.

An immediate consequence we have the following;

Corollary 2.2:
Let R be a left quasi-Noetherian ring, then $N(R)$ is nilpotent.

Theorem 2.3:
If R is a left quasi-Noetherian ring. Then R satisfies the ascending chain condition on semi-prime ideals.

Proof:
Let $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ be any ascending chain of semi-prime ideals of R. Then there exists $m \in \mathbb{Z}^+$ such that $R^m (U_n I_n) \subseteq I_m$. But $U_n I_n \subseteq R$, hence $(U_n I_n)^m \subseteq R^m$ and $(U_n I_n)^{m+1} = (U_n I_n)^m (U_n I_n) \subseteq R^m (U_n I_n) \subseteq I_m$. But I_m is a semi-prime ideal, hence $(U_n I_n) \subseteq I_m$ so $I_m = I_{m+1} = \cdots$.

Corollary 2.4:
If R is a commutative regular quasi-Noetherian ring. Then R is Noetherian.

Proof:
Since R is a commutative regular ring it follows that every ideal of R is semi-prime. But R is quasi-Noetherian hence by (Theorem 2.3) R is Noetherian ring.

Theorem 2.5:
Let R be a commutative semi-prime quasi-Noetherian ring. Then R is Noetherian.

To prove this we need the following lemma

Lemma 2.6:
If R is a left quasi-Noetherian ring so R has a finite number of minimal prime ideals of R.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page 363
Proof:
By [1, Corollary 3.8] there exists a finite number of prime ideals \(P_1, P_2, \ldots, P_n \) of \(R \) such that \(\prod_{i=1}^{n} P_i = 0 \). Now let \(P \) be any minimal prime ideal of \(R \) so \(\prod_{i=1}^{n} P_i \subseteq P \) therefore \(P_1 \subseteq P \) for some \(i \) but \(P \) is minimal so \(P = P_t \) hence there exists a finite number of minimal prime ideals of \(R \).

Proof of Theorem 2.5:
Let \(P_t \) be a minimal prime ideal in \(R \), \(P_2 \) is a minimal prime ideal of \(P_1 \) (isolated prime of \(R \)) so \(\exists \) (is maximal prime ideal in \(R \)) continuing in this way we have \(P_1 \) is a maximal prime ideal in \(P_2 \) so \(P_2/P_1 \) contains no non-zero prime ideal, therefore every factor of \(P_2/P_1 \) (Otherwise if \(T = P_2/P_1 \) and \(\bar{T} = T/I, I \triangleleft T \), has a non-zero prime ideal say \(\bar{J} \) so \(\pi^{-1}(\bar{J}) \) is a prime ideal in \(T \) where \(\pi: T \to T/I \) is a natural homomorphism, which mean that \(\pi^{-1}(\bar{J}) = 0 \) then \(\bar{J} = \pi(\pi^{-1}(\bar{J})) = \pi(0) = 0 \). Hence \(T \) has no non-zero prime ideal). Therefore every factor of \(P_2/P_1 \) is a quasi-Noetherian. Hence by Proposition 1.4 every factor of \(P_2/P_1 \) is a Goldie ring and by Camilo’s Theorem \(P_2/P_1 \) is a Noetherian ring.

Now \(R = P_t \oplus R/P_t, P_t = P_{t-1} \oplus P_t/P_{t-1} \). \(P_{t-1} \) is maximal prime ideal in \(P_t \) and so on.

Therefore \(R = P_1 \oplus P_2/P_1 \oplus P_3/P_2 \oplus \cdots \oplus P_t/P_{t-1} \oplus R/P_t \) and \(R/P_t, P_t/P_{t-1} \) for all \(t = 1, \ldots, t \) are Noetherian. Hence \(R/P_1 \cong P_2/P_1 \oplus P_3/P_2 \oplus \cdots \oplus P_t/P_{t-1} \oplus R/P_t \) is a finite direct sum of Noetherian rings so it is Noetherian. By Lemma 2.6 \(R \) has a finitenumber of minimal prime ideals therefore \(N(R) = \bigcap_{i=1}^{n} P_i \) is the minimal prime ideal in \(R \), but \(R \) is a semi-prime ring hence \(N(R) = 0 \) and \(R \cong R/N(R) \oplus \bigoplus_{i=1}^{n} R/P_i \) is Noetherian.

3.

In this section we study the relationship between left quasi-Noetherian and left quasi-Artinian. In particular we prove the following:

Theorem 3.1:
If \(R \) is a non-nilpotent left quasi-Artinian ring. Then any left \(R \)-module is a left quasi-Artinian if and only if it is a left quasi-Noetherian.

Proof:
Since \(R \) is a non-nilpotent it follows that \(R \neq N(R) \). But \(R \) is a left quasi-Artinian, hence the nil radical \(N(R) \) is nilpotent. Therefore \(N^t = 0 \) for some \(t \). Now let \(R \)-module be any left quasi-Artinian left \(R \)-module. This has a chain of submodules \(M \supseteq N \supseteq N^2 \supseteq \cdots \supseteq N^t \) which factor modules \(F_k = N^{k-1}M/N^k M, k = 1, \ldots, t \). Now \(F_k \) is annihilated by \(N \) hence maybe regarded as an \(R/N \)-module. Since \(R \) is a left quasi-Artinian ring so \(R/N \) is a semi-prime left quasi-Artinian and by [2, Theorem] \(R/N \) is a semi-simple Artinian so by [15, proposition 2, pg 68] \(R/N \) is completely reducible, hence \(F_k \) is completely reducible as an \(R/N \)-module and therefore also as an \(R \)-module. Since \(F_k \) is a unital left quasi-Artinian \(R/N \)-module so \(F_k \) is a left Artinian as an \(R/N \)-module then \(F_k \) is the direct sum of finite number of irreducible \(R \)-modules, hence \(F_k \) is Noetherian and then left quasi-Noetherian. Thus \(F_t = N^{t-1}M/N^t M = N^{t-1}M \) and \(F_{t-1} = N^{t-2}M/N^{t-1}M \) are left quasi-Noetherian, hence so is \(N^{t-2}M \). Continuing in this way we have \(M \) is a left quasi-Noetherian \(R \)-module.

To prove the converse replace \(R \)-module instead of Artinian

Theorem 3.2:
Let \(R \) be a commutative ring. Then \(R \) is quasi-Artinian if and only if \(R \) is quasi-Noetherian and every proper prime ideal of \(R \) is maximal.

Proof:
Since R is commutative so $(R) = \text{rad}(R) = \bigcap_i P_i$, P_i is minimal prime ideal of R, $\text{rad}(R)$ denoted the prime radical of R. Let R be a quasi-Noetherian ring so by (Lemma 2.6) R has a finite number of minimal prime ideals of R so $N(R) = \bigcap_{i=1}^n P_i$.

Now $R \cong N(R) \oplus R/N(R)$ but $N(R/N(R)) = \overline{0}$ so $\overline{R} \cong R/N(R) \cong \bigoplus_{i=1}^n \overline{R}/\overline{P_i}$ and $\overline{R}/\overline{P_i}$ prime ring. Since every prime ideal of R is maximal so also in $\overline{R} = R/N(R)$ then each of $\overline{P_i}$ is maximal ideal in \overline{R} therefore $\overline{R}/\overline{P_i}$ simple rings so quasi-Artinian and hence $\overline{R} = R/N(R)$ is a quasi-Artinian ring. Since $N(R)$ is nil ideal of R and R is a quasi-Noetherian ring so $N(R)$ is nilpotent then quasi-Artinian hence R is quasi-Artinian ring.

To prove the converse let R be a quasi-Artinian ring, $R \cong N(R) \oplus R/N(R)$, $N(R)$ is nilpotent ring so quasi-Noetherian ring and $R/N(R)$ is a semi-prime quasi-Artinian ring so it is a semi-simple Artinian ring therefore quasi-Noetherian and hence R is a quasi-Noetherian ring.

REFERENCES

