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Abstract: Throughout this paper we will discuss and analyze of the convection-diffusion equation which 

included a reaction term.  First, we will apply an alternating-direction implicit (ADI) scheme akin to that 

proposed by Polezhaev.   Use of this implicit operator-splitting scheme allows the application of a 

tridiagonal Thomas solver to obtain the solution of steady convection-diffusion equation with reaction.  

According to the unsteady case, we will use the improved )/'( GG -expansion method to construct the 

traveling wave solutions, where )/'( GG  satisfies a second order linear ordinary differential equation.  

In this paper we will explore new applications of this method to some special nonlinear convection-

diffusion equation with reaction. 

Keywords: convection-diffusion-reaction equation, alternating-direction implicit (ADI) scheme, )/'( GG -

expansion, traveling wave solutions, linear and nonlinear differential equations.       

 

1. INTRODUCTION 

In this paper, we will discus and investigate two methods for solving a convection–diffusion-

reaction (CDR) scalar transport equation. This equation is practically important because the 

working equations of many cases fall into this filed. Typical examples are the Helmholtz equation 

for modeling exterior acoustics [1], constitutive equations for modeling the turbulent quantities k 

and ε [2], and viscoelastic constitutive equations for modeling the extra stresses in non-Newtonian 

fluid flows [3].  The main points in this research boils down to the following points. Section 2 

presents the working equation, and then an alternating-direction implicit scheme, similar to that of 

Polezhaev [4], is used to obtain the steady/transient CDR equation in one dimension. Throughout 

sections 3, 4, our emphasis in this paper is on the derivation of new traveling wave solutions of 

unsteady-state nonlinear CDR equation in one dimension [5, 6]. 

Since the most of phenomena in physics and other fields of mathematics are described by 

nonlinear evolution equations.  And when we want to understand the physical meaning of 

phenomena, it was described by nonlinear evolution equations, and then exact solutions for the 

nonlinear evolution equations have to be explored. For example, the wave phenomena observed in 

fluid dynamics [7, 8], plasma and elastic media [9,10], etc.  Recently, Wang et al [11, 12] 

introduced a new method called the the )/'( GG -expansion method to look for the traveling wave 

solutions of nonlinear evolution equations.  Here we shall use a new improved )/'( GG -expansion 

method [13-19].  The main idea of this method is that the traveling wave solutions of nonlinear 

equations can be expressed by a polynomial in )/'( GG , where )(GG  , where  tx   , 

satisfies the second order linear ODE 0 GGG  , where ,  , and    are constants. 

The degree of this polynomial can be determined by considering the homogeneous balance 

between the highest order derivatives and the nonlinear terms appearing in the given nonlinear 

equations [19-21]. The coefficients of this polynomial can be obtained by solving a set of 

algebraic equations resulting from the process of using the proposed method.  In this paper, the 
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)/'( GG -expansion method will play an important role in expressing the traveling wave solutions 

of the convection-diffusion equation which included the reaction term. 

2.   WORKING EQUATIONS AND SOLUTION ALGORITHM 

We consider firstly the scalar two dimensional convection–diffusion–reaction equation 
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                                                                                                    (2.1) 

Where V= V (u, v) represent the velocity components along the x and y directions, respectively.  

Other coefficients involve k and c, which denote the diffusion coefficient and the reaction 

coefficient, respectively. For illustrative purposes, all these values are assumed to be constant. For 

simplicity, the investigated equation is subject to the Dirichlet-type boundary condition

),0(, Ttong  .  Equation (2.1) with given boundary condition constitute a closure 

problem provided that the initial data of )0,,( yx are prescribed.  The strategy we will consider 

for solving (2.1) is similar to the ADI (alternating-direction implicit) scheme of Polezhaev.  

By virtue of operator splitting, calculation of the approximated solution of Eq. (2.1) is 

accomplished in two steps, first is the predictor step and the second is the corrector step; 

respectively 
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The above two-step ADI scheme for solving Eq. (2.1) can be rewritten as 
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Where the source terms f1 and f2 are given by 
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For the unsteady case, the scalar convection–diffusion–reaction equation in one dimension is of 

the form 

0  cku xxxt
                                                                                                             (2.6) 

We apply the semidiscretization scheme to approximate Eq. (2.6). In the time-stepping scheme, 

we consider tnn

t   /)( 1  , which yields first-order accuracy. The resulting equation 

containing only the spatial derivatives is 

nnn

xx

n

x cku    111 ˆˆˆ                                                                                                          (2.7) 

The definitions of ku ˆ,ˆ  and ĉ  are tkktuu  ˆ,ˆ , and tcc 1ˆ . 
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Equations (2.4a), (2.4b), and (2.7) are known as the steady-state convection–diffusion–reaction 

equations. At this point, we realize that the key to success in solving Eq. (2.1) lies in the analysis 

of the following model equation: 

fcku xxx                                                                                                                      (2.8) 

As is the case when a partial differential equation is simulated, we aim to obtain higher prediction 

accuracy. To this end, we employ the general solution for Eq. (2.8),  

c

f
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xx
 21                                                                                                                  (2.9) 

where a and b are constants. Substituting Eq. (2.9) into Eq. (2.8), we have two equations for 
1  

and 
1 , respectively: 
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The above two equations enable us to determine 
1  and 

1  as follows: 
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We will focus our attention now to the solution of the nonlinear type of equation (2.6) using the 

improved )/'( GG -expansion method [13-19]. 

3. DESCRIPTION OF THE )/'( GG -EXPANSION METHOD 

Suppose that a nonlinear equation is given by 

0...),,,,,,( xxxtttxt uuuuuuP ,                                                                           (3.1)  

where u = u (x , t ) is an unknown function and P is a polynomial in u = u(x , t ) and its partial 

deriva-  

tives, in which the highest order derivatives and nonlinear terms are involved. In the following we 

give the main steps of the )/'( GG -expansion method. 

Step 1: Combining the independent variables x and t into one variable tx   , we 

suppose that 

txutxu   ),(),(  ,                                                                                  (3.2) 

The travelling wave variable   permits us to reduce Eq. (3.1) to an ODE for u=u( ), namely 

0...),,,,,,( 2  uuuuuuP                                                                                    (3.3) 

Step 2: Suppose that the solution of ODE (3.3) c a n  be expressed by a polynomial in )/'( GG

as follows: 
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where m is called the balance number and )(GG  satisfies the second order linear 

differential equation in the form 

0 GGG  ,                                                                                              (3.5) 

where   ,,...,,, 01mm  are constants to be determined later, 0,m . Using the general 

solution of Eq. (3.5), we have 
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The unwritten part in Eq. (3.4) is also a polynomial in )/'( GG , but the degree of which is equal or 

less than m-1.  The positive integer m can be determined by considering the homogeneous 

balance between the highest order derivatives and nonlinear terms appearing in ODE ( 3 .3). 

Step 3: By substituting (3.4) into (3.3) and using (3 .5), collecting all terms with the same order 

of  )/'( GG together, and then equating each coefficient of the resulting polynomial to zero 

yields a set of algebraic equations for  ,,...,,, 01mm  and   . 

Step 4: Assuming that the constants  ,,...,,, 01mm  and   can be obtained by solving the 

algebraic equations in Step 3, since the general solutions of the second order linear ODE (3.5) is 

well known for us, then substituting ,,...,,, 01  mm and the general solutions of Eq. (3.5) into 

(3.4) we have more travelling wave solutions of the nonlinear evolution Eq. (3.1). 

In the subsequent sections, we will illustrate the validity and reliability of this method in detail 

with some nonlinear evolution equations in mathematical physics the balance numbers of which 

are not positive integers. 

4. APPLICATION TO THE CDR EQUATION 

In this section, we will apply the )/'( GG -expansion method to construct the traveling solutions 

for CDR [5,6] 

0 Fku xxxt                                                                                                               (4.1) 

Where the reaction term F is a source.  We remark that geologists, civil engineers, 

mathematicians, and so on, frequently use different terminology in describing the phenomena 

embodied in equation (4.1).  As found in [5], if the tracer is radioactive with decay rate c, then 

cF   and we obtain the linear CDR Eq. (2.6). 

If the tracer is a biological species with logistic growth rate 
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R
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, where r is the 

growth constant, R is the carrying capacity, and )1(p  is a positive quantity.  Then we start with 

the CDR equation (convection-diffusion equation with growth) in the form 
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Where k ,  and      are nonzero constants. The traveling wave variable below, 

txtx   ),(),(                                                                                                        (4.3) 

Permits us to convert Eq. ( 4 . 2 )  i n t o  an ODE for )(),(  tx  in the form 
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where   is a constant.  Suppose that the solution of the ODE (4.4) can be expressed by a 

polynomial in )/'( GG  as follows: 
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where )(GG   satisfies Eq. (3.5). 

By using (4.5) and (3.5),  i t  is  easily derived that  
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Considering the homogeneous balance between p  and    in (4.4), based on (4.6) and (4.7), 
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1

2

)()( 
 p

G

G
A ,                                                                                                                        (4.8) 

where A is a real constant to be determined later and G satisfies Eq. (3.5).  It is easy to deduce that 
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Substituting ( 4 . 8 ) – (4.10) i n t o  ( 4 .4) a n d  collecting all terms with the same powers of  

)/'( GG  together, we obtain 
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Solving the above algebraic equations (4.11)-(4.15), we have 
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Substituting (4.16) into (3.7) yields 
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where 
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Using Eq. ( 3.6) w e  deduce after some reduction that 
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Where 1c  and 2c  are arbitrary constants.  Substituting (4 .19) i n t o  ( 4 .17), we obtain the new 

exact traveling wave solution of Eq. (4.2) as follows: 
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where   and   are given above.  If we chose 21 cc   in (4.20), then we obtain the envelope 

solitary wave solutions of Eq. (4.20) 
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As a special Case:  if we put p=2 in Eq. (4.2), then we have  
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And therefore its solution, in this case, takes the form 
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Where  

   tkux )5   .                                                                                                               (4.24) 

Note that Eq. (4.23) represents the solitary wave solution of the convection-diffusion-reaction 

equation (4.2) in the case when p=2.  

5. CONCLUSIONS 

Throughout this research we have presented an alternating-direction implicit scheme, which is 

similar to Polezhave’s scheme, to reduce 2D convection-diffusion-reaction equation into steady-

state one-dimensional one.  The main discussion here is to find a new solution of unsteady-state 

CDR using )/'( GG -expansion method.  Since the )/'( GG -expansion method was presented by 

Wang , this method has been improved by several authors.  However, the application of this 

method was still limited to those equations the balance numbers of which are positive integers.  In 

this paper, we explore a new application of the )/'( GG -expansion method and obtain new types 

of exact travelling wave solutions to a kind of nonlinear CDR equation. This paper presents a 

wider applicability for handling nonlinear evolution equations using the -expansion method. The 

new type of exact travelling wave solution obtained in this paper might have significant impact on 

future researches. It is worthy of further study. 
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