Star-in-Coloring of Some New Class of Graphs

S.Sudha

Professor Ramanujan Institute for Advanced Study in Mathematics, University of Madras Chennai, India ssudha50@sify.com

V. Kanniga

Ph.DResearch Scholar Ramanujan Institute for Advanced Study in Mathematics, University of Madras Chennai, India kan15gemini@gmail.com

Abstract: Jan Mycielski defined the Mycielskian graph as an extension of a graph with certain conditions. Sampathkumar and Walikar by omitting some of the conditions of Mycielski graph obtained the splitting graph of a graph. In this paper, we found the star-in-coloring concept introduced by Sudha, et al for the following graphs:

- (i) the splitting graph of complete-bipartite graphs
- (ii) the Mycielski's graphs of paths

(iii) theMycielski's graphs of cycles

(iv) tensor product of complete-bipartite graphs and paths

(v) tensor product of complete-bipartite graphs and cycles.

In addition we have given the general coloring pattern of all these graphs and their star-in-chromatic number.

Keywords: star-in-coloring, splitting graph, Mycielski graph, tensor product of two graphs

AMS Subject Classification: 05C15

1. INTRODUCTION

In 1973, Grunbaum[1] has defined proper coloring by avoiding 2-colored paths with four vertices and defined it as star-in-coloring. Star-in-coloring has been discussed by Fertin, et al[2] and Nesetril, et al[3]. Jan Mycielski[4] in 1955 has given the construction of Mycielski graph for the graphs. Splitting graph S(G) was defined by Sampathkumar and Walikar[5]. The tensor product of graphs was defined by Alfred North Whitehead, et al[6] in their Principia Mathematica.

Definition 1.1 A star-coloring of a graph G is a proper coloring of a graph with the condition that no path on four vertices (P_4) is 2-colored.

A k -star-coloring of a graph G is a star-coloring of G using atmost k colors.

Definition1.2 An in-coloring of a graph G is a proper coloring of a graph G if there exist any path P_3 of length 2 with the end vertices having same color, then the edges of P_3 are oriented towards the central vertex.

By combining these two definitions, Sudha, et al[7,8] defined the star-in-coloring of graphs as follows:

Definition 1.3 A graph G is said to admit star-in-coloring orientation if

1. No path on four vertices is bicolored

2. Any path of length 2 with end vertices of same color are directed towards the middle vertex.

The minimum number of colors required to color the graph G satisfying the above conditions for star-in-coloring is called the star-in-chromatic number of G and is denoted by $\chi_{si}(G)$.

In fig-1, the vertices v_1 and v_3 are assigned with the color 1, the vertex v_2 is assigned with the color 2 and the vertex v_4 is assigned with the color 3. This pattern of coloring satisfies both the conditions required for star-in-coloring orientation. In this graph we see that no two adjacent vertices have the same color; no path on four vertices is bicolored; each and every edge in a path of length two in which end vertices have same color are oriented towards the central vertex. Hence it is star-in-colored with orientation.

Definition1.4 For any graph G, the splitting graph S(G) is obtained by adding to each vertex v_i in G a new vertex v'_i such that v'_i is adjacent to the neighbors of v_i in G.

Figure 2. Cycle C_4 and its splitting graph $S(C_4)$

Definition1.5 Let G be a graph with n vertices denoted by v_1, v_2, \dots, v_n . The Mycielski graph $\mu(G)$ is obtained by adding to each vertex v_i a new vertex u_i such that u_i is adjacent to the neighbors of v_i . Finally, add a new vertex w such that w is adjacent to each and every u_i .

Figure 3. Cycle C_4 and its Mycielski's graph $\mu(C_4)$

Definition1.6 The tensor product of two graphs G_1 and G_2 denoted by $G_1 \otimes G_2$ has the vertex set $V(G_1 \otimes G_2) = V(G_1) \times V(G_2)$ and the edge set $E(G_1 \otimes G_2) = \{(u_1, v_1)(u_2, v_2)/u_1u_2 \in E(G_1) \text{ and } v_1v_2 \in E(G_2)\}.$

Figure 4. Tensor product of P_4 and P_3

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

2. MAIN RESULTS

Theorem 2.1 The splitting graph of complete-bipartite graphs $S(K_{m,n})$ admit star-in- coloring and its star-in-chromatic number is $\chi_{si}(S(K_{m,n})) = 2(min(m,n)) + 1$ for all *m* and *n*.

Proof. The complete-bipartite graph $K_{m,n}$ consists of m + n vertices $\{u_1, u_2, \dots, u_{m+n}\}$ and mn edges. The splitting graph of complete-bipartite graph $K_{m,n}$ consists of 2(m+n) vertices and 3mn edges. It is denoted by $S(K_{m,n})$.

Define a function $f : V \to \{1, 2, 3, ...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ where V is the vertex set of $S(K_{m,n})$ and E is the edge set of $S(K_{m,n})$.

The coloring pattern is as follows:

Case (i): If $m \le n$

$$f(u_i) = \begin{cases} 1+i, & 1 \le i \le m \\ 1, & m+1 \le i \le m+n \end{cases}$$
$$f(u'_i) = \begin{cases} m+1+i, & 1 \le i \le m \\ 1, & m+1 \le i \le m+n \end{cases}$$

Case (ii): If m > n

$$f(u_i) = \begin{cases} 1, & 1 \le i \le m \\ 1 - m + i, & m + 1 \le i \le m + n \end{cases}$$

$$f(u_i) = \begin{cases} 1, & 1 \le i \le m \\ 1 - m + n + i, & m + 1 \le i \le m + n \end{cases}$$

With this pattern we can color the graph $S(K_{m,n})$ satisfying star-in-coloring condition.

Illustration 2.1.1 Consider a complete-bipartite graph $K_{2,4}$. As per the definition of splitting graph $S(K_{2,4})$ consists of 12 vertices and 24 edges.

According to case(i) of theorem-2.1 the vertices u_1 and u_2 are assigned with colors 2 and 3 respectively. The vertices u_3 , u_4 , u_5 and u_6 take the color 1. The vertices u'_1 and u'_2 are assigned with colors 4 and 5 respectively. The vertices u'_3 , u'_4 , u'_5 and u'_6 take the color 1.

The star-in-chromatic number of $S(K_{2,4})$ is 5.

Figure 5. Star-in-coloring of $S(K_{2,4})$

Theorem 2.2 Mycielski's graph of path $\mu(P_n)$ for all odd $n \ge 2$ admit star-in-coloring and its star-in-chromatic number is $\chi_{si}(\mu(P_n)) = 5 + j$ with $j = \left(\frac{n-3}{2}\right)$.

Proof. Consider a path P_n with *n* vertices and n-1 edges. Let the vertices be denoted by v_1, v_2, \dots, v_n . As per the construction of Mycielski's graph a new vertex set say $\{u_1, u_2, \dots, u_n\}$ is introduced and each and every vertex say u_i is adjacent to the neighbor of v_i for all *i*. Then another new vertex say *w* is introduced and an edgeisadded from *w*to each u_i for all *i*. This newly constructed graph $\mu(P_n)$ consists of (2n + 1) vertices and 4n - 3 edges.

Define a function $f : V \to \{1, 2, 3, ...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ where V is the vertex set of $\mu(P_n)$ and E is the edge set of $\mu(P_n)$ as follows:

$$f(v_i) = \begin{cases} 1, & ifi \equiv 1 \pmod{4} \text{ and} i \equiv 3 \pmod{4} \\ 2, & ifi \equiv 2 \pmod{4} \\ 3, & ifi \equiv 0 \pmod{4} \\ \end{cases}$$
$$f(u_i) = \begin{cases} 4, & ifi \equiv 1 \pmod{4} \text{ and} i \equiv 3 \pmod{4} \\ 4 + \left(\frac{i}{2}\right), & ifi \equiv 2 \pmod{4} \text{ and} i \equiv 0 \pmod{4} \\ & f(w) = 1 \end{cases}$$

By using the above pattern of coloring the Mycielski graph of paths is star-in- colored.

Illustration 2.2.1 Consider the path graph P_{11} . According to the construction of Mycielski graph we obtain the graph $\mu(P_{11})$. It consists of 23 vertices and 41 edges.

Figure 7. Star-in-coloring of Mycielski's graph $\mu(P_{11})$

By using theorem-2.2 the vertices v_1, v_3, v_5, v_7, v_9 and v_{11} take the color 1. The vertices v_2, v_6 and v_{10} take the color 2. The vertices v_4 and v_8 take the color 3. The vertices u_1, u_3, u_5, u_7, u_9 and u_{11} take the color 4. The vertices u_2, u_4, u_6, u_8 and u_{10} are assigned with colors 5,6,7,8 and 9 respectively. The vertex *w* takes the color 1.

The star-in-chromatic number of $\mu(P_{11})$ is 9.

Remark: For $neven\mu(P_n)$ there is at least one edge without orientation. Hence Star-in-coloring condition is not satisfied.

Theorem 2.3 Mycielski graph of cycles $\mu(C_n)$ for all even $n \ge 3$ admit star-in-coloring and its star-in-chromatic number is

$$\chi_{\rm si}(\mu(C_n)) = \begin{cases} 2(2+j), & ifn = 4j, j = 1, 2, 3, \dots \\ 2(3+j), & ifn = 2+4j, j = 1, 2, 3, \dots \end{cases}$$

Proof: Consider a cycle C_n with *n* vertices and *n* edges. The vertices are denoted by v_1, v_2, \dots, v_n . As per the construction of Mycielski's graph a new vertex set $\{u_1, u_2, \dots, u_n\}$ is introduced and draw an edge from each vertex u_i to the neighbor of v_i for all *i*. A new vertex *w* is

introduced and we add an edge from w to each u_i . This newly constructed graph $\mu(C_n)$ consists of (2n + 1) vertices and 4n edges.

Define a function $f : V \to \{1, 2, 3, ...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ where V is the vertex set of $\mu(Cn)$ and E is the edge set of $\mu(C_n)$ as follows:

Case (i): If n = 4j, j = 1,2,3,...

$$f(v_i) = \begin{cases} 1, & ifi \equiv 1 \pmod{4} \text{ and} i \equiv 3 \pmod{4} \\ 2, & ifi \equiv 2 \pmod{4} \\ 3, & ifi \equiv 0 \pmod{4} \end{cases}$$
$$f(u_i) = \begin{cases} 4, & ifi \equiv 1 \pmod{4} \text{ and} i \equiv 3 \pmod{4} \\ 4 + \left(\frac{i}{2}\right), & ifi \equiv 2 \pmod{4} \text{ and} i \equiv 0 \pmod{4} \end{cases}$$
$$f(w) = 1$$

Case (ii): If n = 2 + 4j, j = 1,2,3, ...

$$f(v_i) = \begin{cases} 1, & ifi \equiv 1 \pmod{4} \text{ and} i \equiv 3 \pmod{4} \\ 2, & ifi \equiv 2 \pmod{4} \text{ and} i < n \\ 3, & ifi \equiv 0 \pmod{4} \\ & f(v_n) = 4 \\ \end{cases}$$

$$f(u_i) = \begin{cases} 5, & ifi \equiv 1 \pmod{4} \text{ and} i \equiv 3 \pmod{4} \\ 5 + \left(\frac{i}{2}\right), & ifi \equiv 2 \pmod{4} \text{ and} i \equiv 0 \pmod{4} \\ & f(w) = 1 \end{cases}$$

By using the above pattern of coloring the Mycielski's graph of cycles C_n for all even $n \ge 3$ is star-in-colored.

Illustration 2.3.1 Consider the ycle C_8 . According to the construction of Mycielski graph $\mu(C_8)$ consists of 17 vertices and 32 edges.

Figure 8. Star-in-coloring of $\mu(C_8)$

By using case(i) of theorem-2.3, the vertices v_1, v_3, v_5, v_7 and w take the color 1. The vertices v_2 and v_6 take the color 2. The vertices v_4 and v_8 take the color 3. The vertices u_1, u_3, u_5 and u_7 take the color 4. The vertices u_2, u_4, u_6 and u_8 are assigned with colors 5,6,7 and 8 respectively.

The star-in-chromatic number of $\mu(C_8)$ is 8.

Theorem2.4 The tensor product of complete-bipartite graph and a path admits star-in-coloring and its star-in-chromatic number is

$$\chi_{\rm si}(\mathbf{K}_{\rm m,n} \otimes \mathbf{P}_{\rm r}) = \begin{cases} \min(m,n)+1, & ifr=2\\ 2(\min(m,n))+1, & ifr>2 \end{cases}$$

Proof. Consider a complete-bipartite graph $K_{m,n}$ which consists of m + n vertices denoted by u_1, u_2, \dots, u_{m+n} and mn edges and the path graph P_r which consists of r vertices denoted by v_1, v_2, \dots, v_r and r-1 edges. The tensor product of $K_{m,n}$ and P_r is obtained as per the definition-6. This newly obtained graph consists of r(m+n) vertices and 2mn(r-1) edges.

Define a function $f : V \to \{1, 2, 3, ...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ where V is the vertex set of $K_{m,n} \otimes P_r$ and E is the edge set of $K_{m,n} \otimes P_r$ as follows:

Case (i): If
$$m \le n$$

For
$$j \equiv 1 \pmod{4}$$
 and $j \equiv 2 \pmod{4}$

$$f(u_i v_j) = \begin{cases} i+1, & \text{for } 1 \le i \le \text{mand } 1 \le j \le r \\ 1, & \text{for } m+1 \le i \le m+n \text{and } 1 \le j \le r \end{cases}$$
For $j \equiv 3 \pmod{4}$ and $j \equiv 0 \pmod{4}$

$$f(u_i v_j) = \begin{cases} m+i+1, & \text{for } 1 \le i \le \text{mand } 1 \le j \le r \\ 1, & \text{for } m+1 \le i \le m+n \text{and } 1 \le j \le r \end{cases}$$

Case (ii): If m > n

For
$$j \equiv 1 \pmod{4}$$
 and $j \equiv 2 \pmod{4}$

$$f(u_i v_j) = \begin{cases} 1, & \text{for } 1 \le i \le \text{mand } 1 \le j \le r \\ 1 - m + i, & \text{for } m + 1 \le i \le m + n \text{and } 1 \le j \le r \end{cases}$$

For $j \equiv 3 \pmod{4}$ and $j \equiv 0 \pmod{4}$

$$f(u_i v_j) = \begin{cases} 1, & \text{for } 1 \le i \le \text{mand } 1 \le j \le r \\ n - m + 1 + i, & \text{for } m + 1 \le i \le m + \text{nand } 1 \le j \le n \end{cases}$$

By using this pattern of coloring the graph is be star-in-colored.

Illustration2.4.1 Consider a complete-bipartite graph $K_{2,3}$ and a path P_3 . The tensor product of $K_{2,3}$ and P_3 consists of 15 vertices and 24 edges.

Figure 10. Star-in-coloring of $K_{2,3} \otimes P_3$

By using case(i) of theorem-2.4 the vertices in $K_{2,3} \otimes P_3$ are assigned with colors 1,2,3,4 and 5 which satisfy the conditions of star-in-coloring.

Thus the star-in-chromatic number of $K_{2,3} \otimes P_3$ is 5.

Remark: The case m > n is the mirror image of case $m \le n$.

Theorem 2.5 The tensor product of complete-bipartite graph and a cycle admits star-in-coloring and its star-in-chromatic number is given by

$$\chi_{si}(K_{m,n} \otimes C_s) = \begin{cases} 3(\min(m,n)) + 1, & ifs \equiv 1(mod \ 4), \ s \equiv 2(mod \ 4), \ s \equiv 3(mod \ 4) \\ 2(\min(m,n)) + 1, & ifs \equiv 0(mod \ 4) \end{cases}$$

Proof. Consider a complete-bipartite graph $K_{m,n}$ which consists of m + n vertices denoted by u_1, u_2, \dots, u_{m+n} and mn edges and a cycle graph C_s which consists of s vertices denoted by v_1, v_2, \dots, v_s and s edges. The tensor product of $K_{m,n}$ and C_s is obtained as per the definition-6. This newly obtained graph consists of s(m + n) vertices and 2mns edges.

Define a function $f : V \to \{1,2,3,...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ where V is the vertex set of $K_{m,n} \otimes C_s$ and E is the edge set of $K_{m,n} \otimes C_s$ as follows:

There are two cases one for $m \le n$ and other for m > n.

Case (i): For
$$m \le n$$

If $s \equiv 1 \pmod{4}$ $f(u_i v_j) = \begin{cases} 1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 0 \pmod{4} \text{ and } j \equiv 1 \pmod{4}, \ j \ne s - 1 \\ m+1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 2 \pmod{4} \text{ and } j \equiv 3 \pmod{4} \\ 2m+1+i, & \text{if } 1 \le i \le m \text{ and } j = s - 1 \\ 1, & \text{if } m+1 \le i \le m+n \text{ and for all } j \end{cases}$

If $s \equiv 2 \pmod{4}$

$$f(u_i v_j) = \begin{cases} 1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 1 \pmod{4} \text{ and } j \equiv 2 \pmod{4}, \ j < s-1 \\ m+1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 3 \pmod{4} \text{ and } j \equiv 0 \pmod{4} \\ 2m+1+i, & \text{if } 1 \le i \le m \text{ and } j = s \text{ and } j = s-1 \\ 1, & \text{if } m+1 \le i \le m+n \text{ and for all } j \end{cases}$$

If $s \equiv 3 \pmod{4}$

$$f(u_i v_j) = \begin{cases} 1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 1(mod \ 4) \text{ and } j \equiv 2(mod \ 4), \ j \ne s-1 \\ m+1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 3(mod \ 4) \text{ and } j \equiv 0(mod \ 4) \\ 2m+1+i, & \text{if } 1 \le i \le m \text{ and } j = s-1 \\ 1, & \text{if } m+1 \le i \le m+n \text{ and } \text{ for all } j \end{cases}$$

If $s \equiv 0(mod \ 4)$
$$f(u_i v_j) = \begin{cases} 1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 1(mod \ 4) \text{ and } j \equiv 2(mod \ 4) \\ m+1+i, & \text{if } 1 \le i \le m \text{ with } j \equiv 1(mod \ 4) \text{ and } j \equiv 2(mod \ 4) \\ 1, & \text{if } m+1 \le i \le m+n \text{ and } \text{ for all } j \end{cases}$$

Case (ii): For m > n

$$If s \equiv 1 \pmod{4}$$

$$f(u_i v_j) = \begin{cases} 1, & \text{if } 1 \le i \le m \text{ and for all } j \\ 1 - m + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 1 \pmod{4} \text{ and } j \equiv 0 \pmod{4}, \ j \ne s - 1 \\ n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 2 \pmod{4} \text{ and } j \equiv 3 \pmod{4} \\ 2n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ and } j = s - 1 \end{cases}$$

If $s \equiv 2 \pmod{4}$

$$f(u_i v_j) = \begin{cases} 1, & \text{if } 1 \le i \le m \text{ and } \text{for all } j \\ 1 - m + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 1 \pmod{4} \text{ and } j \equiv 2 \pmod{4}, \text{ } j < s - 1 \\ n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 3 \pmod{4} \text{ and } j \equiv 0 \pmod{4} \\ 2n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ and } j = s \text{ and } j = s - 1 \end{cases}$$

$$Ifs \equiv 3 \pmod{4}$$

$$f(u_i v_j) = \begin{cases} 1, & \text{if } 1 \le i \le m \text{ and } for \text{ all } j \\ 1 - m + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 1 \pmod{4} \text{ and } j \equiv 2 \pmod{4}, \ j \ne s - 1 \\ n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 3 \pmod{4} \text{ and } j \equiv 0 \pmod{4} \\ 2n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ and } j = s - 1 \end{cases}$$

If $s \equiv 0 \pmod{4}$

$$f(u_i v_j) = \begin{cases} 1, & \text{if } 1 \le i \le m \text{ and for all } j \\ 1 - m + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 1 \pmod{4} \text{ and } j \equiv 2 \pmod{4} \\ n - m + 1 + i, & \text{if } m + 1 \le i \le m + n \text{ with } j \equiv 3 \pmod{4} \text{ and } j \equiv 0 \pmod{4} \end{cases}$$

With this pattern of coloring, the tensor product of $K_{m,n}$ and C_s can be star-in-colored.

Illustration 2.5.1 Consider a complete-bipartite graph $K_{2,3}$ and a cycle C_3 . The tensor product of $K_{2,3}$ and C_3 consists of 15 vertices and 36 edges.

Figure 12. Star-in-coloring of $K_{2,3} \otimes C_5$

By using case(i) of theorem-2.5 the vertices in $K_{2,3} \otimes C_3$ are assigned with colors 1,2,3,4,5,6 and 7which satisfy the conditions of star-in-coloring.

The star-in-chromatic number of $K_{2,3} \otimes C_3$ is 7.

3. CONCLUSION

In this paper, we have proved that the following graphs are star-in-colored with orientation by giving the general pattern of coloring and their star-in-chromatic number is also found:

(i) the star-in-chromatic number of $S(K_{m,n})$ is 2(min(m,n)) + 1

(ii) the star-in-chromatic number of $\mu(P_n)$ is $\frac{1}{2}(n+7)$

(iii) the star-in-chromatic number of $\mu(C_n)$ is 2(2+j) if n = 4j and 2(3+j) if n = 2+4j where j = 1,2,3,...

(iv) the star-in-chromatic number of $K_{m,n} \otimes P_r$ is min(m,n) + 1 if r = 2 and 2(min(m,n)) + 1 if r > 2

(v) the star-in-chromatic number of $K_{m,n} \otimes C_s$ is 2(min(m,n)) + 1 if $s \equiv 0 \pmod{4}$ and 3(min(m,n)) + 1 if $s \equiv 1 \pmod{4}$ or $s \equiv 2 \pmod{4}$ or $s \equiv 3 \pmod{4}$.

REFERENCES

- [1] B. Grünbaum, (1973), Acyclic colorings of planar graphs, Israel J. Math. 14, 390-408.
- [2] G. Fertin, A. Raspaud and B. Reed, (2001), On star coloring of graphs. In Graph-Theoretic concepts in Computer Science, 27th International Workshop, WG 2001, Springer Lecture Notes in Computer Science 2204, 140-153.
- J. Nešetřil and P. Ossona de Mendez, (2003), Colorings and homomorphisms of minor closed classes, Discrete and Computational Geometry: The GoodmanPollack Festschrift (ed. B. Aronov, S. Basu, J. Pach, M. Sharir), Springer Verlag, 651-664.
- [4] Jan Mycielski (1955), "Sur le coloriaqe des graphes", Colloq. Math, 3: 161-162.
- [5] E. Sampathkumar and H.B. Walikar, (1980) On Splitting Graph of a Graph, J. Karnatak Univ. Sci., 25(13), 13-16.
- [6] A.N. Whitehead and B. Russell, (1912), Principia Mathematica, Cambridge University Press, Vol2.P 384.
- [7] S. Sudha and V. Kanniga, (2014) Star-in-coloring of Complete bi-partite graphs, Wheel graphs and Prism graphs, International Journal of Engineering and Technology, Vol 2, Issue 2, 97-104.
- [8] S. Sudha and V. Kanniga, (2014) Star-in-coloring of Cycles, Generalized Petersen graphs and their middle graphs, The Journal of Indian Academy of Mathematics, Vol 2, Issue 1.

AUTHOR'S BIOGRAPHY

Dr.S.Sudha has got 35 years of teaching and research experience. She is currently working as Professor of Mathematics at the Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005. Her fields of interest are Computational Fluid Dynamics, Graph Theory, Fuzzy Graphs and Queueing Theory. She has published many articles in journals. She has also published some books.

V. Kanniga is a Ph.D. Research scholar at Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005. She has published nine articles in International Journals. She has attended International Conferences and National seminars and presented papers.