Star-in-Coloring of Some New Class of Graphs

S.Sudha
Professor
Ramanujan Institute for Advanced
Study in Mathematics, University of Madras
Chennai, India
ssudha50@sify.com

V. Kanniga
Ph.DResearch Scholar
Ramanujan Institute for Advanced
Study in Mathematics, University of Madras Chennai, India
kan15gemini@gmail.com

Abstract

Jan Mycielski defined the Mycielskian graph as an extension of a graph with certain conditions. Sampathkumar and Walikar by omitting some of the conditions of Mycielski graph obtained the splitting graph of a graph. In this paper, we found the star-in-coloring concept introduced by Sudha, et al for the following graphs: (i) the splitting graph of complete-bipartite graphs (ii) theMycielski's graphs of paths (iii) theMycielski's graphs of cycles (iv) tensor product of complete-bipartite graphs and paths (v) tensor product of complete-bipartite graphs and cycles.

In addition we have given the general coloring pattern of all these graphs and their star-in-chromatic number.

Keywords: star-in-coloring, splitting graph, Mycielski graph, tensor product of two graphs
AMS Subject Classification: 05C15

1. Introduction

In 1973, Grunbaum[1] has defined proper coloring by avoiding 2-colored paths with four vertices and defined it as star-in-coloring. Star-in-coloring has been discussed by Fertin, et al[2] and Nesetril, et al[3]. Jan Mycielski[4] in 1955 has given the construction of Mycielski graph for the graphs. Splitting graph $\mathrm{S}(\mathrm{G})$ was defined by Sampathkumar and Walikar[5]. The tensor product of graphs was defined by Alfred North Whitehead, et al[6] in their Principia Mathematica.

Definition 1.1 A star-coloring of a graph G is a proper coloring of a graph with the condition that no path on four vertices $\left(P_{4}\right)$ is 2-colored.
A k-star-coloring of a graph G is a star-coloring of G using atmost k colors.
Definition1.2 An in-coloring of a graph G is a proper coloring of a graph G if there exist any path P_{3} of length 2 with the end vertices having same color, then the edges of P_{3} are oriented towards the central vertex.

By combining these two definitions, Sudha, et al[7,8] defined the star-in-coloring of graphs as follows:

Definition1.3 A graph G is said to admit star-in-coloring orientation if

1. No path on four vertices is bicolored
2. Any path of length 2 with end vertices of same color are directed towards the middle vertex.

The minimum number of colors required to color the graph G satisfying the above conditions for star-in-coloring is called the star-in-chromatic number of G and is denoted by $\chi_{s i}(G)$.

Figure 1. Cycle C_{4}
In fig- 1 , the vertices v_{1} and v_{3} are assigned with the color 1 , the vertex v_{2} is assigned with the color 2 and the vertex v_{4} is assigned with the color 3 . This pattern of coloring satisfies both the conditions required for star-in-coloring orientation. In this graph we see that no two adjacent vertices have the same color; no path on four vertices is bicolored; each and every edge in a path of length two in which end vertices have same color are oriented towards the central vertex. Hence it is star-in-colored with orientation.

Definition1.4 For any graph G, the splitting graph $S(G)$ is obtained by adding to each vertex v_{i} in G a new vertex v_{i}^{\prime} such that v_{i}^{\prime} is adjacent to the neighbors of v_{i} in G.

Figure 2. Cycle C_{4} and its splitting graph $S\left(C_{4}\right)$
Definition1.5 Let G be a graph with n vertices denoted by $v_{1}, v_{2}, \cdots, v_{n}$. The Mycielski graph $\mu(G)$ is obtained by adding to each vertex v_{i} a new vertex u_{i} such that u_{i} is adjacent to the neighbors of v_{i}. Finally, add a new vertex w such that w is adjacent to each and every u_{i}.

Figure 3. Cycle C_{4} and its Mycielski's graph $\mu\left(C_{4}\right)$
Definition1.6 The tensor product of two graphs G_{1} and G_{2} denoted by $G_{1} \otimes G_{2}$ has the vertex set $V\left(G_{1} \otimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E\left(G_{1} \otimes G_{2}\right)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) / u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$.

Figure 4. Tensor product of P_{4} and P_{3}

2. MAIN Results

Theorem 2.1 The splitting graph of complete-bipartite graphs $S\left(K_{m, n}\right)$ admit star-in- coloring and its star-in-chromatic number is $\chi_{s i}\left(S\left(K_{m, n}\right)\right)=2(\min (m, n))+1$ for all m and n.

Proof. The complete-bipartite graph $K_{m, n}$ consists of $m+n$ vertices $\left\{u_{1}, u_{2}, \cdots, u_{m+n}\right\}$ and $m n$ edges. The splitting graph of complete-bipartite graph $K_{m, n}$ consists of $2(m+n)$ vertices and $3 m n$ edges. It is denoted by $S\left(K_{m, n}\right)$.

Define a function $f: V \rightarrow\{1,2,3, \ldots\}$ such that $f(u) \neq f(v)$ if $u v \in E$ where V is the vertex set of $S\left(K_{m, n}\right)$ and E is the edge set of $S\left(K_{m, n}\right)$.

The coloring pattern is as follows:
Case (i): If $m \leq n$

$$
\begin{gathered}
f\left(u_{i}\right)=\left\{\begin{array}{rr}
\quad 1+i, \quad 1 \leq i \leq m \\
1, \quad m+1 \leq i \leq m+n
\end{array}\right. \\
f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{rr}
m+1+i, & 1 \leq i \leq m \\
1, & m+1 \leq i \leq m+n
\end{array}\right.
\end{gathered}
$$

Case (ii): If $m>n$

$$
\begin{gathered}
f\left(u_{i}\right)=\left\{\begin{array}{cc}
1, & 1 \leq i \leq m \\
1-m+i, & m+1 \leq i \leq m+n
\end{array}\right. \\
f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{cc}
1, & 1 \leq i \leq m \\
1-m+n+i, & m+1 \leq i \leq m+n
\end{array}\right.
\end{gathered}
$$

With this pattern we can color the graph $S\left(K_{m, n}\right)$ satisfying star-in-coloring condition.
Illustration 2.1.1 Consider a complete-bipartite graph $K_{2,4}$. As per the definition of splitting graph $S\left(K_{2,4}\right)$ consists of 12 vertices and 24 edges.

According to case(i) of theorem-2.1 the vertices u_{1} and u_{2} are assigned with colors 2 and 3 respectively. The vertices u_{3}, u_{4}, u_{5} and u_{6} take the color 1 . The vertices u_{1}^{\prime} and u_{2}^{\prime} are assigned with colors 4 and 5 respectively. The vertices $u_{3}^{\prime}, u_{4}^{\prime}, u_{5}^{\prime}$ and u_{6}^{\prime} take the color 1 .

The star-in-chromatic number of $S\left(K_{2,4}\right)$ is 5 .

Figure 5. Star-in-coloring of $S\left(K_{2,4}\right)$
Theorem 2.2 Mycielski's graph of path $\mu\left(P_{n}\right)$ for all odd $n \geq 2$ admit star-in-coloring and its star-in-chromatic number is $\chi_{s i}\left(\mu\left(P_{n}\right)\right)=5+j$ with $j=\left(\frac{n-3}{2}\right)$.

S.Sudha \& V. Kanniga

Proof. Consider a path P_{n} with n vertices and $n-1$ edges. Let the vertices be denoted by $v_{1}, v_{2}, \cdots, v_{n}$. As per the construction of Mycielski's graph a new vertex set say $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is introduced and each and every vertex say u_{i} is adjacent to the neighbor of v_{i} for all i. Then another new vertex say w is introduced and an edgeisadded fromwto each u_{i} for all i. This newly constructed graph $\mu\left(P_{n}\right)$ consists of $(2 n+1)$ vertices and $4 n-3$ edges.

Define a function $f: V \rightarrow\{1,2,3, \ldots\}$ such that $f(u) \neq f(v)$ if $u v \in E$ where V is the vertex set of $\mu\left(P_{n}\right)$ and E is the edge set of $\mu\left(P_{n}\right)$ as follows:

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{array}{cc}
1, & i f i \equiv 1(\bmod 4) \operatorname{and} i \equiv 3(\bmod 4) \\
2, \quad & \quad i f i \equiv 2(\bmod 4) \\
3, & \text { ifi } i \equiv 0(\bmod 4)
\end{array}\right. \\
f\left(u_{i}\right)= \begin{cases}4, & \text { ifi } \equiv 1(\bmod 4) \text { and } i \equiv 3(\bmod 4) \\
4+\left(\frac{i}{2}\right), & i f i \equiv 2(\bmod 4) \operatorname{and} i \equiv 0(\bmod 4)\end{cases} \\
f(w)=1
\end{gathered}
$$

By using the above pattern of coloring the Mycielski graph of paths is star-in- colored.
Illustration 2.2.1 Consider the path graph P_{11}. According to the construction of Mycielski graph we obtain the graph $\mu\left(P_{11}\right)$. It consists of 23 vertices and 41 edges.

By using theorem-2.2 the vertices $v_{1}, v_{3}, v_{5}, v_{7}, v_{9}$ and v_{11} take the color 1 . The vertices v_{2}, v_{6} and v_{10} take the color 2 . The vertices v_{4} and v_{8} take the color 3 . The vertices $u_{1}, u_{3}, u_{5}, u_{7}, u_{9}$ and u_{11} take the color 4 . The vertices $u_{2}, u_{4}, u_{6}, u_{8}$ and u_{10} are assigned with colors $5,6,7,8$ and 9 respectively. The vertex w takes the color 1 .
The star-in-chromatic number of $\mu\left(P_{11}\right)$ is 9 .
Remark: For neven $\mu\left(P_{n}\right)$ there isatleast one edge without orientation. Hence Star-in-coloring condition is not satisfied.
Theorem 2.3 Mycielski graph of cycles $\mu\left(C_{n}\right)$ for all even $n \geq 3$ admit star-in-coloring and its star-in-chromatic number is

$$
\chi_{\mathrm{si}}\left(\mu\left(C_{n}\right)\right)=\left\{\begin{array}{cc}
2(2+j), & \text { ifn }=4 j, j=1,2,3, \ldots \\
2(3+j), & \text { ifn }=2+4 j, j=1,2,3, \ldots
\end{array}\right.
$$

Proof: Consider a cycle C_{n} with n vertices and n edges. The vertices are denoted by $v_{1}, v_{2}, \cdots, v_{n}$.As per the construction of Mycielski's graph a new vertex $\operatorname{set}\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is introduced and draw an edge from each vertex u_{i} to the neighbor of v_{i} for all i. A new vertex w is
introduced and we add an edge from w to each u_{i}. This newly constructed graph $\mu\left(C_{n}\right)$ consists of $(2 n+1)$ vertices and $4 n$ edges.

Define a function $f: V \rightarrow\{1,2,3, \ldots\}$ such that $f(u) \neq f(v)$ if $u v \in E$ where V is the vertex set of $\mu(\mathrm{Cn})$ and E is the edge set of $\mu\left(C_{n}\right)$ as follows:

Case (i): If $n=4 j, j=1,2,3, \ldots$

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{array}{cc}
1, & i f i \equiv 1(\bmod 4) \operatorname{and} i \equiv 3(\bmod 4) \\
2, & i f i \equiv 2(\bmod 4) \\
3, & i f i \equiv 0(\bmod 4)
\end{array}\right. \\
f\left(u_{i}\right)= \begin{cases}4, & i f i \equiv 1(\bmod 4) \operatorname{and} i \equiv 3(\bmod 4) \\
4+\left(\frac{i}{2}\right), & i f i \equiv 2(\bmod 4) \operatorname{and} i \equiv 0(\bmod 4)\end{cases} \\
f(w)=1
\end{gathered}
$$

Case (ii): If $n=2+4 j, j=1,2,3, \ldots$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{cc}
1, & \text { ifi } \equiv 1(\bmod 4) \text { and } i \equiv 3(\bmod 4) \\
2, \quad i f i \equiv 2(\bmod 4) \text { and } i<n \\
3, \quad i f i \equiv 0(\bmod 4)
\end{array}\right. \\
& f\left(v_{n}\right)=4 \\
& f\left(u_{i}\right)= \begin{cases}5, & \text { ifi } \equiv 1(\bmod 4) \text { and } i \equiv 3(\bmod 4) \\
5+\left(\frac{i}{2}\right), & \text { ifi} \equiv 2(\bmod 4) a n d i \equiv 0(\bmod 4)\end{cases} \\
& f(w)=1
\end{aligned}
$$

By using the above pattern of coloring the Mycielski's graph of cycles C_{n} for all even $n \geq 3$ is star-in-colored.
Illustration 2.3.1 Consider thecycle C_{8}. According to the construction of Mycielski graph $\mu\left(C_{8}\right)$ consists of 17 vertices and 32 edges.

Cycle C_{8}

Mycielski's graph of C_{8}

Figure 8. Star-in-coloring of $\mu\left(C_{8}\right)$
By using case(i) of theorem-2.3, the vertices $v_{1}, v_{3}, v_{5}, v_{7}$ and w take the color 1 . The vertices v_{2} and v_{6} take the color 2 . The vertices v_{4} and v_{8} take the color 3 . The vertices u_{1}, u_{3}, u_{5} and u_{7} take the color 4 . The vertices u_{2}, u_{4}, u_{6} and u_{8} are assigned with colors $5,6,7$ and 8 respectively.

The star-in-chromatic number of $\mu\left(C_{8}\right)$ is 8 .

S.Sudha \& V. Kanniga

Theorem2.4 The tensor product of complete-bipartite graph and a path admits star-in-coloring and its star-in-chromatic number is

$$
\chi_{\mathrm{si}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}} \otimes \mathrm{P}_{\mathrm{r}}\right)= \begin{cases}\min (m, n)+1, & \text { ifr }=2 \\ 2(\min (m, n))+1, & \text { ifr }>2\end{cases}
$$

Proof. Consider a complete-bipartite graph $K_{m, n}$ which consists of $m+n$ vertices denoted by $u_{1}, u_{2}, \cdots, u_{m+n}$ and $m n$ edges and the path graph P_{r} which consists of r vertices denoted by $v_{1}, v_{2}, \cdots, v_{r}$ and $r-1$ edges. The tensor product of $K_{m, n}$ and P_{r} is obtained as per the definition6. This newly obtained graph consists of $r(m+n)$ vertices and $2 m n(r-1)$ edges.

Define a function $f: V \rightarrow\{1,2,3, \ldots\}$ such that $f(u) \neq f(v)$ if $u v \in E$ where V is the vertex set of $K_{m, n} \otimes P_{r}$ and E is the edge set of $K_{m, n} \otimes P_{r}$ as follows:

Case (i): If $m \leq n$
For $j \equiv 1(\bmod 4)$ and $j \equiv 2(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{rr}
\quad i+1, \quad \text { for } 1 \leq i \leq \operatorname{mand} 1 \leq j \leq r \\
1, & \text { form }+1 \leq i \leq m+\text { nand } 1 \leq j \leq r
\end{array}\right.
$$

For $j \equiv 3(\bmod 4)$ and $j \equiv 0(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{rr}
m+i+1, \quad \text { for } 1 \leq i \leq m a n d ~ & m \leq j \leq r \\
1, & \text { form }+1 \leq i \leq m+\text { nand } 1 \leq j \leq r
\end{array}\right.
$$

Case (ii): If $m>n$
For $j \equiv 1(\bmod 4)$ and $j \equiv 2(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cc}
1, & \text { for } 1 \leq i \leq \text { mand } 1 \leq j \leq r \\
1-m+i, & \text { form }+1 \leq i \leq m+\text { nand } 1 \leq j \leq r
\end{array}\right.
$$

For $j \equiv 3(\bmod 4)$ and $j \equiv 0(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cc}
1, & \text { for } 1 \leq i \leq \operatorname{mand} 1 \leq j \leq r \\
n-m+1+i, & \text { form }+1 \leq i \leq m+\text { nand } 1 \leq j \leq r
\end{array}\right.
$$

By using this pattern of coloring the graph is be star-in-colored.
Illustration2.4.1 Consider a complete-bipartite graph $K_{2,3}$ and a path P_{3}. The tensor product of $K_{2,3}$ and P_{3} consists of 15 vertices and 24 edges.

By using case(i) of theorem-2.4 the vertices in $K_{2,3} \otimes P_{3}$ are assigned with colors 1,2,3,4 and 5 which satisfy the conditions of star-in-coloring.

Thus the star-in-chromatic number of $K_{2,3} \otimes P_{3}$ is 5 .
Remark: The case $m>n$ is the mirror image of case $m \leq n$.
Theorem 2.5 The tensor product of complete-bipartite graph and a cycle admits star-in-coloring and its star-in-chromatic number is given by

$$
\chi_{s i}\left(K_{m, n} \otimes C_{s}\right)=\left\{\begin{array}{c}
3(\min (m, n))+1, \quad \text { ifs } \equiv 1(\bmod 4), \quad s \equiv 2(\bmod 4), \quad s \equiv 3(\bmod 4) \\
2(\min (m, n))+1, \quad \text { ifs } \equiv 0(\bmod 4)
\end{array}\right.
$$

Proof. Consider a complete-bipartite graph $K_{m, n}$ which consists of $m+n$ vertices denoted by $u_{1}, u_{2}, \cdots, u_{m+n}$ and $m n$ edges and a cycle graph C_{s} which consists of s vertices denoted by $v_{1}, v_{2}, \cdots, v_{s}$ and s edges. The tensor product of $K_{m, n}$ and C_{s} is obtained as per the definition- 6 . This newly obtained graph consists of $s(m+n)$ vertices and $2 m n s$ edges.

Define a function $f: V \rightarrow\{1,2,3, \ldots\}$ such that $f(u) \neq f(v)$ if $u v \in E$ where V is the vertex set of $K_{m, n} \otimes C_{s}$ and E is the edge set of $K_{m, n} \otimes C_{s}$ as follows:

There are two cases one for $m \leq n$ and other for $m>n$.
Case (i): For $m \leq n$
If $s \equiv 1(\bmod 4)$
$f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cl}1+i, & \text { if } 1 \leq i \leq m \text { with } j \equiv 0(\bmod 4) \text { and } j \equiv 1(\bmod 4), j \neq s-1 \\ m+1+i, & \quad \text { if } 1 \leq i \leq m \text { with } j \equiv 2(\bmod 4) \text { and } j \equiv 3(\bmod 4) \\ 2 m+1+i, & \text { if } 1 \leq i \leq m \text { and } j=s-1 \\ 1, & \text { if } m+1 \leq i \leq m+n \text { and for all } j\end{array}\right.$
If $s \equiv 2(\bmod 4)$
$f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cl}1+i, & \text { if } 1 \leq i \leq m \text { with } j \equiv 1(\bmod 4) \text { and } j \equiv 2(\bmod 4), j<s-1 \\ m+1+i, & \quad \text { if } 1 \leq i \leq m \text { with } j \equiv 3(\bmod 4) \text { and } j \equiv 0(\bmod 4) \\ 2 m+1+i, & \text { if } 1 \leq i \leq m \text { and } j=s \text { and } j=s-1 \\ 1, & \text { if } m+1 \leq i \leq m+n \text { and for all } j\end{array}\right.$
If $s \equiv 3(\bmod 4)$

$f\left(u_{i} v_{j}\right)=\left\{\right.$| $1+i$, | if $1 \leq i \leq m$ with $j \equiv 1(\bmod 4)$ and $j \equiv 2(\bmod 4), j \neq s-1$ |
| :---: | :--- |
| $m+1+i$, | if $1 \leq i \leq m$ with $j \equiv 3(\bmod 4)$ and $j \equiv 0(\bmod 4)$ |
| $2 m+1+i$, | if $1 \leq i \leq m$ and $j=s-1$ |
| 1, | if $m+1 \leq i \leq m+n$ and for all j |

If $s \equiv 0(\bmod 4)$
$f\left(u_{i} v_{j}\right)= \begin{cases}1+i, & \text { if } 1 \leq i \leq m \text { with } j \equiv 1(\bmod 4) \text { and } j \equiv 2(\bmod 4) \\ m+1+i, & \text { if } 1 \leq i \leq m \text { with } j \equiv 3(\bmod 4) \text { and } j \equiv 0(\bmod 4) \\ 1, & \text { if } m+1 \leq i \leq m+n \text { and for all } j\end{cases}$
Case (ii): For $m>n$
If $s \equiv 1(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cc}
1, & \text { if } 1 \leq i \leq m \text { and for all } j \\
1-m+i, \quad \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 1(\bmod 4) \text { and } j \equiv 0(\bmod 4), j \neq s-1 \\
n-m+1+i, & \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 2(\bmod 4) \text { and } j \equiv 3(\bmod 4) \\
2 n-m+1+i, & \text { if } m+1 \leq i \leq m+n \text { and } j=s-1
\end{array}\right.
$$

If $s \equiv 2(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cc}
1, & \text { if } 1 \leq i \leq m \text { and for all } j \\
1-m+i, \quad \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 1(\bmod 4) \text { and } j \equiv 2(\bmod 4), j<s-1 \\
n-m+1+i, & \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 3(\bmod 4) \text { and } j \equiv 0(\bmod 4) \\
2 n-m+1+i, & \text { if } m+1 \leq i \leq m+n \text { and } j=s \text { and } j=s-1
\end{array}\right.
$$

If $s \equiv 3(\bmod 4)$

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{c}
1, \quad \text { if } 1 \leq i \leq m \text { and for all } j \\
1-m+i, \quad \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 1(\bmod 4) \text { and } j \equiv 2(\bmod 4), j \neq s-1 \\
n-m+1+i, \quad \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 3(\bmod 4) \text { and } j \equiv 0(\bmod 4) \\
2 n-m+1+i,
\end{array} \quad \text { if } m+1 \leq i \leq m+n \text { and } j=s-14\right.
$$

If $s \equiv 0(\bmod 4)$
$f\left(u_{i} v_{j}\right)=\left\{\begin{array}{cc}1, & \text { if } 1 \leq i \leq m \text { and for all } j \\ 1-m+i, & \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 1(\bmod 4) \text { and } j \equiv 2(\bmod 4) \\ n-m+1+i, & \text { if } m+1 \leq i \leq m+n \text { with } j \equiv 3(\bmod 4) \operatorname{and} j \equiv 0(\bmod 4)\end{array}\right.$
With this pattern of coloring, the tensor product of $K_{m, n}$ and C_{s} can be star-in-colored.
Illustration 2.5.1 Consider a complete-bipartite graph $K_{2,3}$ and a cycle C_{3}. The tensor product of $K_{2,3}$ and C_{3} consists of 15 vertices and 36 edges.

Figure 12. Star-in-coloring of $K_{2,3} \otimes C_{5}$

By using case(i) of theorem- 2.5 the vertices in $K_{2,3} \otimes C_{3}$ are assigned with colors $1,2,3,4,5,6$ and 7 which satisfy the conditions of star-in-coloring.

The star-in-chromatic number of $K_{2,3} \otimes C_{3}$ is 7 .

3. CONCLUSION

In this paper, we have proved that the following graphs are star-in-colored with orientation by giving the general pattern of coloring and their star-in-chromatic number is also found:
(i) the star-in-chromatic number of $S\left(K_{m, n}\right)$ is $2(\min (m, n))+1$
(ii) the star-in-chromatic number of $\mu\left(P_{n}\right)$ is $\frac{1}{2}(n+7)$
(iii) the star-in-chromatic number of $\mu\left(C_{n}\right)$ is $2(2+j)$ if $n=4 j$ and $2(3+j)$ if $n=2+4 j$ where $j=1,2,3, \ldots$
(iv) the star-in-chromatic number of $K_{m, n} \otimes P_{r}$ is $\min (m, n)+1$ if $r=2$ and $2(\min (m, n))+$ 1if $r>2$
(v) the star-in-chromatic number of $K_{m, n} \otimes C_{s}$ is $2(\min (m, n))+1$ if $s \equiv 0(\bmod 4)$ and $3(\min (\operatorname{m}, n))+1$ if $s \equiv 1(\bmod 4)$ or $s \equiv 2(\bmod 4)$ or $s \equiv 3(\bmod 4)$.

REFERENCES

[1] B. Grünbaum, (1973), Acyclic colorings of planar graphs, Israel J. Math.14, 390-408.
[2] G. Fertin, A. Raspaud and B. Reed, (2001), On star coloring of graphs. In Graph-Theoretic concepts in Computer Science, 27th International Workshop, WG 2001, Springer Lecture Notes in Computer Science 2204, 140-153.
[3] J. Nes̆etřil and P. Ossona de Mendez, (2003), Colorings and homomorphisms of minor closed classes, Discrete and Computational Geometry: The GoodmanPollack Festschrift (ed. B. Aronov, S. Basu, J. Pach, M. Sharir), Springer Verlag, 651-664.
[4] Jan Mycielski (1955), "Sur le coloriaqe des graphes", Colloq. Math, 3: 161-162.
[5] E. Sampathkumar and H.B. Walikar, (1980) On Splitting Graph of a Graph, J. Karnatak Univ. Sci., 25(13), 13-16.
[6] A.N. Whitehead and B. Russell, (1912), Principia Mathematica, Cambridge University Press, Vol2.P 384.
[7] S. Sudha and V. Kanniga, (2014) Star-in-coloring of Complete bi-partite graphs, Wheel graphs and Prism graphs, International Journal of Engineering and Technology, Vol 2, Issue 2, 97-104.
[8] S. Sudha and V. Kanniga, (2014) Star-in-coloring of Cycles, Generalized Petersen graphs and their middle graphs, The Journal of Indian Academy of Mathematics, Vol 2, Issue 1.

AUTHOR'S BIOGRAPHY

Dr.S.Sudha has got 35 years of teaching and research experience. She is currently working as Professor of Mathematics at the Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai600005. Her fields of interest are Computational Fluid Dynamics, Graph Theory, Fuzzy Graphs and Queueing Theory. She has published many articles in journals. She has also published some books.

V. Kanniga is a Ph.D. Research scholar at Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005. She has published nine articles in International Journals. She has attended International Conferences and National seminars and presented papers.

